
[Journal Name], [Volumn Number], 1{23 ([Volumn Year])
c [Volumn Year] Kluwer Academic Publishers, Boston. Manufactured in The Netherlands.

Complexity{Based Induction

DARRELL CONKLIN conklin@qucis.queensu.ca

Department of Computing and Information Science, Queen's University,
Kingston, Ontario, Canada, K7L 3N6

IAN H. WITTEN ihw@waikato.ac.nz

Department of Computer Science, University of Waikato, Hamilton, New Zealand

Editor: J. R. Quinlan

Abstract. A central problem in inductive logic programming is theory evaluation. Without
some sort of preference criterion, any two theories that explain a set of examples are equally

acceptable. This paper presents a scheme for evaluating alternative inductive theories based on
an objective preference criterion. It strives to extract maximal redundancy from examples, trans-

forming structure into randomness. A major strength of the method is its application to learning
problems where negative examples of concepts are scarce or unavailable. A new measure called

model complexity is introduced, and its use is illustrated and compared with a proof complexity
measure on relational learning tasks. The complementarity of model and proof complexity paral-

lels that of model and proof{theoretic semantics. Model complexity, where applicable, seems to
be an appropriate measure for evaluating inductive logic theories.

Keywords: Inductive logic programming, data compression, minimum description length princi-
ple, model complexity, learning from positive{only examples, theory preference criterion

1. Introduction

Induction involves the generalization of facts into rules. Since the facts are cov-
ered by induced rules, they are logically redundant and need not be retained after
inductive inference. Thus induction is, by de�nition, a form of data compression.
The aim of this paper is to describe and illustrate the principle of complexity{based
induction in the context of inductive logic programming. Informally, the principle
judges theories by the amount of information they need to reproduce a given set of
positive examples of a concept. It strikes a delicate balance between the complexity
and generality of a theory.
This paper is structured as follows. In this �rst section we give a formal descrip-

tion of inductive logic programming, and discuss the problem of overgeneralization
given positive{only examples. Section 2 develops complexity{based induction in
detail, and gives two measures that can be applied directly to logic programs. Ap-
plication of the technique to two relational concept learning problems is presented
in Section 3. The model complexity measure introduced in the paper is shown
in Section 4 to be an instance of a generalized model compression principle for
inductive logic programming.

2 D. CONKLIN AND I. H. WITTEN

1.1. Inductive logic programming

We briey review the logical foundation of inductive logic programming, as pre-
sented in [15]. This exposition of induction uses logic programming terms [11, 25].
A logic program is a �nite set of rules of the form

A :- B1; : : : ; Bn:

where n � 0, A is an atom, and B1; : : : ; Bn are literals. The atom A is called the
head of the rule, the Bi together constitute the body of the rule. When n = 0, the
rule is called a fact or a unit clause. In such a case, the implication symbol :- is
dropped and assumed present.
A signature for a logic program comprises variable, constant, and predicate sym-

bols with their arities. A term in a given signature is either a variable, a constant,
or an expression f(t1; : : : ; tn), where t1; : : : ; tn are terms and f is an n{ary function
symbol. An atom is an expression p(t1; : : : ; tn), where t1; : : : ; tn are terms, and p is
an n{ary predicate symbol. An atom is ground if it does not contain any variables.
A literal is an atom or the negation of an atom. The Herbrand base B(T) for a
logic program T is the set of all possible ground atoms formed using its signature.
A Herbrand interpretation is a subset of the Herbrand base. A ground instance

of a rule has all variables that occur in the rule replaced by terms. A Herbrand
interpretation I is a Herbrand model for a logic program if for each ground in-
stance of a rule A :- B1; : : : ; Bn in the program, A is in I if B1; : : : ; Bn are in I.
The intersection of all Herbrand models for a program T is called a least Herbrand

model, and denoted M (T). A ground atom A is a logical consequence of a program
T i� A 2 M (T). Logic programs, based on Horn-clause logic, lack the ability to
explicitly represent negative facts. The inference of negative literals is based on a
nonmonotonic rule of inference such as the closed world assumption, or negation as
failure [11]: from T =̀ A infer T ` not A.
Logical consequence is computed by deductive inference. Inductive inference, on

the other hand, generates new hypotheses, and may expand the least Herbrand
model of a theory.1 Suppose B is a logic program, representing background knowl-
edge, and E is a set of independent facts. Inductive inference generates a hypothesis
H subject to the following requirements:

necessity B =̀ E,

consistency B [E =̀ :H,

coverage B [H ` E.

The necessity condition ensures that the background knowledge does not already
entail the examples | if it did, there would be no need for an inductive hypothesis.
The consistency condition asserts that the negation of the hypothesis is not entailed
by the background knowledge and examples | if it were, the hypothesis would
be inconsistent with what is already known. The �nal condition dictates that

COMPLEXITY{BASED INDUCTION 3

the background knowledge and hypothesis, taken together, entail the observations.
Henceforth we shall refer to the combination of the background knowledge and the
hypothesis as a theory, and say that the theory covers the examples.
There will generally be an inde�nite number of inductive hypotheses that meet

the above requirements. As such, inductive inference is a highly underconstrained
problem. The requirements say nothing about which hypothesis to prefer. This
is the role of a theory preference criterion, an extra{logical rule that prefers one
hypothesis to another. This paper does not discuss particular theory formation and
generalization methods: it is concerned with evaluating proposed theories.

1.2. Concept learning

We now describe concept learning, a basic inductive inference task. Concept learn-
ing constrains general induction substantially by allowing only ground facts as
examples, and assuming that each example has the same predicate symbol. A con-
cept is simply a relation between entities in the world. Concepts can be unary (e.g.,
the concept of a bird), or of higher order (e.g., the daughter relation). An n{ary
concept C is a set of ground atoms with a common n{ary predicate symbol, say,
c. The observation language O for C is the set of all atoms in the Herbrand base
with c as a predicate symbol. A concept C is always a subset of the observation
language O. An instance of C is simply an element of C. A non{instance of C is
an element of O � C.
The goal of concept learning is to construct a compact, intensional, de�nition of

the set C, in �nite time, from examples. If a machine had an in�nite amount of
time, data, and space, it could simply conjoin all examples to its growing theory.
Finiteness restrictions necessitate using inductive inference to achieve or approxi-
mate the goal.

1.3. Generality and simplicity

Inductive inference is closely related to the process of generalization. Here we give
an informal discussion of theory generality; see [4] for a more detailed description.
A logic program T 0 is more general than a logic program T i� M (T 0) � M (T).

This relation induces a lattice structure of logic programs. The examples E and
the background knowledge B are points on this lattice, and any upper bound of
E [B is a theory conforming to the requirements of induction. In particular, any
set E of examples is covered by both the simplest and most general theory

>
def
= fc(X1; : : : ; Xn)g [B;

where X1; : : : ; Xn are distinct variables, and the most complex and least general
theory

?
def
= E [B:

4 D. CONKLIN AND I. H. WITTEN

There may be more than one generalization of the examples in the lattice, and
a preference criterion is needed to choose between them. One pervasive preference
criterion is Occam's principle of parsimony.

Occam's principle. Entia non sunt multiplicanda praeter necessitatem,

literally, \entities should not be multiplied beyond necessity". Simpler theories are
to be preferred.
Although theory simplicity is an ancient and intuitive notion, Occam's principle

must be interpreted carefully to yield a useful preference criterion for machine
learning, as the next section will demonstrate.

1.4. Overgeneralization and positive{only examples

Inductive inference machines employing Occam's principle under standard inter-
pretation will not succeed when given only positive examples, as they are liable to
select overly general theories. Consider the theory >; clearly it is simple, but it is
probably inaccurate because it is maximally general and indiscriminately accepts
any new observation.
Very few concept learning systems can learn from positive{only data. Most sys-

tems use counterexamples of the concept to avoid overgeneralization: they maintain
a separate set of negative examples, and insist that an induced theory cover no ele-
ment of the set. Without negative examples, they will all produce > as an inductive
theory. We construct some examples of this phenomenon, drawn from well{known
relational and non{relational concept learning systems.
Mitchell [13] characterizes concept learning as searching for generalizations that

cover all positive and no negative examples. The candidate elimination algorithm
retains two sets, G and S, that are, respectively, the most general and most speci�c
theories that cover the examples. To satisfy Occam's principle, select the simplest
theory from the set G of maximally general theories. The theory G is initialized to
>. If no negative examples are given, > will be the simplest theory.
Quinlan's id3 [19] inductive learning algorithm learns decision trees from exam-

ples. The id3 algorithm �nds an attribute to test, and for every possible outcome
of the test, removes examples which meet the test from the set of current exam-
ples, creates a new branch in the decision tree, and recursively invokes itself with
the remaining examples. The recursion terminates when all current examples are
in the same class. If given only positive examples, this termination criterion will
immediately succeed with the theory >.
Winston [27] describes a general{purpose procedure for learning descriptions of

structured scenes from examples. The �rst positive example forms the initial the-
ory. Subsequent positive and negative examples (\near misses") provoke theory
generalization and specialization, respectively. If no negative examples are given,
the machine may steadily march towards the generalization >.
Shapiro's Model Inference System [23] learns a concept by starting with the most

general theory >, and searching through a specialization hierarchy of logic pro-

COMPLEXITY{BASED INDUCTION 5

grams, directed by negative examples. Only negative examples can remove > from
its perch. Quinlan's foil system [20] cannot learn anything without negative exam-
ples, which are either explicitly labelled, or implicit by a closed world assumption.
In the latter case, any observation which is not given as a positive example is
assumed to be a non{instance.
The marvin concept learning system [22] uses background knowledge to guide

search through a generalization hierarchy of �rst{order theories. In contrast to
Shapiro's system, the most speci�c theory ? forms the initial hypothesis. Gen-
eralization operators are incrementally applied to the theory. Although marvin

does not use negative examples, at each stage of generalization an oracle must be
consulted to con�rm that overgeneralization has not occurred.
The concept learning systems described above do not behave gracefully when

negative examples are not present. This is because > is a generalization of any set
of positive examples. The insistence on negative examples is, in many domains,
quite arti�cial [3]. They require careful preparation, and learning machines lose a
large degree of autonomy. The next section describes and applies an interpretation
of Occam's principle that works in learning settings that include neither an oracle
nor negative examples. Negative examples may be present; the interpretation has
no problem with this.
The abolition of negative examples, however, comes with a price. Fundamental

theorems of Gold [9] and Angluin [1] show that most hypothesis spaces (i.e., sets
of possible theories) are not identi�able in the limit from positive examples. That
is, an inductive inference machine may never converge to an intended or target
theory. Identi�cation in the limit from positive examples is a very strong property
of a hypothesis space. It is, nevertheless, somewhat unrealistic in practical inductive
logic programming settings. There is not, for example, an endless supply of positive
examples. Given a small set of examples, we are interested in selecting, among
competing theories, those that are likely to be more accurate. Complexity{based
induction o�ers an objective selection method.

2. Complexity{based induction

Complexity{based induction theory [24, 5] motivates a fresh interpretation of Oc-
cam's principle, based on the idea of data compression. The metaphor is one of
communication: the set of (positive) examples must be transmitted across a noise-
less channel. Any similarity that is detected among observations can be exploited
by giving them a more compact coding. Instances of the concept should have short
codes, and non{instances should have no code at all.
According to complexity{based induction, the best theory for a concept is de�ned

to be the one that minimizes the number of bits required to communicate the
examples. The examples are communicated in two steps:

1. Encode and transmit a theory T ,

2. Encode the examples using the theory T , and transmit this encoding.

6 D. CONKLIN AND I. H. WITTEN

Denote the code for T byD(T), and the encoding of the examples byD(EjT). If the
codes for theories and examples form a pre�x set (no code is a pre�x of any other),
upon receiving the catenation D(T) �D(EjT) a receiver can exactly reconstruct E.
The complexity of T is the length (in bits) of the string D(T); denote this by

L(T). The code length of the examples E with respect to the theory T is the
length (in bits) of D(EjT); denote this by L(EjT). If T does not cover E, L(EjT)
is de�ned to be in�nite. Complexity{based induction dictates that the best theory
T for the data E minimizes the description length L(T jE), where

L(T jE)
def
= L(T) + L(EjT): (1)

A theory T is preferable to a theory T 0 if L(T jE) < L(T 0jE). If the description
length is greater than or equal to the code length of the raw examples, useful
induction has not taken place. Otherwise, valid generalizations have been made,
redundancy has been extracted fromE, and the data has been compressed. Random
data cannot be compressed.
This is the essence of the minimum description length principle [21]. Complexity{

based induction allows the induction of a theory from positive data without sepa-
rate hypothesis testing. It is related to the theory of Bayesian inference [6], which
prescribes maximizing the posterior probability of a theory given examples. In
Bayesian terms, complexity{based induction assigns a prior probability distribution
to theories which decreases with theory complexity. Both Solomono� and Chaitin
[24, 5] attempt to eliminate the subjectivity associated with prior probabilities by
representing theories using Turing machines. Kolmogorov complexity [10] is also
based on this \universal" prior distribution. Each of these notions of complexity
is undecidable. Hence this prior probability must be somewhat subjective. The
complexity measure for logic programs given in Section 2.4 strives to match an in-
tuitive notion of complexity, but the notion of theory simplicity is a thorny one that
cannot be resolved here. Applied research in Bayesian inference, and the minimum
description length principle, has for the most part been con�ned to propositional
theories. This paper shows that it can be applied to restricted types of �rst{order
theories.
The quantity L(T) measures the syntactic complexity of a theory T , and will

be discussed in Section 2.4. The quantity L(EjT) measures the complexity of the
examples when coded using T . In a probabilistic setting this is simply the log
likelihood of the data with respect to the theory. However, there is some question
about what L(EjT) should be in a logical setting. In this section, we present two
ways to encode examples with respect to a theory. The �rst is the proof complexity
measure of Muggleton et al. [17]. The second is our model complexity measure.
This presentation will also analyze the relative strengths and weaknesses of each
measure. Section 3 grounds this analysis by applying the measures to relational
learning tasks.

COMPLEXITY{BASED INDUCTION 7

2.1. Proof complexity

The proof complexity measure (PC) works by identifying the proofs of examples in
E with respect to the theory T . In Muggleton et al. [17], this is the sequence of
choice points in an SLD{refutation, using the standard Prolog leftmost computation
rule [11]. The choice points in a refutation are easy to encode. Let :- G1; : : : ; Gn

be the current goal, and suppose this goal is at the root of a success branch in
the SLD{tree. Assuming a leftmost computation rule, suppose there are k rules
where G1 uni�es with the rule head. It will require log

2
k bits to select one of these

points in the SLD{tree.2 This selection of choice points continues until a refutation
is reached. The bits required at each choice point are accumulated and added
together to give the �nal proof complexity measure. If we denote the code length
of an atom A with respect to a theory T by LPC(AjT), then3

LPC(EjT)
def
=
X
A2E

LPC(AjT): (2)

For non{generative rules, that is, rules where the head contains one or more (non{
generative) variables not occurring in the rule body, bindings for these variables
must be speci�ed. For example, given the rule c(X), and the example c(a), the
substitution X=a must be speci�ed. Here for simplicity we assume function{free
logic programs, so that only a �nite number of ground substitutions are possible.
Then given a theory with c constants, each substitution to a non{generative variable
will require log2 c bits.
Muggleton [14] gives a variant of this method. Feldman [7] also uses a proof{

theoretic measure of complexity, called derivational complexity, for evaluating in-
ductive inference of context{free grammars. There is a similarity between proof
complexity and explanation{based learning; adding redundant generalizations to
a theory may speed up performance for similar future examples, but also may
degrade overall performance. This is commonly known as the utility problem of
explanation{based learning [12]. Proof complexity can o�er a principled objective
measure for choosing when to save a generalization.

2.2. Model complexity

The model complexity measure (MC) works by measuring the size of a subset of
the least Herbrand model. The least Herbrand model of a logic program T contains
many atoms, and to transmit the examples E we can restrict attention to a subset
of it, namely those atoms Q(T) that are also possible observations:

Q(T)
def
= O \M (T): (3)

In other words, Q(T) is the set of observable atoms covered by T . Borrowing
Popper's term [18], we call Q(T) the empirical content of a theory.

8 D. CONKLIN AND I. H. WITTEN

�

�

�

�

�

M (T)

B(T)

O = Q(>)

C

E = Q(?)

Figure 1. The topology of the models of induction. The thick boundary encloses the empirical
content Q(T) of a theory T . This is the smallest set containing the examples E which can be
reconstructed by a receiver of T .

COMPLEXITY{BASED INDUCTION 9

Figure 1 shows the topological relationships between the various models of in-
duction, with the set Q(T) highlighted. The goal of concept learning is to �nd a
theory T that makes the set Q(T) identical to the concept set C. At the outer
level is the Herbrand base B(T). The set B(T) � O contains all atoms which are
not observable. The set O � C contains all non{instances of the concept C; as
we have seen, existing inductive inference systems rely heavily on a presentation
of this set in the form of oracle queries or explicit negative examples. Note that
the least Herbrand model M (T) of a theory T may contain non{observable atoms,
and the empirical content Q(T) may contain non{instances. The set B(T)�M (T)
contains all those atoms whose negation can be inferred using the closed world as-
sumption. Quinlan's foil system [20], if not given explicit negative examples, uses
this principle; it infers every atom in the set O�E as an implicit negative example.
This assumption can be stiing; consider the trivial concept C = fc(a); c(b)g and
the example set E = fc(a)g. The only theory considered under the closed world
assumption is ?, thus the admissible theory fc(X)g is rejected. On the other hand,
without a similar assumption, concept learning systems su�er from the problems
associated with overgeneralization and positive-only examples, as discussed in Sec-
tion 1.4. Complexity{based concept learning systems can safely use an open world
semantics, making no assumptions about the truth values of observable atoms not
explicitly presented as positive or negative examples.
Inductive inference hypothesizes a theory T , and this theory will have an empirical

content Q(T). There are three possible relations between the set of examples E
and Q(T):

1. E = Q(T). The theory covers all the examples and no other observable atoms.

2. E �= Q(T). There are examples not covered by the theory.

3. E � Q(T). The theory covers all the examples, and perhaps other observable
atoms.

In case 1, only the theory T need be transmitted, since the receiver can reconstruct
E exactly by deductive inference. As E grows, however, it becomes increasingly
unlikely that a simple theory covers E and only E. If case 2 holds, we must add the
set E�Q(T) | the exceptions to the theory | explicitly to T , thus ensuring that
the theory conforms to the coverage requirement of induction. This situation is not
depicted in Figure 1 because it is assumed that T has already been so augmented.
In case 3, the common situation, the theory is perhaps more general than E |
that is �ne, to an extent. It indicates that induction has taken place. However,
further information must be transmitted to convey the set E. This can be done by
specifying the relevant subset Q(T)�E of the model Q(T). By sending a string of
length

LMC(EjT)
def
= log2

�
jQ(T)j
jEj

�
(4)

10 D. CONKLIN AND I. H. WITTEN

bits, a subset of Q(T) of either size jEj or size jQ(T)j � jEj can be identi�ed. One
extra bit su�ces to communicate which of these is meant. Intuitively, LMC(EjT)
is 0 when either E = Q(T) (e.g., T = ?) or E = ;.
This model complexity measure requires that the observation language O is �nite;

to evaluate (4), the size of Q(T) must be measured. Note however that MC, like
PC, can handle background knowledge involving function symbols. Future research
will concentrate on modifying the model complexity measure to apply to concepts
involving function symbols.

2.3. Discussion

Let us look at the consequences of adopting one of these methods for encoding
examples. In the PC measure, given two theories of equal syntactic complexity,
the theory that most e�ciently generates the examples will be preferred. The
MC measure, on the other hand, will prefer the theory with the smaller empirical
content. Each measure has strengths and weaknesses. PC can apply to domains
where the observation language O is in�nite, whereas MC requires that O is �nite.
The MC measure is semantic, dependent on the model of a theory, whereas PC is
a purely syntactic preference criterion, dependent on a particular proof strategy.
This points to a weakness of PC; the SLD refutation performed by Prolog's left-
most computation rule may not be the most economical one, according to the PC
measure. Searching for the most economical proof for every example is out of the
question due to intractability. More dramatically, Prolog's depth{�rst search rule is
incomplete. Hence it is possible that PC will fail to produce a measure for a theory.
WhereasMC also requires proofs to compute the model Q(T), and is subject to the
latter criticism, the former one does not apply; MC makes no distinction between
two di�erent refutations.
The PC measure requires that all examples be encoded and transmitted sequen-

tially. This is a weakness in the method, as there will likely be much redundancy in
their SLD-trees. The MC measure, on the other hand, does a \parallel" encoding
of the examples, in the sense that it transmits an identi�cation for a model rather
than for a speci�c set of proofs. Since the examples are assumed to be drawn from
a stationary distribution, it is unnecessary to preserve order information when com-
municating them. A related problem with the PC measure is that it will require
some bits to communicate the examples even if the theory exactly covers them
(case 1, Section 2.2). This is counterintuitive; if a theory covers only the examples,
and that theory is transmitted, it should not be necessary to send further bits to
identify the examples. For example, according to (2),

LPC(Ej?) =
X
A2E

LPC(Aj?) =
X
A2E

log2 jEj = jEj � log2 jEj

bits, but according to (4), LMC(Ej?) = 0 bits, as the empirical content of the
theory ? is equal to the examples E (recall Expression 3).

COMPLEXITY{BASED INDUCTION 11

program ! rule . program (0.5)

program ! � (0.5)
rule ! fact (0.5)

rule ! head :- body (0.5)

head ! atom (1.0)
fact ! atom (1.0)

body ! literal , body (0.5)

body ! literal (0.5)
literal ! atom (0.5)

literal ! not atom (0.5)

atom ! (see text)

Figure 2. A probabilistic grammar for logic programs.

Despite the fundamental di�erences between these two measures, on another level
they are similar, according to the following informal argument. Theories with
smaller, or more speci�c, empirical content will tend to be more complex. Very
general theories will tend to be simple. Also, complex theories will tend to have
shorter proofs for the examples from which they were induced. Therefore, theories
with smaller empirical content will tend to have shorter proofs.

2.4. Coding theories

We have discussed two methods for coding examples with respect to a logic program,
and now turn to the problem of coding the theories themselves. For simplicity, and
to facilitate comparison of the two complexity measures above, function{free logic
programs are assumed.
The easiest way to code a logic program is to transmit it directly in, say, ascii

format. This, however, is extremely ine�cient. Like examples, theories contain
redundancy and can be compressed; there is redundancy inherent in the grammar
of well{formed theories, and there is redundancy introduced by a particular use of
the grammar.
There are numerous valid ways to code logic programs. We use the following sim-

ple, but reasonably e�cient, scheme. Well{formed logic programs have an unam-
biguous probabilistic context{free grammar [26], shown in Figure 2. The numbers
on the right are production probabilities. The probability P (T) of a particular the-
ory T with respect to the grammar is the product of the production probabilities
used in its derivation.
The code length L(T) of the theory is � log2 P (T) bits. All that remains is to

specify the probability of atoms. This can be done using the theory's signature
| the variables, constants, and predicate symbols that appear in the program |

12 D. CONKLIN AND I. H. WITTEN

along with their arities. In general, if there are c constants, p predicate symbols
and v variables in the signature, to transmit an atom of arity a will require

log
2
p+ a log

2
(v + c) (5)

bits: log
2
p bits to identify the predicate symbol, and log

2
(v + c) bits to specify an

argument | a variable or a constant | for each of the a positions in the atom.
Whereas the ground atoms formed from the constants and predicate symbols

(the Herbrand base) are �xed in advance, di�erent theories may need a di�erent
number of symbols for variables. To accommodate this, we preface each theory with
a code of length log2(v + 1) bits, identifying the number of variables v (including
the possibility that v = 0). The number of variables needed to express a theory is
simply the maximum over the number of distinct variables in each rule.
The coding method can be paraphrased as follows. The number of bits required

to code a logic program is the sum of

� log2(v + 1) bits, where v is the number of variables in the program,

� 1 bit per program,

� 2 bits per rule in the program,

� 2 bits per literal in the body of each rule,

� bits for all atoms in the program.

Note that we do not bother to pre�x the transmission of the theory with its lexi-
con. This is for simplicity of presentation, and also because the lexicon (aside from
the number of variables and variable names) is assumed constant for all inductive
logic programs. Since we are mainly interested in the relative quality of competing
inductive logic programs leaving out the lexicon does not a�ect the result.
This coding method for logic programs is certainly not optimal, but it is simple

and easy to understand. Some immediate ideas for improvement are to 1) base
the probability of a literal on its relative frequency of occurrence in the theory, 2)
remove redundant rules in a theory, or redundant literals in rules [4] before theory
encoding, and 3) take into account the redundancy of clause orderings or literal
orderings within the body of a clause. Exploring methods for e�ciently coding
logic programs is a worthwhile area for future research.
In Section 2.3, we stated that simple inductive theories tend to be more general;

this statement can now be elaborated upon. Consider the two simple rules of
structural generalization, one which adds a rule to a program, and another which
deletes a literal from a rule:

1. For any theory T and rule r, M (T) �M (T [frg).

2. For any theory T , clause c, and literal l, M (T [fc _ lg) �M (T [fcg)

Rule 2 does in fact decrease theory complexity according to the grammar of Fig-
ure 2, since L(T[fcg) � L(T[fc_lg). Rule 1, however, increases theory complexity.
Simpler logic programs are not necessarily more general.

COMPLEXITY{BASED INDUCTION 13

Z

Z

Z
Z~?

?

�

�

�
�=

- - -

�

�

�
�= ?

?

0

1

2

3 4

5

6

7

8

Figure 3. An example network illustrating the binary reachability relation.

3. Examples of complexity{based induction

A small Prolog metaprogram has been developed to compute syntactic theory com-
plexity, and the MC and PC complexity measures. This section will present some
initial results we have obtained in the application of complexity{based induction
to two relational learning tasks.

3.1. Networks

This application of complexity{based induction is learning a general network re-
lation from examples, originally discussed by Quinlan [20]. The concept under
consideration is the binary \reachability" relation in a directed graph. One vertex
can reach another if there is a path between them in the graph.
The signature comprises two binary predicates reach and linked, along with nine

constants f0; : : : ; 8g. The background knowledge contains an extensional de�nition
of the predicate linked for a particular network (see Figure 3):

f h0; 1i: h0; 3i: h1; 2i: h3; 2i: h3; 4i:

h4; 5i: h4; 6i: h6; 8i: h7; 6i: h7; 8ig:

The notation hx; yi is shorthand for the fact linked(x; y), meaning that there
is a directed edge between vertices x and y in the network. Below we ignore the
complexity of this background knowledge, as it is constant for all proposed theories.
The observation language O is the set of all atoms of the form reach(x; y), where

x; y are constants. The example set E is a complete speci�cation of the predicate
reach for the network in Figure 3:

f h0; 1i: h0; 2i: h0; 3i: h0; 4i: h0; 5i: h0; 6i: h0; 8i:

h1; 2i: h3; 2i: h3; 4i: h3; 5i: h3; 6i: h3; 8i: h4; 5i:

h4; 6i: h4; 8i: h6; 8i: h7; 6i: h7; 8ig:

14 D. CONKLIN AND I. H. WITTEN

Table 1. Theories for networks, and their complexities.

i Ti L(Ti)

1 reach(X,Y). 12.5

2 reach(0,1). reach(0,2). reach(0,3). reach(0,4). 178.5

reach(0,5). reach(0,6). reach(0,8). reach(1,2).

reach(3,2). reach(3,4). reach(3,5). reach(3,6).

reach(3,8). reach(4,5). reach(4,6). reach(4,8).

reach(6,8). reach(7,6). reach(7,8).

3 reach(X,Y) :- linked(X,Y). 111.7

reach(0,2). reach(0,4). reach(0,5).

reach(0,6). reach(0,8). reach(3,5).

reach(3,6). reach(3,8). reach(4,8).

4 reach(X,Y) :- linked(X,Y). 43.7

reach(X,Y) :- linked(X,Z).

5 reach(X,Y) :- linked(X,Y). 94.5

reach(X,Y) :- linked(X,Z), linked(Z,Y).

reach(0,5). reach(0,6).

reach(0,8). reach(3,8).

6 reach(X,Y) :- linked(X,Y). 53.8
reach(X,Y) :- linked(X,Z), reach(Z,Y).

COMPLEXITY{BASED INDUCTION 15

Table 2. Encoding 19 examples of reach using model complexity and
proof complexity.

T L(T) LMC(EjT) LMC(T jE) LPC(EjT) LPC(T jE)

T1 = > 12.5 60.4 72.9 120.5 133.0
T2 = ? 178.5 0 178.5 80.7 259.2

T3 111.7 0 111.7 96.3 208.0
T4 43.7 47.4 91.1 110.6 154.3
T5 94.5 0 94.5 101.9 196.5
T6 53.8 0 53.8 106.1 160.0

Table 1 presents six inductive theories that cover the examples. Theory T1 is the
most general theory >. It has one rule with two non{generative variables X and
Y. Theory T2 is the least general theory ?: it is simply the 19 examples expressed
as facts. The �rst rule of theory T3 states that two vertices are reachable if they
are linked; since this rule alone is incomplete (i.e., does not cover all examples),
it must be augmented by facts (case 2 in Section 2.2). Theory T4 has an overly{
general rule which states that vertices X and Y are reachable if X is linked to some
vertex. This rule has a non{generative variable Y. The �rst rule of theory T4 is
logically redundant, given the second. The �rst two rules of theory T5 cover all but
4 examples: hence it is augmented by these examples. Finally, theory T6 concisely
expresses the reachability relation using a recursive rule.
Table 1 also presents the code lengths of the theories, according to the theory

complexity measure presented in Section 2.4. It is satisfying that the most general
theory T1 and the most speci�c theory T2 are the least and most complex theories,
respectively. Thus the prior probability on theories corresponds at least to some
extent to our subjective notion of theory simplicity. Note also that the � relation
on theory complexity connects strongly with the � relation on models: for the
theories of Table 1 we have L(T1) � L(T4) � L(T6) and Q(T1) � Q(T4) � Q(T6).
Table 2 presents the evaluation of each theory according to the MC and PC

measures. The ranking of theories given by each measure is as follows:

MC T6 T1 T4 T5 T3 T2
PC T1 T4 T6 T5 T3 T2

Both measures agree on the bottom three theories, in particular, theory T2 or ?
is given the lowest valuation. Each measure requires the fewest bits to code the
examples using ? (0 forMC, 80.7 for PC), and the most bits to code the examples
using > (60.4 for MC, 120.5 for PC). However, they di�er in their ranking of the
top three theories. The MC measure prefers the most intuitively satisfying theory
T6; its closest competitor is the theory T1 or >. The MC measure will continue to
prefer T6 even as the number of available positive examples is decreased to 16. The
ranking of theories produced by PC is somewhat disappointing, since it gives the
highest valuation to the most general theory T1. It is of considerable concern that,

16 D. CONKLIN AND I. H. WITTEN

for this task, the ranking produced by the PC measure is identical to one based
only on theory simplicity. The \correct" theory T6 is ranked third. This behavior
is due to the fact discussed earlier that PC does not take proof correlations into
account, and requires that the examples be transmitted in sequential fashion. The
theory T6, for example, produces some relatively deep proofs: the example h0; 8i
requires 9:3 bits to encode. The example h0; 6i has a very similar proof tree, and
the PC measure could bene�t by taking this similarity into account. It seems that
MC performs well in this relational domain of networks.

3.2. Chess endgame

The second application of complexity{based induction is learning the \illegality"
relation in a chess endgame comprising a black king versus a white king and white
rook. A position is an illegal white-to-move position if two or more pieces are placed
on the same square, the kings are on adjacent squares, or the black king is in check.
This example has been studied extensively in the inductive logic programming
literature [16].
The signature comprises the 6{ary predicate illegal, the binary predicate adj,

and 8 constants f1; : : : ; 8g. The background knowledge contains a de�nition of the
adj predicate:

adj(X,Y) :- X is Y - 1.

adj(X,Y) :- X is Y + 1.

Again we ignore the complexity of this background knowledge, as it contributes a
�xed number of bits to the complexity of any inductive theory.
The observation languageO is the set of all atoms of the form illegal(a; b; c; d; e; f)

where a through f are constants. This relational learning task is challenging for the
MC measure because jOj = 86 = 262144, making it somewhat expensive to com-
pute jQ(T)j and evaluate Expression 4. In the network task (Section 3.1) jQ(T)j
can be computed following jOj = 81 invocations of Prolog's call predicate. For the
chess endgame task such a procedure is unworkable in a practical sense. Instead
we use standard statistical estimation techniques to estimate the proportion p of
elements of O that are in the modelM (T). An estimate of jQ(T)j can be expressed
as

jQ(T)j
def
= p� jOj =

s

n
� jOj (6)

where p is the estimate of the proportion p, n is the number of randomly sampled
observable atoms given to call, and s is the number of successes.4 By setting n

su�ciently high, p can have an arbitrarily small standard error. It can happen that
jQ(T)j is less than the number of examples jEj. Since this is in contradiction of
the fact that jQ(T)j must be at least as large as jEj (from (3) and the requirement
that T ` E), if it occurs we set jQ(T)j to jEj.
Table 3 presents 7 theories for the chess endgame task.5 Theory T7 is the 92%

accurate theory discovered by foil after 100 examples using an explicit negative

COMPLEXITY{BASED INDUCTION 17

example approach. Theory complexities are not displayed in the table, as most
theories must be augmented by examples in order to satisfy the coverage criterion,
and exact theory complexities will therefore depend on the examples given.
Examples for this task were generated using the correct theory for illegal given

by Bain [2]. Figure 4 plots the performance of the MC measure on this task.
The number of samples n in (6) was set to 2000. Examples were incrementally
accumulated in a set, and the size of this set is represented by the horizontal
dimension. The vertical dimension represents the compression ratio

1�
L(T jE)

L(?jE)

produced by a theory. Each theory is presented with the same example set. The
graph clearly shows T7 emerging as the preferred theory at 99 examples. Theory T2
never compresses the data; it is too speci�c and its complexity after augmentation
will be too high. Theory T3 is a considerable improvement over T2, being more
general.
Figure 5 plots the same example data for the PC measure. The results show

remarkable similarity, with the same preferred theory, T7, emerging at the same
point. Table 4 reproduces the data of Figures 4 and 5 at the point of 150 examples.
Theory complexity L(T) is measured after augmentation; the number of examples
augmenting the theory are given in the second column. The ranking of theories
given by each measure at 150 examples is as follows:

MC T7 T5 T4 T6 T1 T3 ? T2
PC T7 T1 T5 T4 T6 T3 T2 ?

After 150 examples both methods have the same �rst choice T7, the same last three
choices (T2, T3 and ?), and a closely-spaced group in the middle (T1, T4, T5, T6)
that di�ers only in the placement of the general theory T1.

3.3. Discussion

Based on these two examples, we can draw some tentative conclusions about the
MC and PC complexity-based induction methods. It appears that the di�erences
between the two measures is small so long as the theory only involves very shallow
proofs: this is why they produce very similar results on the chess example. However,
once proofs become nested, PC tends to break down in that it begins to favour
overly{general theories. The cost of encoding proofs weighs against theories that
require multi{step proofs. Indeed, even in the chess example, in which all proofs
are shallow, theory > comes second in the PC ranking of theories, whereas for PC
it comes �fth.
Nested proofs are typically caused by recursion. In such cases there will be cor-

relations between parts of the proof, and between di�erent proofs: failing to take
these into account renders the PC coding overly redundant. For example, in all
cases examined LPC(EjT) is substantially greater than LMC(EjT). The e�ect of

18 D. CONKLIN AND I. H. WITTEN

Table 3. Theories for the chess endgame task.

i Ti

1 illegal(_,_,_,_,_,_).

2 illegal(_,_,C,_,C,_).

3 illegal(_,_,C,_,C,_).

illegal(_,_,_,D,_,D).

4 illegal(_,_,C,_,C,_).

illegal(_,_,_,D,_,D).

illegal(A,B,_,_,E,F) :- adj(B,F).

5 illegal(_,_,C,_,C,_).

illegal(_,_,_,D,_,D).

illegal(A,B,_,_,E,F) :- adj(B,F), adj(A,E).

6 illegal(_,_,C,_,C,_).

illegal(_,_,_,D,_,D).

illegal(A,B,_,_,E,F) :- adj(B,F), adj(A,E).

illegal(A,B,_,_,A,B).

7 illegal(_,_,C,_,C,_).

illegal(_,_,_,D,_,D).

illegal(A,B,_,_,E,F) :- adj(B,F), adj(A,E).

illegal(A,B,_,_,A,B).

illegal(A,B,A,B,_,_).

Table 4. Encoding 150 random examples of illegal using model complexity and
proof complexity.

T augs L(T) LMC(EjT) LMC(T jE) LPC(EjT) LPC(T jE)

T1 = > 0 30 1827 1857 2700 2730
T2 83 2121 1380 3501 1964 4084

T3 23 634 1523 2156 2602 3235
T4 4 195 1618 1814 2573 2768

T5 5 232 1548 1780 2499 2731
T6 5 258 1563 1821 2524 2782
T7 0 154 1568 1722 2437 2592
? 0 3151 0 3151 1084 4235

COMPLEXITY{BASED INDUCTION 19

this is that the complexity L(T) of the theory itself is given less weight in the PC
measure. A solution to this is to devise a coding method that takes account of
proof correlations.
Both measures exhibit the desired behaviour on the chess endgame task, andMC

also exhibits it on the network task. They begin by preferring the theory >, but
only until a certain number of examples is seen. This reects the fact that there is
a point up to which it is more economical to transmit the simple theory >, sending
all examples explicitly, than it is to transmit a more complex theory. This point was
around 70 for the chess endgame task. By devising more e�cient coding schemes
for theories, the number could be reduced. Due to the apparent problems with PC
on the network task, the causes of which are discussed above, it appears that MC
may provide a better practical preference criterion for inductive logic programs.

4. Generalized model complexity

This paper has applied model complexity to the fundamental inductive inference
task of (relational) concept learning. This section will suggest that the construction
is just an instance of a generalized complexity{based technique.
Generalized model complexity is based on the following scenario. One has a

logic program T , and wishes to e�ciently communicate the model M (T), that is,
all ground facts entailed by the theory. There are two ways to do this. One is
to simply transmit the logic program as a syntactical object, perhaps using some
compression scheme such as the one outlined in Section 2.4. The other way is to
generate a theory T 0 that is more general than T . The theory T 0 will tend to be
less complex than T , and will therefore require fewer bits to encode. However, to
enable the reconstruction of M (T), it is necessary to specify the relevant subset
M (T 0)�M (T) of the model M (T 0). This will require (according to MC)

LMC(M (T)jT 0)
def
= log2

�
jM (T 0)j
jM (T)j

�

bits.6 A statistical estimation procedure (Section 3.2) might be used to e�ciently
evaluate this expression. The description length | the total number of bits needed
to communicate the model M (T) | is

L(T 0) + LMC(M (T)jT 0):

The principle behind generalized model complexity is that theories are syntactical
objects, and can be viewed as compact codings for Herbrand models.
It can be demonstrated that the model complexity scheme outlined in this paper is

an instance of this generalized measure, and that an identical theory ranking would
be produced by the generalized complexity principle. The impact of this result, and
the tentative success of the earlier empirical analysis, suggests that inductive logic
programming can be viewed as the compression of models. Negative examples will
restrict the models under consideration, but are not essential to this formulation.
Concept learning is only one very restricted type of inductive logic programming.

20 D. CONKLIN AND I. H. WITTEN

5. Conclusion

Complexity{based induction is an objective approach to evaluating induced theo-
ries, and is based on a very natural and intuitive principle. It requires that theory
complexity and �t to examples be balanced. It reduces information storage require-
ments, but not to the extent that overgeneralization occurs. It asks for theories of
just the right size.
This paper has demonstrated that complexity{based induction, which has for the

most part been applied to propositional probabilistic theories and concepts, can be
given two natural interpretations with respect to �rst{order logical induction. In
particular, we have reviewed a proof complexity measure, and introduced a new
model complexity measure for theory preference. These measures were applied to
two problems of relational learning from positive{only examples.
In this paper we have considered the task of learning logic programs, and have

not digressed into issues of noisy data and theory approximation. A treatment of
these topics in the context of inductive logic programming can be found elsewhere
[17, 20]. However, there are certainly real{world relational concepts which cannot
be adequately modelled by deterministic logical theories, which can fail dramatically
when the data include noise [8, 6]. To model these concepts will require some form
of probabilistic predicate logic. Complexity{based induction can also apply with
no modi�cation to its basic prescription: the extraction of maximum redundancy
from examples.
Both logical and probabilistic induction can bene�t from research in complexity{

based induction. Logic programs have a clear model theory, and can represent a
much richer space of concepts than propositional logic. Inductive logic programming
is clean and precise, relying on a well{de�ned model of generalization. On the
other hand, research in machine learning of logical concepts can bene�t from the
large body of research on the minimum description length principle and Bayesian
induction.

Acknowledgements

We thank the anonymous referees for their exceptionally thoughtful comments on
an earlier draft of this paper.
This research has been supported by a Postgraduate Scholarship and an operating

grant from the Natural Science and Engineering Research Council of Canada.

References

[1] D. Angluin. Inductive inference of formal languages from positive data. Information and
Control, 45:117{135, 1978.

[2] M. Bain. Experiments in non{monotonic �rst{order induction. In S. Muggleton, editor,
Inductive Logic Programming, pages 423{435. Academic Press, 1992.

COMPLEXITY{BASED INDUCTION 21

-0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

20 40 60 80 100 120 140 160 180 200

c
o
m
p
r
e
s
s
i
o
n
r
a
t
i
o

number of examples

Figure 4. Evaluation of theories for chess: measureMC.

-0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

20 40 60 80 100 120 140 160 180 200

c
o
m
p
r
e
s
s
i
o
n
r
a
t
i
o

number of examples

Figure 5. Evaluation of theories for chess: measure PC.

22 D. CONKLIN AND I. H. WITTEN

[3] R. C. Berwick. Learning from positive{only examples. In R. Michalski, J. Carbonell, and
T. Mitchell, editors,Machine Learning: An Arti�cial Intelligence Approach, volume II, pages
625{645. Morgan Kaufmann, 1986.

[4] W. Buntine. Generalized subsumption and its application to induction and redundancy.
Arti�cial Intelligence, 36:149{176, 1988.

[5] G. J. Chaitin. Information, Randomness & Incompleteness. World Scienti�c, Singapore,
1987.

[6] P. Cheeseman. On �nding the most probable model. In J. Shrager and P. Langley, edi-
tors, Computational models of scienti�c discovery and theory formation, chapter 3. Morgan
Kaufmann, 1990.

[7] J. Feldman. Some decidability results on grammatical inference and complexity. Information
and Control, 20:244{262, 1972.

[8] B. R. Gaines. Behavior/structure transformations under uncertainty. Int. J. Man{Machine
Studies, 8:337{365, 1976.

[9] E. M. Gold. Language identi�cation in the limit. Information and Control, 10:447{474, 1967.

[10] M. Li and P. Vitanyi. Inductive reasoning and Kolmogorov complexity. J. Computer and
System Sciences, 44(2):343{384, 1992.

[11] J. W. Lloyd. Foundations of logic programming. Springer{Verlag, 1987.

[12] S. Minton. Quantitative results concerning the utility of explanation{based learning. Arti�-
cial Intelligence, 42:363{392, 1990.

[13] T. M. Mitchell. Generalization as search. Arti�cial Intelligence, 18:203{226, 1982.

[14] S. Muggleton. A strategy for constructing new predicates in �rst order logic. In Proc EWSL
88, pages 123{130, 1988.

[15] S. Muggleton. Inductive logic programming. In S. Muggleton, editor, Inductive Logic Pro-
gramming, pages 3{27. Academic Press, 1992.

[16] S. Muggleton, editor. Inductive Logic Programming. Academic Press, 1992.

[17] S. Muggleton, A. Srinivasan, and M. Bain. Compression, signi�cance and accuracy. In
D. Sleeman and P. Edwards, editors, Machine Learning: Proceedings of the Ninth Interna-

tional Conference (ML92), pages 338{347. Morgan Kaufmann, 1992.

[18] K. R. Popper. The Logic of Scienti�c Discovery. Hutchinson & Co. Ltd., 1959.

[19] J. R. Quinlan. Induction of decision trees. Machine Learning, 1:81{106, 1986.

[20] J. R. Quinlan. Learning logical de�nitions from relations. Machine Learning, 5(3):239{266,
August 1990.

[21] J. Rissanen. Minimum description length principle. In S. Kotz and N. L. Johnson, editors,

Encyclopedia of Statistical Sciences, pages 523{527. Wiley, 1985.

[22] C. Sammut and R. B. Banerji. Learning concepts by asking questions. In R. Michalski,
J. Carbonell, and T. Mitchell, editors, Machine Learning: An Arti�cial Intelligence Ap-
proach, volume II, pages 167{191. Morgan Kaufmann, 1986.

[23] E. Y. Shapiro. Algorithmic program debugging. The MIT Press, 1983.

[24] R. J. Solomono�. Complexity{based induction systems: Comparisons and convergence the-
orems. IEEE Trans. Information Theory, IT{24(4):422{432, 1978.

[25] L. Sterling and E. Shapiro. The Art of Prolog. The MIT Press, 1986.

[26] C. S. Wetherell. Probabilistic languages: A review and some open questions. ACM Com-
puting Surveys, 12(4):361{379, December 1980.

[27] P. H. Winston. Learning structural descriptions from examples. In P. H. Winston, editor,
The Psychology of Computer Vision. McGraw-Hill, 1975.

[28] I. H. Witten, R. Neal, and J. G. Cleary. Arithmetic coding for data compression. Commu-
nications of the ACM, 30(6):520{540, June 1987.

COMPLEXITY{BASED INDUCTION 23

Notes

1. In this paper we do not consider the \constructive" induction scenario when inductive inference
can modify the Herbrand base of a theory.

2. Throughout this paper, we assume an e�cient technique such as arithmetic coding [28], which
can code an integer from 1 to k in approximately log

2
k bits, and an event with probability

p drawn from a discrete distribution in approximately � log2 p bits. It must be emphasized
that the physical communication of the theory and examples is just a metaphor, and we are
only interested in the evaluation of theories. That is, we are not overly concerned with the
production of the string D(T) �D(EjT).

3. This is a slight variant of the proof complexity measure given in [17]. In particular, if negative

examples are to be communicated, jEj bits would be added to the expression: 1 bit for each
example indicating its polarity. However, we are interested in comparing this proof complexity

measure with our model complexity measure in situations where positive-only examples are
available. Also, a constant quantity of log

2
jEj could be added to every theory to identify the

number of examples.

4. Note that this estimation technique cannot be used if the actual transmission of the examples
is desired. However, in the context of theory evaluation this is not an issue.

5. Note the anonymous variables in the theories. Each occurrence of an anonymous variable is

distinct, thus the singleton rules of theories T1 and T2 have 6 and 5 non{generative variables,
respectively.

6. Note that the evaluation of this expression requires that bothM(T 0) andM(T) are �nite. This
necessitates the restriction to function{free logic programs.

