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Abstract

The use of entropy as a distance measure has several benefits.
Amongst other things it provides a consistent approach to handling of
symbolic attributes, real valued attributes and missing values.  The
approach of taking all possible transformation paths is discussed.  We
describe K*, an instance-based learner which uses such a measure, and
results are presented which compare favourably with several machine
learning algorithms.

Introduction

The task of classifying objects is one to which researchers in
artificial intelligence have devoted much time and effort.  The
classification problem is hard because often the data available may be
noisy or have irrelevant attributes, there may be few examples to learn
from or simply because the domain is inherently difficult.  Many
different approaches have been tried with varying success.  Some well
known schemes and their representations include: ID3 which uses
decision trees (Quinlan 1986), FOIL which uses rules (Quinlan 1990),
PROTOS which is a case-based classifier (Porter, Bareiss, & Holte
1990), and the instance-based learners IB1-IB5 (Aha, Kibler, & Albert
1991; Aha 1992).  These schemes have demonstrated excellent
classification accuracy over a large range of domains.

What many instance-based algorithms lack is an integrated
theoretical background.  Often schemes which are primarily designed to
handle symbolic attributes have difficulty in domains where features
may be real valued.  Many schemes which handle real feature values are
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extended to cope with symbolic attributes in an ad-hoc manner.  A
similar problem is apparent in how classifiers handle missing values.
Common approaches are to treat missing values as a separate value,
treat them as maximally different, replace them with the average value,
or to simply ignore them.  In this paper we discuss the use of entropy
as a distance measure which provides a unified approach to dealing with
these problems.  We also present K*, an instance-based learner which
uses such a measure and examine its performance on a range of
problems.

Instance-Based Learners

Instance-based learners classify an instance by comparing it to a
database of pre-classified examples.  The fundamental assumption is
that similar instances will have similar classifications.  The question lies
in how to define “similar instance” and “similar classification”.  The
corresponding components of an instance-based learner are the distance
function which determines how similar two instances are, and the
classification function which specifies how instance similarities yield a
final classification for the new instance.  In addition to these two
components, IBL algorithms have a concept description updater which
determines whether new instances should be added to the instance
database and which instances from the database should be used in
classification.  For simple IBL algorithms, after an instance has been
classified it is always moved to the instance database along with the
correct classification.  More complex algorithms may filter which
instances are added to the instance database to reduce storage
requirements and improve tolerance to noisy data.

Nearest neighbour algorithms (Cover & Hart 1967) are the
simplest of instance-based learners.  They use some domain specific
distance function to retrieve the single most similar instance from the
training set.   The classification of  the retrieved instance is given as the
classification for the new instance.  Edited nearest neighbour algorithms
(Hart 1968; Gates 1972) are selective in which instances are stored in
the database and used in classification.  k-nearest neighbour algorithms
are only slightly more complex.  The k nearest neighbours of the new
instance are retrieved and whichever class is predominant amongst them
is given as the new instance's classification.  A standard nearest
neighbour classification is the same as a k-nearest neighbour classifier
for which k=1.
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Aha, Kibler & Albert (1991) describe three instance-based
learners of increasing sophistication.  IB1 is an implementation of a
nearest neighbour algorithm with a specific distance function.  Real
valued attributes are normalised to a common scale so all attributes have
equal weighting, and missing values are assumed to be maximally
different to the present value.  IB2 contains extensions to reduce storage
requirements; only misclassified instances are saved.  IB3 is a further
extension to improve tolerance to noisy data; instances that have a
sufficiently bad classification history are forgotten, only instances that
have a good classification history are used for classification.  Aha
(1992) described IB4 and IB5, which handle irrelevant and novel
attributes.

Cost & Salzberg (1993) use a modification of Stanfill & Waltz's
(1986) value difference metric in conjunction with an instance
weighting scheme in their system PEBLS.  This scheme was designed
for classifying objects where feature values are symbolic.  Numeric
distances between symbolic values are calculated based on the degree to
which the relative frequencies of the symbols across classifications
remains the same.   Instances in memory are also weighted according to
their past classification accuracy.

Some Desirable Properties for a Classification Algorithm

A good classification algorithm should exhibit the following
characteristics:

The surface defined by a similarity measure over the hyperspace
of predictor attributes must be smooth.  In his work on evaluation
functions for computer backgammon, Berliner (1980) argues that the
surface defined by a good evaluation function will be smooth—if there
are ridges or discontinuities in the surface, the program utilising the
evaluation function may make decisions to its detriment.   As it applies
to instance-based learning, there should not be large jumps in the
distance measure for small changes in the instance database or the test
instance.

There should be a natural way of adjusting the relevances of
predictor attributes.

There should be an intuitive way of dealing with partial data.
The datasets for  many real world domains contain missing values, and
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to ignore instances containing missing values is to throw away useful
information contained in the other values.

A good algorithm should not be restricted to prediction of
symbolic values—it should be able to predict real values as well.

Entropy as a Distance Measure

The approach we take here to computing the distance between
two instances is motivated by information theory.  The intuition is that
the distance between instances be defined as the complexity of
transforming one instance into another.  The calculation of the
complexity is done in two steps.  First a finite set of transformations
which map instances to instances is defined.  A “program” to transform
one instance (a) to another (b) is a finite sequence of transformations
starting at a and terminating at b.

Following the usual development of complexity theory such
programs (sequences) are made “prefix free” by appending a
termination symbol to each string.  The usual definition of the
(Kolmogorov) complexity of a program is the length of the shortest
string representing the program (Li & Vitanyi 1993).  Using this
approach a Kolmogorov distance between two instances can be defined
as the length of the shortest string connecting the two instances.  This
approach focuses on a single transformation (the shortest one), out of
many possible transformations.  The result is a distance measure which
is very sensitive to small changes in the instance space and which does
not solve the smoothness problem well.  The K* distance defined
below tries to deal with this problem by summing over all possible
transformations between two instances.

It is not entirely clear what it is that should be summed over
when doing this.  Adding the lengths of the different transformations
clearly is not the correct thing to do.  The key point here is to note that it
is possible to associate a probability with each sequence.  If the
complexity (length) of program measured in bits is c then the
appropriate probability is 2−c .  In particular, it is true that in any well
defined distance based on Kolmogorov complexity the sum of this
probability over all transformations will satisfy the Kraft inequality:

2−c∑ ≤ 1.  One way of interpreting this is that it is the probability that a
program will be generated by a random selection of transformations.  In
terms of the distance between instances it is the probability that an
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instance will be arrived at by doing a random walk away from the
original instance.  After summing over all paths this probability  can be
transformed into units of complexity by taking the logarithm.

This approach of summing over all possible transforming paths
has been used successfully in Yee & Allison’s (1993) r-theory which
measures the distance between sequences of DNA.  There is empirical
evidence that using all mutational transformations between two strings
rather than the single shortest path gives a more robust and realistic
measure of the relatedness of two DNA sequences.

Specification of K*

Let I be a (possibly infinite) set of instances and T a finite set of
transformations on I.  Each t ∈ T maps instances to instances: t:I→I.

T contains a distinguished member σ (the stop symbol) which for

completeness maps instances to themselves (σ(a)=a).  Let P be the set

of all prefix codes from T* which are terminated by σ.  Members of T*
(and so of P) uniquely define a transformation on I:

t(a) = tn(tn−1(... t1(a)...)) where t= t1,... tn

A probability function p is defined on T*.  It satisfies the following
properties:

0 ≤ p(tu)
p(t)

≤ 1

p(tu)
u
∑ = p(t)

p(Λ) = 1

As a consequence it satisfies the following:

p(t)
t∈P
∑ = 1

The probability function P* is defined as the probability of all paths
from instance a to instance b:

P* (b|a) = p(t)
t∈P:t(a)=b

∑
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It is easily proven that P* satisfies the following properties:

P*(b|a)
b
∑ = 1

0 ≤ P *(b|a) ≤ 1

The K* function is then defined as:

K * ( b|a) = − log2 P * (b|a)

K* is not strictly a distance function.  For example, K *( a|a)  is
in general non-zero and the function (as emphasised by the | notation) is
not symmetric.  Although possibly counter-intuitive the lack of these
properties does not interfere with the development of the K* algorithm
below.  The following properties are provable:

K *( b|a) ≥ 0

K *( c|b) + K *( b|a) ≥ K *( c|a)

Real Numbers

As the first example of how to use this theory we compute a
distance between real numbers.  This is done in two steps.  First a
distance function between integers is developed and then this is
modified to deal with real numbers.

Let the set of instances I be the integers (positive and negative).
There are three transformations in the set T: σ the end of string marker;
and left and right which respectively add 1 and subtract one.  The
probability of a string of transformations is determined by the product
of the probability of the individual transformations:

p(t) = p(t i )
i

∏  where t= t1,... tn

The probability of the stop symbol σ is set to the (arbitrary) value s and
p(left) = p(right) = (1-s)/2.

It can be shown (after significant effort for which we do not
have space here) that P *(b|a)  depends only on the absolute difference
between a and b, so abusing the notation for P* slightly we can write:
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P *(b|a) = P *(i) = s

2s− s2

1− 2s− s2

1− s








i

 where i =|a − b|

and

K *( b|a) = K *( i) =
1
2 log2(2s− s2) − log2(s) + i[log2(1− s) − log2(1− 2s− s2 )]

That is, the distance is proportional to the absolute difference between
two instances.

Note that the set of transformations chosen above is not
determined by the theory.  Other transformation sets (with different
distance functions) could be envisaged but this formulation seems to
capture the idea that all points are equivalent and that space is
“invariant” under left and right shifts as well as giving results that work
well in practice.

To reformulate this for real numbers the assumption is made that
the real space is underlain by a discrete space with the distance between
the discrete instances being very small.  The first step is to take the
expressions above in the limit as s  approaches 0 (that is the
transformation strings will be very long).  This gives:

P *(i) = s
2 e−i 2s

This can then be reformulated as a probability density function where
the probability that an integer between i and i + ∆i will be generated is:

P * (i) = s
2 e−i 2s ∆i

This can then be rescaled in terms of a real value x where 
x

x0

= i 2s .

This results in the probability density function P* over the reals:

P *(x) = 1
2x0

e
−x

x0 dx

In this formulation x0  functions as a scale length, for example,
it is the mean expected value for x over the distribution P*.  For
different applications it is necessary to choose a reasonable value for
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x0 .  There are some rough guidelines about how to do this.  For
example, if the instances have a measurement error then x0  should
probably not be smaller than the standard deviation of the errors on the
measurement.  The next section specifies a technique to choose x0

values.

Symbolic Probabilities

One of the advantages of the approach we are following here is
that both real attributes and symbolic attributes can be dealt with
together within the same framework. To deal with symbolic attributes
consider a set of n instance values which occur with probabilities pi ,
1≤ i ≤ n.  The transformations that we allow on the instances are the
transmutation of any instance to any other instance.  The probability of
a symbol staying the same (the end of string transformation) is taken to
be the probability s and the probability of a transformation to a symbol j
to be (1− s)pj .  Summing over all possible transformations gives:

P *( j |i) =
(1− s)pj if i ≠ j

s+ (1− s)pi if i = j




Note that the probability s here is analogous to the probability s
(and the equivalent x0 ) in the development above for real numbers.
That is, some reasonable value must be chosen for s depending on the
data being modelled.

Combining Attributes

To compute a distance between instances with more than one
attribute is straightforward.  The set of transformations on the combined
attributes can be taken as the union of the transformations for the
individual attributes.  The transformation strings can then be modelled
by sequentially transforming the first attribute, then the second attribute
and so on until all the attributes are transformed.  The result is that the
probability for the total string is the product of the probabilities of the
individual strings and thus the distance function is the sum of the
distances for the individual attributes.
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This simple additive approach is the one taken for all the results
given below.  It is worth noting, however, that it is not the only
possible way of combining attributes.  For example, if an instance is
modelled as a two dimensional space the set of transformations are
naturally left, right , up  and down .  Summing over all such

transformations the resulting distance is d1
2 + d2

2  rather than the
simple additive d1 + d2  (where d1 and d2  are the individual distances on
the two co-ordinates).

Missing Values

One issue that must be dealt with in many datasets is instances
where one or more of the attributes are missing.  The approaches in the
literature vary widely on how to deal with this problem.  In some cases
the distance to the missing attribute is taken to be the maximum possible
in others the entire instance is ignored.

If the values that are missing are in an instance which is being
classified the attributes can simply be ignored and the predictions made
on just the remaining attributes.

The more interesting case is when the missing values are in
instances stored in the database.  The way we have chosen to deal with
this, is to assume that the missing values can be treated as if they were
drawn at random from among the instances in the database.  This is
easily fitted into the probability based distance by setting the probability
of transforming to the missing value as the mean of the probability of
transforming to each of the (specified) attribute values in the data base,
that is:

P *(?|a) = P*(b|a)
Nb

∑

where the sum is over all specified instances in the database and N is
the number of such instances.  The effective distance to a missing value
is then (roughly) the expected distance to a random instance of that
attribute.

K* Algorithm

For the implementation of an instance-based classifier which
uses the entropic distance measure described above we need a way of
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selecting values for the parameters x0  and s, and a way of using the
values returned by the distance measure to give a prediction.

Choosing values for the arbitrary parameters

For each dimension we have to choose values for the parameters
x0  (for real attributes) and s (for symbolic attributes).  The behaviour of
the distance measure as these parameters change is interesting.
Consider the probability function for symbolic attributes as s changes.
With a value of s close to 1, instances with a symbol different to the
current one will have a very low transformation probability, while
instances with the same symbol will have a high transformation
probability.  Thus the distance function will exhibit nearest neighbour
behaviour.  As s approaches 0, the transformation probability directly
reflects the probability distribution of the symbols, thus favouring
symbols which occur more frequently.  This behaviour is similar to the
default rule for many learning schemes which is simply to take
whichever classification is most likely (regardless of the new instance's
attribute values).  As s changes, the behaviour of the function varies
smoothly between these two extremes.  The distance measure for real
valued attributes exhibits the same properties. Thus when x0  is small
the probability to instances drops very quickly with increasing distance
thus functioning like a nearest neighbour measure.  On the other hand if
x0  is very large almost all the instances will have the same
transformation and will be weighted equally.

In both these cases we can think of the number of instances that
are included within the probability distribution as varying from an
extreme of 1 (when the distribution is nearest neighbour) to the other
extreme of N when all instances are weighted equally.  (If there is more
than one nearest neighbour then the minimum will be greater than 1.)

The effective number of instances can be computed for any
function P* using the following expression:

n0 ≤

2

P*(b|a)
b
∑




2P*(b|a)

b
∑

≤ N
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where N is the total number of training instances and n0 is the number
of training instances at the smallest distance from a (for this attribute).
The K* algorithm then chooses a value for x0  (or s) by selecting a
number between n0 and N and inverting the expression above.  Thus
selecting n0 gives a nearest neighbour algorithm and choosing N gives
equally weighted instances.  For convenience the number is specified
by using the “blending parameter” b, which varies from b= 0% (for n0)
and b=100% for  N, with intermediate values interpolated linearly.

We think of the selected number as a “sphere of influence”,
specifying how many of the neighbours of a should be considered
important (although there is not a harsh cut off at the edge of the
sphere—more of a gradual decreasing in importance).

To compute x0  we use an iterative root finder, which is slow,
but the results are cached so that whenever that instance value reappears
the precalculated parameters can be used.  In the symbolic cases is
simply set directly proportional to b.

The x0  (or s) parameters are set for each dimension
independently, but using the same blend parameter which gives equal
weighting to each attribute.  We can then use the combined attribute
distance measure to compute the size of the final sphere of influence.
This is usually much smaller than the size specified at the single
attribute level.

Category prediction

We calculate the probability of an instance a being in category C by
summing the probabilities from a to each instance that is a member of
C.

P*(C|a) = P*(b|a)
b∈C
∑

The probabilities for each category are calculated. The relative
probabilities obtained give an estimate of the category distribution at the
point of the instance space represented by a.  Most other techniques
return a single category as the result of classification. For ease of
comparison here we choose the category with the highest probability as
the classification of the new instance.  Alternatives to this include
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choosing a class at random using the relative probabilities or returning a
normalised probability distribution as the answer.

Results

To get an idea for how well the K* algorithm performs in
practise, classification has been carried out on several datasets
commonly used in the machine learning literature. The datasets are the
same as those used by Holte (1993), and were originally taken from the
UCI Machine Learning Database Repository.

The datasets were partitioned into 2/3 training, 1/3 test.  25
different partitions were made for each dataset.  The schemes were run
on all 25 partitions and the results averaged.

The fraction of correct classifications are presented in Table 1.
The best result(s) for each dataset are highlighted in bold face.  All
schemes were run using default settings.  C4.5 results were obtained
for both pruned trees and rules.  The default blend setting for K* is
20%, a value which seems to work well for most datasets.  Results
were also obtained for the blend setting which gave the best accuracy
for each dataset.

Dataset
C4.5
P-Tree

C4.5
Rules

FOIL 1R IB1 K*
b=20

K*
b=best

BC 7 0 . 7 68.8 54.3 67.5 66.1 68.6 7 0 . 8
CH 9 9 . 2 9 9 . 2 29.3 64.9 89.6 93.2 93.3
GL 66.0 64.8 50.0 52.1 67.8 7 2 . 4 7 3 . 9
G2 72.9 74.2 64.4 69.0 76.4 8 2 . 3 8 2 . 7
HD 75.7 7 7 . 6 64.2 73.8 75.5 75.0 8 2 . 2
HE 68.7 79.5 66.6 78.4 8 0 . 8 80.4 8 3 . 8
HO 76.1 8 1 . 7 62.5 8 1 . 7 77.4 76.2 79.2
HY 91.3 9 9 . 2 98.2 97.8 97.7 98.5 98.6
IR 94.3 94.3 89.8 92.3 9 5 . 3 94.9 9 5 . 3
LA 72.2 84.2 65.3 76.4 84.2 9 0 . 9 9 2 . 0
LY 74.8 75.8 66.2 72.7 80.9 8 2 . 2 8 2 . 6
SE 75.4 9 7 . 8 95.8 95.1 93.8 95.2 95.7
SO 96.3 79.2 9 9 . 8 9 9 . 8 9 9 . 8
VO 91.9 94.8 87.6 9 5 . 4 91.9 93.0 93.2
V1 83.4 89.8 77.4 87.3 87.3 9 0 . 5 9 0 . 5

Table 1. Classification accuracy for several datasets.

As can be seen K* performs well across a wide range of
schemes.  In almost all cases it was better than the other instance-based
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learner (IB1) and in 6 of the 15 cases it gave the best results out of all
the schemes.

Allowing the blend parameter to vary gives better results and we
are currently investigating ways to set it more intelligently, possibly
varying it for different attributes.

It is interesting to note that the 1R algorithm (which classifies
based on a single attribute) performs very well on some datasets,
indicating that varying the importance of individual attributes could
further improve K*’s performance.

Conclusions

An instance based learning scheme has been presented.  On real
datasets it performs well against a range of both rule based and instance
based learning schemes.  The underlying technique used of summing
probabilities over all possible paths solves the smoothness problem and
we believe contributes strongly to its good overall performance.  The
underlying theory also allows clean integration of both symbolic and
real valued attributes and a principled way of dealing with missing
values.

The implementation and results here are a first implementation
and we want to further explore refinements to the basic algorithm and
extensions to the range of its applicability.  For example, it is possible
to use K* to predict real valued attributes.  We are also exploring
applications to more complex domains such as the similarity of 2-d
images such as weather maps.

On two data files the simple learning algorithm 1R (which does
its classification based on only a single attribute) gets better
performance K*.  It seems then that lowering the blend parameter for
important attributes and raising it for unimportant ones might pay off in
these cases.
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