
Function Discovery using Data

Transformation

Thong H. Phan | phant@cpsc.ucalgary.ca

Computer Science Department, University of Calgary, Calgary, Canada

Ian H. Witten | ihw@waikato.ac.nz

Computer Science Department, University of Waikato, Hamilton, New Zealand

1 Introduction

Function discovery is the problem of �nding a symbolic formula for a function f : D1!D2 from

a set of examples f(x; y) j y = f(x)g � D1 �D2. Acceptable solutions are restricted to formulas

expressible in some given description language L. In most previous discovery systems|for exam-

ple, Bacon [4], Abacus [1], Coper [2], Fahrenheit [3] and IDS [5]|the description language is

restricted to contain only rational functions so that symbolic descriptions can easily be enumerated.

This paper shows how the idea of data transformation, a technique pioneered in FFD [6], can be

used as the basis of a far more comprehensive description language that includes all functions that

can be transformed to rational functions by di�erentiation and logarithm operations.

The data transformation approach induces functions by searching through a space of transfor-

mations that can be expressed both symbolically and as operations on the example set. It expresses

the solution implicitly, as a small system of simultaneous equations, some of which may be di�eren-

tial equations. Solving these symbolically would (where possible) give a formula for the unknown

function. In order to operationalize transformations while maintaining the ability of the example

set to faithfully represent transformed functions, it is necessary to allow for new examples to be

requested interactively. The main contribution of this paper is to de�ne a transformation-based

description language and characterize its representational power. We also briey sketch a practical

implementation of a function induction system that uses this approach.

1

Name Transformation

Function inverse Inv : (x; y) ! (y; x)

Reciprocal R : (x; y) ! (x; 1=y)

Logarithm Lc : (x; y) ! (x; log(c� y))

Linear factoring F(c;yc) : (x; y) ! (x; (y� yc)=(x� c))

Di�erentiation D(c;yc) : (x; y) ! (x; dy=dx)

Table 1: Available transformations

2 The function description language

We de�ne a particular function description language L, assumed throughout the remainder of

this paper, in which any formula is expressed as a pair of equations of the form:

T k � � � � � T 2 � T 1(x; y) = (u; v)

c1v
2 + c2uv + c3u

2 + c4v + c5u+ c6 = 0:

Each T i is one of the �ve transformations de�ned in Table 1; x, y, u and v are symbolic variables;

and c1; : : : ; c6 are real numbers of which at least one is non-zero. By convention, the variable

y denotes the function's value and x is the independent variable. The sequence T k � � � � � T 1

is called a transformation sequence and the formula c1v
2 + c2uv + c3u

2 + c4v + c5u + c6 is called

a matching pattern. Since the expressions on the right-hand side of the de�ning equations are

always (u; v) and 0, respectively, the full description above can be abbreviated to a pair (T k � � � � �

T 1; c1v
2 + c2uv + c3u

2 + c4v + c5u+ c6).

In Table 1, the subscripts c of the logarithm and factoring transformations Lc and F(c;yc) denote

a free parameter that must be chosen when applying them. The value yc in F(c;yc) represents the

function's value at x = c, so that, despite appearances, only one free parameter is involved. In the

case of D(c;yc), although the operation itself requires no parameter, (c; yc) is retained so that the

transformation can be inverted to yield a unique result.

As an example, consider the function y = log(x2 + 2) + x+ 1. One expression of it in L is:

2

R � F(1; 5
3
) �D(1;2+log3)(x; y) = (u; v)

uv � 2v + 3
2
u2 + 3 = 0:

In short-hand notation, this becomes (R � F(1; 5
3
) �D(1;2+log3); uv� 2v+ 3

2
u2+ 3). The parameters

c1 and c2 in the transformations F(c1 ;yc1)
and D(c2 ;yc2)

are both arbitrarily chosen to be 1, and so

yc1 =
5
3
and yc2 = 2 + log 3 in this example. To show that this description represents the original

function, we perform the necessary transformations and solve the resulting system of equations.

Applying the sequence of transformations to (x; y) yields

R � F(1; 5
3
) �D(1;2+log3)(x; y) =

x;

x� 1

dy=dx� 5
3

!
:

Equating this to (u; v) and eliminating u and v using uv � 2v + 3
2
u2 + 3 = 0 gives the equation

x� 1

dy=dx� 5
3

=
�3

2
x2 � 3

x� 2
:

Solving for dy=dx produces the di�erential equation
dy

dx
= 1+

2x

x2 + 2
, which satis�es all functions

of the form y = log(x2 + 2) + x + C for any constant C. The subscript in the transformation

D(1;2+log3) provides an initial condition for this di�erential equation. In this case, x = 1 and

y = 2 + log 3 gives C = 1.

Note that since each transformation has a unique inverse, function descriptions, in principle, can

be converted to corresponding formulas in conventional form. However, because of the inclusion

of the function inverse transformation Inv and the di�erentiation transformation D, many are

not expressible in terms of elementary functions. Consequently, if explicit formulas are desired,

symbolic mathematical routines may be included to solve the resulting implicit equations whenever

possible; however, this is not the concern of the present paper.

We now exhibit some theoretical results that illustrate the expressiveness of the language L

de�ned above. For convenience, the following notation for sequences of transformations will be used:

A sequence T k�� � �� T 1 of transformations of the same type T (including the sequence of length

zero, k = 0) is written T
�. f T ; T

0g� denotes a sequence composed only of transformations of

3

the types occurring between the brackets fg, in this case T and T
0.

Proposition 1 Let y = f(x) be a function that can be described in L as (T k � � � � � T 2 �

T 1; c1v
2 + c2uv + c3u

2 + c4v + c5u+ c6), where T i, 1 � i � k, are transformations in Table 1,

and c1; : : : ; c6 are real constants of which at least one is non-zero. If a function ŷ = h(x̂) has the

property that T 0(x̂; ŷ) = (x; y) where T 0 is an available transformation, then ŷ = h(x̂) can be

described as (T k � � � � � T 2 � T 1 � T 0; c1v
2 + c2uv + c3u

2 + c4v + c5u+ c6).

Proof: The proposition follows from the de�nition of function descriptions in L. 2

Proposition 2 Descriptions of the form (fR;Fg�; v + c) describe all and only rational functions.

Proof: The proposition follows from two properties that (1) any rational function can be

transformed to a constant c by repeated applications of R and F , and (2) repeated applications

of the reverse transformations R�1 and F�1 to a constant c will produce rational functions only.

(R�1 and F�1 are de�ned as R�1(x; y) = R(x; y) = (x; 1=y) and F�1
(c;yc)

= (x; y � (x� c) + yc).) 2

By Proposition 1, any function that can be transformed to a function expressible in L is also

expressible in L. Consequently, we have shown that any function that can be transformed to a

rational function using the transformations de�ned in Table 1 is also expressible in L. In the

following propositions, some interesting classes of functions are shown to be expressible in L.

Proposition 3 Descriptions of the form (fR;Fg� �D�; v + c) express functions of the form

y = pk +
X
i

c1;ix
n1;i log(a1;ix+ b1;i) +

X
i

c2;ix
n2;i tan�1(a2;ix+ b2;i)

+
X
i

c3;i

(a3;ix+ b3;i)i
+
X
i

X
j

a4;i;jx+ b4;i;j

(hi)j
;

where n1;i, n2;i are non-negative integers; pk is a polynomial with degree at most k; each hi is an

irreducible polynomial of degree 2; each of ai;j, a4;i;j, bi;j, b4;i;j, and ck;i is a real constant; and each

X
i

represents a �nite summation of similar terms.

Proof: The proposition follows from the two properties: (1) repeated applications of D to a

function of the above form will produce a rational function, and (2) repeated integration of any

rational function will produce a function of the above form. 2

4

Function form Transformations Function form Transformations

f(x) = eg(x) L f(x) = eg
�1(x) Inv � L

f(x) = g(log(x)) Inv � L � Inv f(x) = g�1(log x) L � Inv

f(x) = eg(log(x)) Inv � L � Inv � L f(x) = eg
�1(logx) L � Inv � L

Table 2: Transformation sequences for some transcendental functions

Note that functions in Proposition 3 only require a constant matching pattern in their de-

scriptions. When non-constant patterns are used, other functions can also be expressed using

sequences of the type fR;Fg� �D� as well. (For example, y = x3=2+ x can be expressed as (D(0;0),

v2 � 2v � 9
4
u+ 1).) Furthermore, functions expressible in L are not necessarily restricted to ra-

tional functions or their integrations. Table 2 presents the necessary sequences to transform some

transcendental functions to a function g expressible in L. Proposition 4 illustrates two special

classes of di�erential equations that can also be expressed in L.

Proposition 4 If g is expressible in L, then ordinary di�erential equations of the form y0 = yg(x)

and autonomous di�erential equations of the form y0 = g(y) are also expressible in L.

Proof: >From Table 1, D�L(x; y) = (x;
d log y

dx
) = (x; y0=y), and R�D�Inv(x; y) = (y;

1

dx=dy
) =

(y; dy=dx) = (y; y0). Thus, ordinary di�erential equations of the form y0 = yg(x) can be written as

(T �D �L; Q), where (T ; Q) is the description of g. Similarly, autonomous di�erential equations

of the form y0 = g(y) can be expressed as (T �R �D � Inv; Q). 2

Note that for successful application of R � D � Inv, f(x) must be monotonic. While this

condition limits the usefulness of the sequence R �D � Inv, it may be circumvented in practice to

provide the result (y; y0) directly. The case of D � L is similar: the restriction that f must not

contain both positive and negative values can be �nessed by directly computing the result (x; y0=y).

Consequently, with proper implementation, the combined sequences D � L and R � D � Inv can

be used to describe functions expressed as di�erential equations that take the form of rational

functions of x and y0=y, or of y and y0. For instance, trigonometric functions of the form y =

5

c1 sin(ax+ b)+ c2 cos(ax+ b) can be expressed in L as (R �D � Inv; a2u+ v2� a2c21� a2c22) even

though most of them are nonmonotonic functions.

3 Data transformation as a discovery technique

Data transformation is the discovery technique used to implement the description language of

Section 2. Formally, it can be viewed as an implementation of the converse of Proposition 1:

If (Tk � : : : � T1; Q) is a description of some function y = f(x), then (Tk � : : : � T2; Q)

is a description of some function ŷ = h(x̂) where (x̂; ŷ) = T1(x; y).

To discover a description of some function y = f(x), one can proceed by �rst discovering a descrip-

tion of the new function ŷ = h(x̂). Examples (x̂; ŷ) of h are obtained by applying the transformation

T1 to the examples (x; y) of f . In e�ect, the problem of discovering f is reduced to that of discov-

ering h, a function whose description has a shorter transformation sequence.

>From an operational perspective, one searches for a transformation sequence Tk � : : : � T1 that

transforms examples of the unknown function to examples of a quadratic relation, instead of con-

structing all function descriptions and solving the corresponding system of equations. Properly

implemented, this approach has the practical advantage that numerical transformations and curve-

�tting operations can be performed far more cheaply than systems of equations|which include

nonlinear and di�erential equations|can be constructed and solved. However, naive implemen-

tations su�er problems of incomplete generation of function descriptions and inexact numerical

computations.

� Incomplete generation of function descriptions

Recall that a function description comprises two items: a sequence of transformations and a

matching pattern. The method proceeds by applying the di�erent sequences of transformations to

the set of examples until a matching pattern is found. The problem is that the choice of sequences

is constrained by the fact that the transformations Inv and L cannot be applied to all functions.

Speci�cally, inverting a function yields a relation rather than a function. The idea of inverting

6

y = f(x) only makes sense if the inverse function x = f�1(y) exists. Consequently, Inv cannot be

applied unless one is certain that the result is a function. The case of L is analogous; it cannot be

applied to functions that have both positive and negative values.

In both cases, the constraints on Inv and L e�ectively prevent certain examples from being

transformed any further. As a result, if the examples are not carefully chosen, some functions may

not be discovered using the data transformation technique even though they can be described in

L. Thus it appears that the approach is incomplete in the sense that it can fail to discover some

descriptions that can be couched in the language under consideration.

� Inexact computation of transformations

Of the �ve transformations in Table 1, the computation of D and F implicitly refers to the

function implied by the examples. D computes its derivative and F its ratio with respect to some

linear factor. Because the formula for the function implied by the examples is not available, one

can only provide numerical approximations to these transformations. To compound the problem,

the inexact nature of D and F can easily lead to results that are meaningless. The cumulative

error can grow large enough to produce incorrect solutions, or perhaps no solution at all|because

an inconsistent system of equations may result from the correct transformation sequence.

To increase the accuracy of such approximations, the standard method is to use examples

that are closely spaced in x. However, with the inclusion of Inv, this requirement is impossible

to satisfy after some transformations have been applied to the original examples. Furthermore,

from a practical point of view, using too many examples consumes computing resources that could

be reduced if the approximation errors were estimated more accurately. In short, the standard

method is not satisfactory because of the di�culty of ensuring that the examples remain closely

spaced even after several transformations, and of estimating in advance the number of examples

required to maintain a desired accuracy level.

7

4 Overview of Linus

Linus is a function induction system that implements the data transformation approach. To address

the above problems, its design follows three principles: examples must be selectable on demand; all

transformations must be numerically applicable to the examples selected; and transformations must

be numerically reversible. The �rst two combine to solve the problem of incomplete generation

of function descriptions caused by mathematical constraints on the transformations Inv and L.

The third provides a mechanism for estimating the errors incurred by inexact application of the

transformations.

Linus is empowered to select examples that are deemed to be helpful in identifying the unknown

function. The idea is that, by examining the examples currently available, it is possible to determine

which ones would be best to use in the next operation. If these are not available, a request is issued

for them before proceeding further. Before each transformation is applied, the current examples

are examined using the error analysis process sketched below to see if the examples are su�cient to

support the upcoming transformation. If not, more examples are requested to cover places where

the analysis indicates that the error exceeds some acceptable level. Most importantly, if the current

examples prevent the application of any transformation, it must be determined which new examples

will enable the blocked transformation to proceed, in order that these can be speci�cally requested.

This solves the problem of incomplete generation of function descriptions.

The process of error analysis comprises two parts: the replacement of examples of the unknown

function by local approximations, and the estimation of transformation errors. \Local approxima-

tions" are piecewise rational functions composed of polynomials of degree 3 or less. Before the

transformationsD and F are applied, a set of local approximations is computed using least-squares

curve-�tting. These approximations are considered reliable if the �tting error is less than some

prede�ned tolerance level. Then, instead of applying D or F to the examples directly, the trans-

formation is applied symbolically to the corresponding local approximations, and the results are

evaluated with respect to the examples available.

8

Transformation errors are estimated from the curve-�tting process. Let (x; y) be the examples

before the transformation T is applied, and T (x; y) = (u; v) be the result after that transfor-

mation. Ideally, we would have (x; y) = T
�1(u; v), but in practice, the result is T

�1(u; v) =

(x+ �x; y+ �y), where �x and �y are the accumulated errors of both the transformation T and its

inverse T
�1. If both errors fall within the expected �tting error, the result of the transformation

is considered reliable. Otherwise, the local approximations are not su�ciently accurate for the

transformation, and more examples are requested where needed.

Once a description is identi�ed as a potential solution, Linus veri�es that it represents a function

that is numerically indistinguishable from the unknown one within a pre-speci�ed tolerance. First,

the precision of the parameters in the transformation sequence is improved. To achieve this, more

closely spaced examples are requested, and the results of Fc and D(c;yc) are recalculated to greater

accuracy. At the same time, this increases the precision of the coe�cients of the matching pattern.

The �nal result is a new function description, with more precise parameters.

Next, Linus attempts to verify the description obtained by showing that the function it implies

approximates the examples of the unknown function. Veri�cation is performed both forwards and

backwards. In forward veri�cation, additional examples are requested that are evenly distributed

within the range of the current ones, and the transformation sequence is performed on them to

check that their transformed images match the quadratic pattern in the description. In backward

veri�cation, the inverse of the transformation sequence is applied to randomly-generated examples

of the pattern and the results are compared with examples of the unknown function to check that

the di�erences are less than the expected computation error.

5 Summary

Data transformation provides a foundation for function discovery systems that go well beyond

the rational functions to which earlier schemes are restricted. This paper de�nes a data trans-

formation language and characterizes its expressive power from a theoretical perspective. The

9

pioneering system FFD [6] had two fundamental weaknesses that seemed to be inherent in the

data transformation approach: the potentially incomplete generation of function descriptions due

to mathematical constraints on the transformations, and the inevitable errors caused by inexact

computation of transformations. The present paper has indicated how both of these are overcome

by Linus. First, it is designed as an interactive system with adaptive example selection based

on the on-going analysis of computation errors and transformations' requirements. Second, its

transformations are more robust than those in FFD, and all can be applied with the appropriate

selection of examples. Third, it is able to monitor the accuracy of its computations after after

each transformation. Fourth, it includes a more exible veri�cation scheme to further improve the

accuracy of all solutions found.

References

[1] B.C. Falkenhainer and R.S. Michalski. \Integrating quantitative and qualitative discovery:

The ABACUS system." Machine Learning, 1: 367{401, 1986.

[2] M.M. Kokar. \Determining arguments of invariant functional descriptions."Machine Learning,

1: 403{22, 1986.

[3] P. Langley and J. Zytkow. \Data-driven approaches to empirical discovery." Arti�cial Intelli-

gence, 40, 283{312, 1989.

[4] P. Langley, J.M. Zytkow, H.A. Simon and G.L. Bradshaw. \The search for regularity: Four

aspects of scienti�c discovery." In Machine Learning: An Arti�cial Intelligence Approach,

Volume II. Morgan Kaufmann, 1986.

[5] B. Nordhausen and P. Langley. \A robust approach to numeric discovery." Proc. International

Conference on Machine Learning. Morgan Kaufmann, 1990.

[6] P. Wong. Machine Discovery of Function Forms. PhD thesis, University of Waterloo, 1991.

10

