
Learning from experience

Craig G. Nevill-Manning,
Department of Computer Science, University of Waikato, New Zealand.

Life is a sequence of events; some of them predictable, some unexpected. We instinctively look for
structure in the stream of events we observe, and learning to anticipate these events is an important
part of functioning successfully in the world. Machine learning emphasises learning from unordered
facts, but for machines to be helpful in ourday-to-dayactivities, they alsoneed to beable to
recognise patterns in the sequences they observe.

The sequence of events that constitute our lives isoften monotonous; we end uprepeating certain
sequences of actions again and again. Wehavebuilt machines to relievesome ofthis monotony,
but they often fail to be flexible enough to free us of all but the most common repetitive tasks.

SEQUITUR is a system which infers structure from a sequence, and uses the structure to explain and
extrapolate the sequence. It is capable of recognising structure in a variety ofreal-world sequences,
but is of particular utility in automating repetitive computing tasks.

Introduction
The world is full of sequences which are structured and predictable. We
instinctively look for this structure in an attempt tomakesense of our environment,
and to allow us to plan ahead.
Not only do we observe sequences, but we alsoact in predictable ways and perform
tasks which are repetitious. Computers were intended to free us from the tyranny of
repetition, yet we often findourselves performingtedious, repetitive tasks
ourselves.Even programmers have difficulty automatingsmall tasks, as the
overhead of writing and debugging a program oftenoutweighs its benefits for a
one-off job.
Programming by demonstration (PBD) automates repetitivetasks bygeneralising a
demonstration of the task to form a program. An essential function of aPBD system
is to recognise structure in a sequence of events and tocreate instructions to
extrapolate the sequence.
SEQUITUR is a system which observes a sequence, recognises its structure, and
uses thestructure to explain and predict thesequence. SEQUITUR first finds
recurring sub-sequences, and forms ahierarchical grammar to describe the
‘vocabulary’ of the sequence. Next it looks for branches, loops, equivalent symbols
and ‘procedures’. Themodel that SEQUITUR induces can be represented as a
grammar or a transitionnetwork, and isdriven by Occam’s exhortation tofind a
simple explanation for observations.
This paper describes SEQUITUR’s algorithm and provides examples of its
application to several diverse sequences.

Vocabulary

Finding phrases
The simplest kind of sequential structure is the recurrence of a sub-sequence of
symbols. Innatural language,these sequences arewords, phrases,roots and
affixes. In programming by demonstration,they aresub-tasksmade up of atomic
actions. In programcode,they are reservedwords,variables and functionnames.
The first task that SEQUITUR performs is to identify these phrases,show howsmall
phrasescombine to form largerphrases, andrestate the sequence in terms of this
new vocabulary.

Sequence Grammar

a ¬b ¬ c¬ d ¬b ¬ c¬ S ← a¬A ¬d¬A
A ← b¬c

a ¬ b ¬ c ¬ d ¬ b ¬ c¬ e
a ¬ b ¬ c ¬ d ¬ b ¬ c

S ← B ¬e¬B
A ← b¬c
B ← a¬A d A

Figure 1: two simple sequences and the phrases extracted from them

The first sequence in Figure 1shows how arepeatedsubsequence isreplaced by a
grammarproduction, and the secondsequenceshows howthis is performed
hierarchically. The algorithm consists of enforcing two constraints: every digram in
the grammar must beunique, andevery rule must beusedmore thanonce. To
satisfy the first constraint, a newrule is formed, and to satisfy the second
constraint, the redundant rule is removed. Thealgorithm operates incrementally, so
that the grammarobeys both constraintsafter theprocessing ofeachcharacter. An
implementation on a SparcStation 10 processes sequences at a megabyte per minute.
Figure 2shows thehierarchies from portions of some longersequences.Each of
the bars represents a rule; the contents of the rule is expanded beneath it.
u n c l e w a s a v e r y f a i r s o r t o f m a n . D i d y e k n o w

u n c l e w a s a v e r y f a i r s o r t o f m a n . D i d y e k n o w

u n c l e w a s a • v e r y f a i r • s o r t • o f • m a n . • D i d • y e • k n o w

u n c l e w a s a • v e r y • f a i r • s o r t • o f • m a n . • D i d • y e • k n o w

u n c l e • w a s • a • v e r y • f a i r • s o r t • o f • m a n . • D i d • y e • k n o w

u n c l e • w a s • a • v e r y • f a i r • s o r t • o f • m a n . • D i d • y e • k n o w

 >----------------< >--------< >--------------< >-------------------------<

 >----------< >--< >----< >< >-< >------< S >--------< >-------------<

 >------< >< >< 0 >< >< < • >< X _ >----< S >----< >< >--< >-------<

 >--< >< k • = • 0 ; • k • < • M A X _ R U >< S >< >< + + >< { >--< >-<

f >< • (k • = • 0 ; • k • < • M A X _ R U L E S ; • k • + +) • { >< • • •

f o r • (k • = • 0 ; • k • < • M A X _ R U L E S ; • k • + +) • { \n• • • •

Figure 2: (a) a phrase from ‘Far from the Madding Crowd’ by Thomas Hardy
(b) excerpt from a C program

This algorithm captures much of the structure of the vocabulary a sequence; how the
individual symbolscombine to makemeaningfulblocks. Infigure 2(a) it captures
roots, affixes, words and phrases. Infigure 2(b), it captures the reservedword
‘for’, delimiters and the basic structure of the forstatement; itbreaks the sequence
up around the semicolons, and separates thevariable I from the rest of the
assignment statement.

Generosity
Because the algorithm operateson-line, it must form phrasesgreedily; it always
extends a rule if it will reduce the size of the sequence sofar. Some of these
decisions are harmful in the long run. Figure 3 shows thesame sequenceprocessed
left-to-right and right-to-left. The secondgrammar is smaller than thefirst, due to
the presentation order of thesequence. It hasbeen shown (Storer,1988) that
finding the best set of phrases todescribe a sequence isNP-hard, but asimple
heuristic can often improve the grammar. For example, in figure3(b), thesymbols
that precedeC both havec as a suffix, soC can be extendedleftwards, which
results in thesame grammar as figure 3(c) (as B becomessuperfluous, and is
deleted).

(a) bcd bcd bcef acef (b) S← A ¬A ¬B ¬C¬a¬c¬C
A ← B¬d
B ← b¬c
C ← e¬ f

(c) S ← B ¬B ¬b¬A ¬a¬A
A ← c¬e¬ f
B ← b¬c¬d

Figure 3: the sequence in (a) processed (b) left to right and (c) right to left

Generous parsing is mosteffective on well-structuredsequences. Consider the
grammar in figure 5(a). When the grammar is expanded to arecursion depth of
three, it produces a sequence of whichpart isshown infigure 5(b). Thegrammar
formed from this sequence isshown in 5(c), and5(d) shows thegrammar that is
formed when generous parsing isused. Thegenerousgrammar is much more
compact, and resembles the original grammar much more than thefirst grammar
(especially when rules A, C, E, F and G are removed, as in5(e)).This grammar is
an example of an l-system, and is discussed further in the section onrecursion.

(a) S ← F[+F]F[-F]F
F ← f

(b) f[+f]f[-f]f[+f[+f]f[-f]f]f[+f]f[-f]f[-f[+f]f[-f]f]f[+f]f[-f]f[+f[+f]f[-f]f[+f[+f]f[-f]f]f[+f]f[-f]f[-
f[+f]f[-f]f]f[+f]f[-f]f]f[+f]f[-f]f[+f[+f]f[-f]f]f[+f]f[-f]f[-f[+f]f[-f]f]f[+f]f[-f]f[-f[+f]f[-
f]f[+f[+f]f[-f]f]f[+f]f[-f]f[-f[+f]f[-f]f]f[+f]f[-f]f]f[+f]f[-f]f[+f[+f]f[-f]f]f[+f]f[-f]f[-f[+f]f[-
f]f]f[+f]f[-f]f

(c) S ← C E I K J K D f
A ← f [
B ← D A
C ← H F
D ← f]
E ← B +
F ← B -
G ← C D
H ← A +
I ← G N
J ← E F
K ← E G
L ← F G
M ← H I D J K N
N ← J L J

(d) S ← B F A G A
A ← B] B
B ← D F C G C
C ← D] D
D ← f F E G E
E ← f] f
F ← [+
G ← [-

(e) S ← B [+ B] B [- B] B
B ← D [+ D] D [- D] D
D ← f [+ f] f [- f] f

Figure 5: (a) arecursivegrammar, (b) part of thesequence produced by(a), (c) the grammar
induced from (b), (d) the grammarinducedwith generousparsing,(e): (d) with rules B, C, E, F
and G expanded

Compression
Occam’s razor suggests that theories shouldn’t be morecomplicated than they need
to be, and restating the sequence more concisely is SEQUITUR’S justification for
making thesetransformations. Thetextual representation of the grammar is
somewhat smaller than the original sequence, but the compression achieved is much

less than any purpose-builtdatacompression utilities. The sequencedoes notneed
to be sent as text, but can beencodedusing a frequencymodel and an arithmetic
coder, which encodes symbols according to their frequency: more frequent symbols
are shorter, less frequent symbols are longer.This improves compression to about
the same as the UNIX COMPRESS utility. However, there are many more
sophisticated compression techniques which performbetter than COMPRESS, and a
new encoding scheme is required if this scheme is to outperform them.
In the grammar representation, we send the model (all the rulesexcept S) separately
from the sequence given themodel (rule S). It ispossible to improve compression
by sending the model and the sequence simultaneously;that is,having the decoder
build the model adaptively. The sequence is sent in the following way: the first time
a rule is used, its contents are transmitted. The second time it is used, it is sufficient
to transmit a reference to the first occurrence. At this point, the decoder forms a new
rule, and it canthereafter be referenced with the appropriate non-terminalsymbol.
This scheme outperforms all other dictionary compressionschemes,which account
for all commonlyused compression utilities, at the expense oflonger computation
time. (Nevill-Manning, et al., 1994).
The minimumdescription length (MDL) principle is a formalisation of Occam’s
razor which statesthat in learning, we should choose thetheory which allows the
observations to be encoded in thesmallest number ofbits. MDL assumesthat the
language in which the theory and the data are represented is asefficient aspossible.
This example shows that finding anefficient representation is not astraightforward
task. The textual representation impliesthat thestructurethat thealgorithmfinds is
muchworsethan the structurefound by thesimplest compressionschemes. The
probability-based encodingshowsthat it is equal to COMPRESS, but the adaptive
schemeshows it to bebetter than the theoriesfound by any other dictionary
compression scheme. The implication is two-fold: finding an efficient representation
for the purpose of applying MDL is difficult, but adaptive transmission of themodel
along with the sequence may be a useful approach in findingefficient
representations.

Grammar
The hierarchical decomposition produced by the algorithm described so far has three
shortcomings as a description of the structure of the sequence:
• It describes the vocabulary of thesequence, but doesn’tcapture any non-linear

structure, like loops or branches.
• It is expressed as a grammar, but can only produce onesentence; the original

sequence.
• It has limited predictive power. While it can predict the completion of apartially

matched rule, it cannot predict the sequence of symbols in the first rule.
We would nowlike to generalise the grammar tomake it moredescriptive,more
productive, and more predictive. For the discussion below, it ishelpful to represent
the sequence as a transition network bycreating a state for eachunique symbol in
the first rule and inserting transitions between stateswhose symbols are adjacent in
the sequence (Figure 6). This network can be traversed to reproduce theoriginal
sequence, but can also produce many other sequences. The transition network is too
general, as allcontext information is forgottenwhen a transition is made, and
considerable extra information is required to reproduce the originalsequence. The
true structure of the sequence is likely to be a compromise between the grammar and
the transition network; a compromise which minimises the size of the structure and
the extra information required to recreate the sequence given the structure.

(a)
a b d e a c d f g c
h e a c d f g c h f
g c h e i

(b)

a

b c

d

e f

i

g

h

(c)

a

b c

d

i

h

c’

g

e | f

Figure 6: (a) a simple sequence, (b) the transition diagram representing the sequence,
(c) the transition diagram after recognition of a branch and equivalent symbols.

The goal of the generalisation is not to capture every conceivable structurethat may
be present in an arbitrarysequence, butinstead to recognisecertainstructuresthat
are likely to beproduced by the particularsourceprocess. For the purposes of
programming by demonstration, we assume the source to be aprogram, and the
likely structures areloops,conditionals and procedurecalls (includingrecursion).
For grammar-basedsequences, wealso look for subsequences whichoccur in the
same contexts. These five structures are discussed in turn:

Equivalent symbols
If two symbols oftenoccur in the samecontexts, thegrammar can generalised and
simplified by treatingthem as equivalentsymbols. That is, if the set of the

predecessors of one symbol issimilar to the set of thepredecessors of the other,
then the symbols are equivalent. In figure 6(b), nodes e and f are bothpreceded by
nodes d and h This is similar to k-reversibility ingrammatical inference(Berwick et
al., 1987). Wewould expect tofind such symbols whenthey werealternative
expansions for the same non-terminal in a non-deterministic grammar,e.g. they are
both verbs in a sequence of English text.
When such a pair of symbols arefound, a newrule is createdwith two right hand
sides— one for each of the equivalent symbols—and the non-terminal that heads the
new rule is substitutedwhere the two originalsymbols occurred. Infigure 1, X
and Y both occur following A and B, so X and Y are generalised. Thesize of the
grammar has decreased from 16 symbols to 14 symbols.

S ←
...A¬X...B¬Y...A ¬Y...B¬X...

A ← a¬a
B ← b¬b
X ← x ¬x
Y ← y ¬y

S ← ...A...B...A...B...
A ← a¬a¬Z
B ← b¬b¬Z
Z ← x ¬x
Z ← y ¬y

Figure 7: merging equivalent symbols X and Y

To reproduce the originalsequence, it is necessary to supplyextra information to
select the correct right hand side for Z. In thiscase, one bit has to besuppliedeach
time A or B is used, so four bits should be added to the size of the grammar.

Branches
Nodes a, b, c and d in figure 6(b) typify a branch structure. This structurecould be
produced by anif...then...else or case construct in aprogram. Wecannot saythat
nodes b and c are equivalent, as there is only one context, but node a can be used as
a context to predict node d. If thealternatenodeshave any other transitions in or
out, thenode must be cloned, sothat the contextinformation is retained. The
transition diagram in figure 6(a) allows a transition from g through c to h, as well as
from a through c to d. Torectify this, node c is cloned, resulting infigure 6(b).
This means that when we are leaving node c, we have definitelycomefrom node a,
so can predict node d.

Loops
Borrowing from structured programmingconstraints, werequirethat loops do not
overlap. This means that any candidate loop must not include a node with an edge to
a node outside the loop (except for the first and last nodes in the loop).

Procedure calls
A procedure is a sub-sequence which isrepeated in thesequence, but where the
repetitions are notcontiguous. If theprocedure is repeatedverbatim, arule is
formed for it, but if there are branches within it, we must recognise it in some other
way. It is possible to recognise procedurecalls in a sequence byperforming a
search for a group of nodes where all paths through the groupbegin at a particular
start node, and end in aparticularstopnode. That is,there can be no transition to
any node in the group from nodes outside the groupexcept via the startnode, and
no transitions from any node in the group to nodes outside the groupexcept via the

stop node. A group of this form can be found by an O(n2) search of thenetwork.
This is described in more depth in Nevill-Manning (1990).

Recursion
The l-system in figure 5(a)draws a Kochcurve if the terminalsymbols are
interpreted as turtle commands: f =draw a line forward, - = turn left, + = turn
right, [= save state,] = restore state (Prusinkiewicz,1990). Thegrammar obtained
using generous parsing in figures 5 (d) and (e) is a non-recursive version of the
original l-system, and theoriginal can be reproduced by performingProlog
unification between each of the rules.

Putting it all together
This paper has so far described techniques for efficiently forming a vocabulary from
a sequence, and recognisingbranches,loops, procedure calls,recursion, and
equivalentsymbols in a sequence. Thissection describes how these techniques fit
together to make inferences.
The system hasbeen designed with two principles inmind: (a) it should perform
transformations on thefly, and allow them to beundone bylater transformations
with the benefit of hindsight, and (b) it should avoid ad-hoc thresholds fordeciding
whether transformations will be performed. This provides a simple system which is
not optimised for a small set ofsequences, but to whichdomain-dependent
heuristics can beadded. Aseach newsymbol is observed, thevocabulary is
updated, generous parsing is performed, andthen the grammar is examined to see
whether the it is possible to apply any of the transformations. As only partsrelated
to the last symbol in the sequencewill have changed, thischeck can be performed
efficiently.
Figure 8(a)shows aportion of a C program. Figure 8(b)shows thestructure
recognition techniques without the vocabulary formationpart. As it must find
structure between the individual characters, it is notable to give particularlyuseful
insights. Thevocabulary derived from this sequence isshown in figure 8(c). It
captures the reservedwords, variable names anddelimiters, but without the
structure recognition techniques, it cannot recognise the overall structure because of
the different variable names switch values, case labels andvalues. However,when
the two parts are combined, it produces the structure in figure8(d), which captures
much of the desiredstructure. Work iscontinuing on refining and applying these
techniques to more complicated sequences.

(a)
{
 switch (getchar()) {
 case 'f':value = 1;
 case 'h':mark = 2;
 case 'e':mark = 8;
 case 'i':value = 7;
 }

 switch (n) {
 case 4 : mark = 45;
 case 30: value = 6;
 case 3 : value = 38;
 case 5 : mark = 3;
 }
}

(b)

65

b

43

}7 82

;

1=

d

:f

’

)

r ae

g

(

h

ct

i

w

s

•

\n

{

(c)
S ← B M g e A G () Q E
f K 1 I h J 2 I e J 8 I i K
7 X N M n Q O 4 W 4 5 T 0 R
S 6 T U S 3 8 V 5 W 3 X Y
A ← t c h
B ← { D
C ← e ~
D ← N ~
E ← O '
F ← ' :
G ← a r
H ← = ~
I ← L E
J ← G P
K ← G S
L ← ; D
M ← s w i A ~ (
N ← \n ~
O ← c a s C
P ← m G k ~ ~ H
Q ←) ~ B
R ← : ~
S ← v a l u C H
T ← V 3
U ← ~ R
V ← L O
W ← U P
X ← L Y
Y ← } \n

(d)

swit ch (get char() | ch) {

case '

' : value | mark =

}

}

{

;

1 2 8 7 45 6 38 3

e f i 3 4 5 h 30

Figure 8: (a) fragment of Ccode, (b) structurerecognition without vocabulary
forming (c) the vocabulary, (d) vocabulary and structure recognition

Conclusion
SEQUITUR successfully recognises some of the regularitiesthat occur in real
sequences by looking for recurring phrases and recognisingcommon non-linear
structure. It does this on-line, sothat thestructures can be used toexplain and
predict real-time sequences, but it is also effective in recognising structures instatic
sequenceslike English text. SEQUITUR will eventually become part of aPBD
system,modelling and predicting the actions weperform, tostrike a blow in the
battle against the tyranny of repetition.

Acknowledgments
I am grateful to IanWitten and DaveMaulsby for the ideas and insightsthat they
have contributed to thisresearch, and to Przemyslaw Prusinkiewicz for suggesting
the l-system application.

References
Prusinkiewicz, P. & Lindenmayer, A. (1990) The algorithmic beauty of plants,Springer-Verlag.

Berwick, R.C., & Pilato, S. (1987) Learning syntax by automata induction.Machine Learning, 2,
9-38.

Storer, J.A.. (1988) Data Compression—methods and theory,Computer Science Press.

Nevill-Manning, C.G.(1993),“Programming by Demonstration”,New Zealand Journal ofComputing
4(2), 15-24.

Nevill-Manning, C.G., Witten, I.H., & Maulsby, D.L., (1994) “Compression byInduction of
Hierarchical Grammars”Proceedings of theData CompressionConference1994, IEEE
Computer Society Press.

