Learning from experience

Craig G. Nevill-Manning,
Department of Computer Science, University of Waikato, New Zealand.

Life is a sequence of events; some of them predictable, some unexpected. We instinctively look for
structure in the stream of events we observe, and learning to anticipate these events is an important
part of functioning successfully in the world. Machine learning emphasises learning from unordered
facts, but for machines to be helpful in oday-to-day activities, they alsoneed to beable to
recognise patterns in the sequences they observe.

The sequence of events that constitute our livesftess monotonous; we end upepeating certain
sequences of actions again and again. Hake built machines to relievsome ofthis monotony,
but they often fail to be flexible enough to free us of all but the most common repetitive tasks.

SEQUITUR s a system which infers structure from a sequence, and uses the structure to explain and
extrapolate the sequence. It is capable of recognising structure in a variegl-oforld sequences,
but is of particular utility in automating repetitive computing tasks.

Introduction

The world is full of sequences which are structured and predictable. We
instinctively look for this structure in an attemptt@kesense of our environment,
and to allow us to plan ahead.

Not only do we observe sequences, but we adsio predictable ways and perform
tasks which are repetitious. Computers were intended to free us from the tyranny of
repetition, yet we often findourselves performingtedious, repetitive tasks
ourselves.Even programmers have difficulty automatirggnall tasks, as the
overhead of writing and debugging a program oftariweighs its benefits for a
one-off job.

Programming by demonstratiorRED) automates repetitivieasks bygeneralising a
demonstration of the task to form a program. An essential functiorPBlb &ystem
is to recognise structure in a sequence of events andédate instructions to
extrapolate the sequence.

SEQUITUR is a system which observes a sequence, recognises its structure, and
uses thestructure to explain and predict thgequence. BQUITUR first finds
recurring sub-sequences, and forms haerarchical grammar to describe the
‘vocabulary’ of the sequence. Next it looks for branches, loops, equivalent symbols
and ‘procedures’. Thenodel that EQUITUR induces can be represented as a
grammar or a transitionetwork, and isdriven by Occam’s exhortation tdind a
simple explanation for observations.

This paper describes EQUITUR's algorithm and provides examples of its
application to several diverse sequences.



Vocabulary

Finding phrases

The simplest kind of sequential structure is the recurrence of a sub-sequence of
symbols. Innatural language,these sequences awords, phrases,roots and
affixes. Inprogramming by demonstratiothey aresub-taskgnade up of atomic
actions. In prograncode,they are reservedords, variables and functiomames.

The first task that BQUITUR performs is to identify these phraseBpw howsmall
phrasessombine to form largephrases, andestate the sequence in terms of this
new vocabulary.

Sequence Grammar
abcdb c S -« aAdA
A < bc
abcdbce S - BeB
abcdbec A < bc
B -« aAdA

Figure 1: two simple sequences and the phrases extracted from them

The first sequence in Figureshows how aepeatedsubsequence ieplaced by a
grammar production, and the seconsequenceshows howthis is performed
hierarchically. The algorithm consists of enforcing two constraints: every digram in

the grammar must banique, andevery rule must beisedmore thanonce. To

satisfy the first constraint, a newule is formed, and to satisfy the second
constraint, the redundant rule is removed. dlgorithm operates incrementally, so

that the grammaobeys both constraintsfter theprocessing okachcharacter. An
implementation on a SparcStation 10 processes sequences at a megabyte per minute.

Figure 2shows thehierarchies from portions of some longeequenceskEach of

the bars represents a rule; the contents of the rule is expanded beneath it.
O]
. +4J b r ¥ 1 J F |
[+ Ay 4 N c ¥ [ ! B ] J |
€ a \Y /efai orteofeme *Di yes q
sleewaseasveryefairesorteofeman.«Dideyeckn
uncleewasecacveryefairesorteofeman.«Dideyecsknow

I < < = = I 1T
5< =e0;eke<eMAX_RU ><S >< ><++ > >--< K

f> (ke=e0;eke<eMAX_RULES;eke++)e{ ><oee

fore(ke=¢0;eke<eMAX_RULES;eke++)e{\necee

Figure 2: (a) a phrase from ‘Far from the Madding Crowd’ by Thomas Hardy
(b) excerpt from a C program
This algorithm captures much of the structure of the vocabulary a sequence; how the
individual symbolscombine to makeneaningfulblocks. Infigure 2(a) it captures
roots, affixes, words and phrases. figure 2(b), it captures the reservesiord
‘for’, delimiters and the basic structure of the fetatement; ibbreaks the sequence
up around the semicolons, and separates vidwgable | from the rest of the
assignment statement.



Generosity

Because the algorithm operais-line, it must form phrasegreedily; it always

extends a rule if it will reduce the size of the sequencefaro Some of these
decisions are harmful in the long run. Figure 3 shows#mee sequengaerocessed
left-to-right and right-to-left. The secorgtammar is smaller than tHest, due to

the presentation order of theequence. It haveenshown (Storer,1988) that

finding the best set of phrases diescribe a sequence MP-hard, but asimple

heuristic can often improve the grammar. For example, in fi§(@ib¢, thesymbols

that precedeC both havec as a suffix, soC can be extendetkeftwards, which

results in thesame grammar as figure 3(c) (as B becorsaperfluous, and is
deleted).

(&) bcd bced beef acef (b)S- AABCacC 0 S « BBbAaA
A - Bd A - cef
B -« bc B -« bcd
C « ef

Figure 3: the sequence in (a) processed (b) left to right and (c) right to left

Generous parsing is mosfffective on well-structuredsequences. Consider the
grammar in figure 5a). When the grammar is expanded taecursion depth of
three, it produces a sequence of whpart isshown infigure 5(b). Thegrammar
formed from this sequence ghown in 5(c), and(d) shows thegrammar that is
formed when generous parsing issed. Thegenerousgrammar is much more
compact, and resembles the original grammar much more thafirshgrammar
(especially when rules A, C, E, F and G are removed, &ée))). This grammar is
an example of an I-system, and is discussed further in the sectiecucsion

() S « F[+FIF[-FIF ()N (kai)ililikaiRailileililiailieilifgikailifililikailifeiliRaikailigiliRaikailiglilisailigilis
F o f iRailiililiRaii iRl ilikaiRailiiililiRailiiililikailiRiLilikailiRiligikgilis
lilikaikailigililikailigiligikailigililikailiRiliikailigilikaikeiliRililikailiRilRiiliE
iliikailigili
(c) S < CEIKJKDT (d S < BFAGA
A < f[ A - B]B
B - DA B - DFCGC
C <« HF C -« D]D
D « f] D - fFEGE
E - B+ E « f]f
F - B- F < [ +
G - CD G <« [-
H « A+
oo gr () S - B[+B]B[-B]B
K -« EG B - D[+D]D[-D]D
L — Eco D « f[+f]f[-f]f
M < HIDJKN
N < JLJ

Figure 5: (a) arecursivegrammar, (b) part of thesequence produced bfgp), (c) the grammar
induced from (b), (d) the grammarducedwith generousparsing,(e): (d) with rules B, C, E, F
and G expanded

Compression

Occam'’s razor suggests that theories shouldn’t be wmrlicated than they need

to be, and restating the sequence more conciseh E@USUR'S justification for

making thesetransformations. Thetextual representation of the grammar is
somewhat smaller than the original sequence, but the compression achieved is much



less than any purpose-builatacompression utilities. The sequendees notneed

to be sent as text, but can bacodedusing a frequencynodel and an arithmetic
coder, which encodes symbols according to their frequency: more frequent symbols
are shorter, less frequent symbols are long@hbis improves compression to about

the same as the NUX COMPRESS utility. However, there are many more
sophisticated compression technigues which pertmtter than ©MPRESS and a

new encoding scheme is required if this scheme is to outperform them.

In the grammar representation, we send the model (all theaxdept S) separately

from the sequence given theodel (rule S). It ispossible to improve compression

by sending the model and the sequence simultanedhslyis, having the decoder

build the model adaptively. The sequence is sent in the following way: the first time
arule is used, its contents are transmitted. The second time it is used, it is sufficient
to transmit a reference to the first occurrence. At this point, the decoder forms a new
rule, and it carthereafter be referenced with the appropriate non-ternspaibol.

This scheme outperforms all other dictionary compressabremesyhich account

for all commonlyused compression utilities, at the expenséoafjer computation

time. (Nevill-Manning, et al., 1994).

The minimumdescription lengthMDL) principle is a formalisation of Occam’s
razor which statethat inlearning, we should choose tkieeory which allows the
observations to be encoded in thmallest number obits. MDL assumeghat the
language in which the theory and the data are representedficiast aspossible.
This example shows that finding afficient representation is notsraightforward
task. The textual representation impltkat thestructurethat thealgorithmfinds is
muchworsethan the structurdound by thesimplest compressioachemes. The
probability-based encodinghowsthat it is equal to ©MPRESS but the adaptive
schemeshows it to bebetter than the theorie®bund by any other dictionary
compression scheme. The implication is two-fold: finding an efficient representation
for the purpose of applyingpL is difficult, but adaptive transmission of theodel
along with the sequence may be a useful approach in findafigcient
representations.



Grammar

The hierarchical decomposition produced by the algorithm described so far has three
shortcomings as a description of the structure of the sequence:

It describes the vocabulary of tlsequence, but doesrcapture any non-linear
structure, like loops or branches.

* It is expressed as a grammar, but can only produceseméence; the original
sequence.

* It has limited predictive power. While it can predict the completion padially
matched rule, it cannot predict the sequence of symbols in the first rule.

We would nowlike to generalise the grammar toake it moredescriptive,more
productive, and more predictive. For the discussion belowhélful to represent

the sequence as a transition networkdogating a state for eaalmique symbol in

the first rule and inserting transitions between statesse symbols are gdent in

the sequence (Figure 6). This network can be traversed to reproduceigimal
sequence, but can also produce many other sequences. The transition network is too
general, as altontext information is forgotterwhen atransition ismade, and
considerable extra information is required to reproduce the origiequence. The

true structure of the sequence is likely to be a compromise between the grammar and
the transition network; a compromise which minimises the size of the structure and
the extra information required to recreate the sequence given the structure.

(@) (b) ©

abdeacdfgc & @ ©)
heacdfgchf

gchei % Q 9
A
©

®

f\g@
@@ 2@

Figure 6: (a) a simple sequence, (b) the transition diagram representing the sequence,
(c) the transition diagram after recognition of a branch and equivalent symbols.

The goal of the generalisation is not to capture every conceivable striictraay
be present in an arbitraisequence, bunstead to recogniseertainstructuresthat
are likely to beproduced by the particulasourceprocess. For the purposes of
programming by demonstration, we assume the source to@egram, and the
likely structures aréoops, conditionals and procedurealls (includingrecursion).
For grammar-basesequences, walso look for subsequences whiobcur in the
same contexts. These five structures are discussed in turn:

Equivalent symbols

If two symbols ofteroccur in the sameontexts, thegrammar can generalised and
simplified by treatingthem as equivalensymbols. That is, if the set of the



predecessors of one symbolssnilar to the set of thgredecessors of the other,
then the symbols are equivalent. In figure 6(b), nodes e and f areisatded by
nodes d and h This is similar to k-reversibilitygrammatical inferencéBerwick et
al., 1987). Wewould expect tofind such symbols wherthey were alternative
expansions for the same non-terminal in a non-deterministic grarargathey are
both verbs in a sequence of English text.

When such a pair of symbols d@@und, a newule is createdvith two right hand
sides— one for each of the equivalent symbols—and the non-terminal that heads the
new rule is substitutedhere the two originasymbols occurred. Ifigure 1, X

and Y both occur following A and B, so X and Y are generalised. Sibe of the
grammar has decreased from 16 symbols to 14 symbols.

LAXLBY.LLAY...BX...

T

<Xw>r n

< X oW
< X oo

Figure 7: merging equivalent symbols X and Y

To reproduce the originalequence, it is necessary to supphtra information to
select the correct right hand side for Z. In ttese, one bit has to mippliedeach
time A or B is used, so four bits should be added to the size of the grammar.

Branches

Nodes a, b, c and d in figure 6(b) typify a branch structure. This struzute be
produced by aiif...then...elseor caseconstruct in gorogram. Wecannot saythat

nodes b and c are equivalent, as there is only one context, but node a can be used as
a context to predict node d. If treternatenodeshave any other transitions in or

out, thenode must be cloned, sthat the contextinformation is retained. The
transition diagram in figure 6(a) allows a transition from g through c to h, as well as
from a through c to d. Teectify this, node c is cloned, resulting ifigure 6(b).

This means that when we are leaving node c, we have defioielgfrom node a,

so can predict node d.

Loops

Borrowing from structured programmirgpnstraints, weequirethatloops do not
overlap. This means that any candidate loop must not include a node with an edge to
a node outside the loop (except for the first and last nodes in the loop).

Procedure calls

A procedure is a sub-sequence whichrepeated in thesequence, but where the
repetitions are notontiguous. If theprocedure is repeatederbatim, arule is
formed for it, but if there are branches within it, we must recognise it in some other
way. It is possible to recognise proceduralls in a sequence bperforming a
search for a group of nodes where all paths through the dvegin at a particular
start node, and end in@articularstopnode. That isthere can be no transition to
any node in the group from nodes outside the grexgept via the stamode, and

no transitions from any node in the group to nodes outside the grmapt via the



stop node. A group of this form can be found by an3pgearch of thenetwork.
This is described in more depth in Nevill-Manning (1990).

Recursion
The I-system in figure 5(afiraws a Kochcurve if the terminalsymbols are
interpreted as turtle commands: fdraw aline forward, - = turn left, + = turn

right, [ = save state, ] = restore state (Prusinkiewi®€80). Thegrammar obtained
using generous parsing in figures 5 (d) and (e) is a non-recursive version of the
original I-system, and theoriginal can be reproduced by performingrolog
unification between each of the rules.

Putting it all together

This paper has so far described techniques for efficiently forming a vocabulary from
a sequence, and recognisiftganches,loops, procedure callsrecursion, and
equivalentsymbols in a sequence. Theection describes how these techniques fit
together to make inferences.

The system habeen designed with two principles mind: (a) it should perform
transformations on th#ély, and allow them to beundone bylater transformations

with the benefit of hindsight, and (b) it should avoid ad-hoc thresholddefoding
whether transformations will be performed. This provides a simple system which is
not optimised for a small set ofequences, but to whicdomain-dependent
heuristics can beadded. Aseach newsymbol is observed, thevocabulary is
updated, generous parsing is performed, tueth the grammar is examined to see
whether the it is possible to apply any of the transformations. As only igdaited

to the last symbol in the sequenadl have changed, thisheck can be performed
efficiently.

Figure 8(a)shows aportion of a C program. Figure 8(bshows thestructure
recognition techniques without the vocabulary formatmart. As it must find
structure between the individual characters, it isadde to give particulariyseful
insights. Thevocabulary derived from this sequencesisown infigure 8(c). It
captures the reservedords, variable names andlelimiters, but without the
structure recognition techniques, it cannot recognise the overall structure because of
the different variable names switch values, case labelvalnes. Howeverwhen

the two parts are combined, it produces the structure in f@{d} which captures

much of the desiredtructure. Work iscontinuing on refining and applying these
techniques to more complicated sequences.



(a) (b)

{

switch (getchar()) {
case 'f':value = 1;
case 'h':mark = 2;
case 'e':mark = 8;
case 'i':value = 7;
}

switch (n) {

case 4 : mark = 45;
case 30: value = 6;
case 3 : value = 38;
case 5 : mark = 3;
3

3

S(C) BM AG(C)QE
- e

leIthleJ8IiK

7XNMnQO4W45T0OR

S6TUS38VS5W3XY

A - tch

B - {D

C - e ~

D - N ~

E - 0"

F - '

G - ar

H o -~

I - L E

J - GP

K« GS

L - ; D

M - swiA~(

N - \n ~

0 - casC

P - mGk~~H

Q - J)~B

R < D~

S « wvalucCH

T - V3

U - ~ R

Vo LO

| — uP

X - LY

Y. - }\n .. .

Figure 8: (a) fragment of CGcode, (b) structureecognition without vocabulary

forming (c) the vocabulary, (d) vocabulary and structure recognition



Conclusion

SEQUITUR successfully recognises some of the regularitiest occur in real

sequences by looking for recurring phrases and recognisamgmon non-linear
structure. It does this on-line, gbat thestructures can be used &xplain and
predict real-time sequences, but it is also effective in recognising structustgicn
sequencedike English text. SQUITUR will eventually become part of @BD

system,modelling and predicting the actions vperform, tostrike ablow in the

battle against the tyranny of repetition.

Acknowledgments

| am grateful to larWitten and DaveMaulsby for the ideas and insighteat they
have contributed to thisesearch, and to Przemyslaw Prusinkiewicz for suggesting
the I-system application.

References

Prusinkiewicz, P& Lindenmayer, A. (1990) The algorithmic beauty of plaBiinger-Verlag

Berwick, R.C, & Pilato, S. (1987) Learning syntax by automata inductMachine Learning, 2,
9-38.

Storer, J.A.. (1988) Data Compression—methods and th€omputer Science Press

Nevill-Manning, C.G.(1993),“Programming by DemonstrationNew Zealand Journal o€omputing
4(2), 15-24.

Nevill-Manning, C.G., Witten, I.H., & Maulsby, D.L., (1994) “Compression bylnduction of
Hierarchical GrammarsProceedings of theData CompressionConferencel1994 |EEE
Computer Society Press.



