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Abstract

This paper proposes a new method for measuring the performance of model s—whether decision
trees or sets of rules—inferred by machine learning methods. Inspired by the minimum
description length (MDL) philosophy and theoretically rooted in information theory, the new
method measures the complexity of test data with respect to the model. It has been evaluated on
rule sets produced by several different machine learning schemes on alarge number of standard
data sets. When compared with the usual percentage correct measure, it is shown to agree with it
in restricted cases. However, in other more general cases taken from real data sets—for
example, when rule sets make multiple or no predictions—it disagrees substantially. It is argued
that the MDL measure is more reasonable in these cases. and represents a better way of
assessing the significance of arule set’s performance. The question of the complexity of the rule
set itself is not addressed in the paper.
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1. Introduction

So many different learning algorithms have been
proposed that evaluating and comparing them
presents a significant challenge. This paper
restricts attention to “supervised” learning
schemes which operate in the following standard
way. They are given training data to be learned,
which is divided into separate instances. Each
Instance comprises afixed set of attributesand a
classification. Each attribute has a range of
values that it can assume—typically a finite
enumerated set, an integer, or a real number.
After learning from the training data, a schemeis
presented with a set of test data. Thisisjust like
the original input data except that now the
classification must be computed from the
remaining attributes.

The result of learning isamodel or theory of
the data. Given an instance from the training or
test data, the theory generates a classification
which it attributes to that instance. This paper
contributes to a common framework which is
being developed for comparing and eval uating
the various supervised learning schemes, the
ultimate aim being to estimate how well atheory
will perform when presented with a new set of
test data.

The theories that we examine in this paper can
be viewed as mappings from the attribute space
to a subset of the set of possible classifications.
That is, a theory T maps an instance A of
attribute values

T:A{c,...,C}

where the values {c,...,c,} are possible
classifications. Many theories (for example,
decision trees) always have n=1, that is, they
always make a single prediction. The
framework developed here allows theories
where for some instances no prediction is
made(n=0) or multiple predictions are made
(n>1). For the purposes of this paper, we do
not allow a theory to attach probabilities to its
predictions. Although, the MDL algorithm that
evaluates the theory will attach probabilities to
the predictions, after they have been generated.

The easiest way to estimate performance isto
observe how well the theory does on the original
training set and assume that it will do just as
well on test sets. This has the obvious
disadvantage that a theory which merely
replicates the data instances with one rule per
instance does very well when evaluated against
the training set but is likely to perform poorly on
anew data set because it has not generalised the
original data. Such a theory is said to be
overfitted to the training set. This situation is



normally avoided by measuring performance on
atest data set which is different from the training
data used to form the rules.

There are other problems with measuring a
theory’ s performance. The obvious metric isthe
frequency of correct classifications. But even
such asimple measure raises practical problems.
Theories may generate no classification for a
particular instance, or multiple classifications; or
the instance may have missing data values.
Different schemes resolve these ambiguities in
different ways, making it difficult to replicate
results reported in the literature and rendering
comparisons between schemes dubious, if not
meaningless. Another difficulty is encountered
with highly-skewed data sets. Consider, for
example, a situation in which one classification
occurs 99% of the time. A trivial theory which
always predicts that classification has a 99%
success rate—apparently a very good result. The
frequency of correct classifications is not
necessarily a useful overall measure of
performance.

The “minimum description length” (MDL)
measure, proposed by Rissanen and others, is
an alternative way of assessing inferred theories
(Rissanen 1985, 1989). The MDL principle
deems the best theory for a set of data to be one
which requires the smallest amount of
information to specify both the theory and the
original data given the theory. Information is
measured in bits, assuming an efficient coding
scheme for theory and data. In order to apply the
minimum description length principle to the
output of machine learning schemes we have
had to come up with general ways of computing
complexity, which are described below.

This paper shows the performance of rule
sets generated by different learning schemes can
be measured in a uniform way, and describes a
system for doing so. Whereas most previous
work (eg. Quinlan and Rivest, 1989; Wallace
and Patrick, 1993) concentrates on the question
of evaluating the complexity of theories, this
paper examines how to evaluate the complexity
of a data set given a theory. This is normally
dismissed as afairly trivial part of the problem,
but in fact we argue that it involves some crucial
issues that are not generally considered. We
back up this claim by examining the results of
several commonly-used machine learning
schemes on actual datasets—both the standard
datasets and ones encountered in a project on the
agricultural applications of machine learning
(Garner et al., 1995)—and showing that the

new metric does capture subtleties that are
hidden by the usual percent correct measure.

The next section discusses how the notion of
complexity can be quantified, and introduces the
key distinction between static and adaptive
estimation methods. It also briefly discusses
measurement of the complexity of theories,
which is not further addressed in this paper.
Following that, we introduce two different ways
of measuring the complexity of datawith respect
to atheory. One takes account of the frequency
of different items, and the other does not. Next
we use these metrics to examine the significance
of actual rule sets generated by machine learning
schemes on awide variety of different datasets.
In acertain specia caseit ispossibleto relate the
new measures to the standard “percentage
correct” measure theoretically; this confirms the
correctness of the results. Finally we summarise
our findings and draw conclusions from the
work.

2. Complexity

According to the minimum description length
principle, the “best” theory is the one that
represents the data in the simplest, most
economical, way. The complexity of a data set
relative to atheory is defined as the length of the
shortest program necessary to reconstruct it
from that theory. The total information required
to represent the data is the amount of
information necessary to specify the theory, plus
the information necessary to specify the data
given the theory. This can be written

I(D) = I(T) + I(D[T)

where [(X) is the information necessary to
specify X, and 1(X]Y) the amount of information
necessary to specify X when Y is known. This
formulation encapsulates a trade off between a
complex, over-fitted, theory where I(T) islarge
and 1(D|T) small, and a simple, over-general,
one where I (T) issmall and I(DIT) large.

Our purpose here is to compare different
theories on the same data. The measure above
includes information that is irrelevant for this
purpose. The regenerated data constitutes not
only the classification that is assigned by the
theory, but also al other attributes of the test
instances. One might view the attributes being
presented as a question posed to the theory, and
the returned classification as the answer to this
guestion. In these terms, the complexity of the
guestions is being included along with that of
the answers. It can be eliminated by splitting the
complexity measure into the information



required to specify the attributes in the test
instances, and that required to specify the class
given both the theory and the attributes. That is,

I(DIT) =1(Q) + I(DIT.Q),

where 1(Q) is the complexity of the attributes
(the questions) and 1(DIT,Q) is the complexity of
the data given both the theory and the questions.
Thetotal complexity of interest isthen:

(D) =I(T) + I(Q) + I(D|T,Q).

[(Q) does not depend on the theory T and can be
suppressed for comparison purposes. To
compare different theories it is sufficient to
compute the sum I(T) + I(D|T,Q), in other
words, the complexity of the theory plus the
complexity of the answers. We show below one
way of estimating these two quantities; first,
however, we discuss the general philosophy that
underlies our approach.

Static versus adaptive complexity estimation

The complexity I(T) of atheory is defined as the
smallest program needed to generate it, and the
complexity [(D|T) of a set of data relative to a
theory is the smallest program needed to
generate that data, given the theory. In the
theory of complexity, a standard machine is
assumed on which these programs are to be
executed. The particular machine chosen is
deemed to be unimportant because in the limit
for large theories and data sets it makes no
difference—any machine can be interpreted on
any other using a program of fixed size. Even if
a particular machine is assumed, complexity
theory does not prescribe how to compute these
measures. indeed, the question of whether any
particular program is in fact the smallest is
undecidable in general. This makes it necessary
to devise a methodology for estimating the
complexities.

Let us consider, by way of example, the
complexity of atheory T. One way to estimate
I(T) isto specify T by a sequence of decisions
that build the theory up. Representing T as a
sequence of binary digits, a decision would be
made for each digit about whether it wasa 0 or
1. If the probability of each decision’s outcome
were known, a complexity equal to the entropy
of the outcomes could be attained. For example,
if it were known a priori that zeros would occur
three times as often as ones in the theory’s
binary representation, the sequence could be
encoded at — 0.25 10g20.25 — 0.75 10g20.25 =
0.81 bits per binary digit, while if they occurred
equally often the theory could be encoded no
more efficiently than one bit per binary digit.

Using the technique of arithmetic coding, this
entropy can be approximated arbitrarily closely
(Witten et al., 1987).

Summing the entropy of each outcome only
gives a good estimate of the entropy of the
sequence if the individual bits are chosen
independently. In practice, this will not be the
case and a more complex model would be used
to encode the theory. However, the real
disadvantage of this coding regime is much
more serious. If the a priori probabilities are not
chosen correctly—that is, if they do not reflect
the frequencies with which elements of the
sequence actually occur—the coding will be
inefficient. And the inefficiency will take the
form of a constant overhead per element of the
sequence, so that there is no limit to the
inefficiency with which large theories are coded.
Contrast this with the choice of standard
machine in the alternative, program-oriented,
view of complexity, which can only affect the
complexity measure by an additive constant.

The problem with the method we have
described isthat it uses a static model to encode
the theory, and any deficiency in the model
results in inefficient coding of each element of
the sequence. An alternative is to use adaptive
coding techniques instead. The idea isthat, asa
sequence is processed, statistics are gathered
about the decisions that are made. Each
prediction about what will occur next is
informed by the accumulated statistics so far.
Thusif it isthought a priori that zeros will occur
three times as often as ones, but this turns out to
be incorrect, the adaptive model will not suffer
the same penalty as a static one.

Adaptive techniques have been used very
successfully in many applications. For lossless
compression of text, all the best methods are
adaptive (Bell et al., 1990). An important
property of adaptive techniques is that they are
very robust. In the limit of long messages, they
can guarantee to achieve the entropy of the
sequence plus a term that is logarithmic in
message size (Bell et al., 1990; Cleary and
Witten, 1984). In contrast, the use of
predetermined statistics can cause the data to be
expanded by an unbounded constant factor. For
any particular problem, adaptive algorithms can
be constructed in many different ways for
computing the complexity, depending on what
statistics are accumulated and how they are used
to estimate predictions. The main advantages of
adaptive techniques are their robustness and
flexibility: these allow them to be applied easily
to different problems.



Theory Complexity

As part of our overall system an adaptive
modeller to compute the complexity of general
Prolog programs was developed. However, the
output from supervised learning schemes are
very stereotyped: for example, many of them
can be represented by decision trees. The result
is that the general complexities computed are
significantly greater than the apparent
complexity of the theory—so much so that the
resultant values for I(T) appears not to be useful
for comparing different theories. We are
currently re-implementing a system that
recognises special subtypes of theories (decision
trees, rules using a single attribute, sets of rules,
trees of rules, and so on) and computes the
adaptive complexity from these.

3 Data Complexity

We now describe a sequence of more refined
adaptive algorithms for computing 1(D|T,Q).
The way that these algorithms are used in our
experiments later isthat first alearning technique
is applied to some training set of instances. The
result of thisisatheory T. Then a sequence of
test instances (Q) and their associated
classifications (D) are adaptively encoded. Itis
the total size of the resulting encoding that is the
value we use for I(D|T,Q) and which in turn
forms the measure of the significance of the
theory.

The classification of the members of the data
set D are each specified in turn. For each one,
the theory generates a set of predictions (say m
of them) out of a universe of possible
classifications (say n of them); our task is to
encode which classification actually occurs.

This can be specified in two steps. The first
determines whether or not the actual class
appears as one of the predictions. If so, it is
only necessary to specify which of the m
predictions it is. The theory provides no way to
distinguish the different predictions, so this
requires logom bits. If the actual classis not one
of the predictions, logy(n—m) bits are needed to
specify it. It remains only to determine how to
specify whether or not the actual classisin the
prediction set. A simple adaptive approach isto
count how often the actual class has been
predicted (say cp) and how often it was not in
the prediction set (say Cn). The probability of the
class being predicted can be estimated as

= (cpt1)/(cptcnt2): thisis Laplace's law of
successmn (the 1 and 2 in numerator and
denominator allow for the case where ¢, or ¢y is

0 because the class has not yet occurred). The
number of bits needed for encoding is— ogyp.

This measure yields some qualitatively correct
results. For example, suppose the theory is
perfectly correct and makes a single correct
prediction for each instance in the test data. Then
p will approach 1 (and —ogp will approach 0).
Because thereis only asingle prediction, no bits
are needed to specify the class (logom = logyl =
0), and so in the limit the data requires zero bits
per instance to specify it. Now consider a
situation where the theory always specifies two
classifications. On average, one bit will be
required per instance: zero bits for selecting
whether there will be a correct prediction, and
one to identify it from the two predictions.

Nevertheless, the estimator is unsatisfactory
for three reasons. If there are no predictions
(m=0), the class cannot possibly be in the
prediction set and yet it is predicted with non-
zero probability—thus wasting output bits.
Similarly, if m=nitisimpossible for the classto
occur, yet it is predicted with non-zero
probability. A third, more subtle, problem arises
when considering the maximum average
complexity per instance. Ignoring the
predictions and specifying the class requires
logon bits per instance, and adaptive coding
should never do worse than this. However,
suppose the behaviour of the predictions
alternates. First, n—1 classes are predicted and
the actual class is among them. Then just one
class is predicted, which is incorrect. If these
two cases continue to alternate, the probability
of aclass being predicted correctly will tend to
1/2. In both cases the actual class is selected
from among n—1 alternatives, so the complexity
per instance is 1 + logy(n—1) bits, which
exceeds logon whenever n>2. In this case, the
adaptive technique is strictly worse than
ignoring the theory altogether.

Constant Weighted Complexity

These problems can be solved with a more
sophisticated probability estimation technique.
This uses two weights a and 3. The former
applies to the case when some prediction is
correct, the latter when they are all incorrect.
The probability p is computed as p =
am/(am+B(n—m)). This deals correctly with the
cases where nothing is predicted (m=0) because
then p=0 and no bits are wasted predicting that
the classisin the prediction set. Similarly, when
all possible classes are predicted (m=n), p=1.

It is not obvious how best to update a and 3
as evaluation proceeds. The procedure used is



that as each instance is evaluated, o is replaced
by a + 1/mif the actual class occurred amongst
the m predictions, otherwise [ is replaced by 3
+ 1/(n—m). Note that division by zero can never
occur, for if m=0 the actual class can never be
predicted so a will not be incremented; similarly
If m=n the actual class must be in the prediction
set so B will not be incremented. This procedure
passes two important tests for reasonabl eness.

1 In the special case where the theory
always generates the same number of
predictions (m is constant), then the
probability pis, in the limit, the probability
that the theory will make a correct
prediction. Moreover, the term am counts
the number of timesthat the theory predicted
correctly, while B(n—m) counts of the
number of timesit predicted incorrectly.

2 In the limit, the complexity per instance
is less then logyn bits per instance no matter
what sequence of correct and incorrect
predictions are made by the theory.

These two properties hold no matter what
initial values are used for a and 3. Choosing the
“best” value is one form of the zero-frequency
problem (Witten and Bell, 1991) which has no
optimum solution unless a prior for a and B is
assumed. The current scheme initialisesa and 3
to 1/n, the smallest amount by which either can
be incremented. This complexity calculation is
summarised in Table 1.

The complexity measurejust described will
be referred to as the “constant weight”
complexity of the data and written I(D[T,Q).
However, there is a problem that has arisen
when deallng with data where one class has a
frequency close to 1—which, in our experience,
often occursin practical applications of machine
learning. The measure takes no account of
frequency information about the individual
classes themselves. A simple system that codes
the data adaptively by accumulating the
frequency of each class (without using the
theory predictions) will often compress the data
more than by using the theory as above. This
suggests that both the frequency of the classes
and the theory predictions should be taken into
account.

Freguency Weighted compl exity

First consider how to adaptively code the data
using just the frequency of the classes (but not
the theory). Let the number of times that classi
has occurred so far during the scan of the data
be ¢ . Let the total number of instances be

N:Zci.

The probability of thei’th classis then estimated
as p =(¢ +1)/(N+n). The addition of the 1 and
n deals with the zero-frequency case when a
class has never been seen before but must be
predicted with a non-zero probability. In the
[imit, the complexity of this scheme will be at
worst logon bits per instance (this worst case
will occur when all the classes have equal
probability 1/n). The complexity computed in
this way is independent of the theory and is
written 1+(D|Q).

To incorporate both predictions and
frequency information, the two-step procedure
described earlier is used—that is, weightsa and
B are used to predict whether the actual classis
in the predicted set or not, whereupon the class
is predicted from within the appropriate set. Let
R be the set of classes predicted by the theory.
The probability that the actual class is in the
predicted set is estimated as.

- ra
P ra+@-r)B.
Here, r is the probability that a class will be in
the predicted s,

r= z p .
i0OR

Here a and B again function as weighting
factors, estimating the probability that the theory
predictions will be correct. As each instance is
evaluated, a isreplaced by a + p, / rif the actual
class occurred amongst the m predictions,
otherwise B isreplaced by B+p /(1-r).

This new form of complexity is referred to as
the “frequency weighted” complexity and
written 1:(D|T,Q). The complexity calculation is
summarised in Table 1. It gives reasonable
results in special cases. For example, if all the
classes occur with equal frequency these
formulae reduce to just those used above for the
constant weight complexity. Also, in the limit, it
cannot exceed the simple frequency based
complexity which ignores the theory.

Comparison With Other MDL Techniques

Muggleton (1992) proposed using the MDL
principle for evaluating learned rules, following
closely the seminal ideas proposed by Rissanen
(1985).

The major difference from our work is that
Muggleton used proof complexity when
computing the complexity of the data. Proof



complexity encodes the result of executing a
theory in terms of the sequence of choices made
by a Prolog interpreter while generating the
actual class. In contrast, answer complexity, as
described in this paper, first collects all the
answers and then determines the complexity of
the actua class from the answer set.

As has been noted in (Kovacic,1994; Conklin
and Witten 1994; and Srinivasan et al, 1992)
proof complexity can be a very inefficient way
of specifying the class: the average complexity
of a proof is always larger than the answer
complexity and can be unboundedly larger.
Think of the proof tree (ie. the SLD tree): every
answer must appear once on some leaf, but may
appear many times on different leaves, and there
may be failure or infinite branches that contain
no answer. To specify the actual answer in a
proof tree must always involve more choices on
average than to specify it in the set of answers.

4. Significance of Theories

We use the complexity measures to evaluate
theories, in other words to assess whether a
theory is “significant” or not, or to answer the
guestion “does this theory provide significantly
better predictions than the null hypothesis’.

Our procedure is to take alearning algorithm
and apply it to a training set, generating a
theory. The theory isthen applied to a different
test set and the various complexity measures
computed. 1¢(D|Q) is a measure of the data
complexity without using any theory and can be
taken as the complexity of the data with respect
to the null hypothesis. 1:(D|T,Q) is a measure of
the complexity of the data with respect to the
generated theory and if the theory has actually
captured some regularity or information from the
data should be less than I¢(D|Q). The difference
Si=1¢(D|Q)—1#(D|T,Q) indicates the extent to
which the theory has departed from the null
hypothesis and can be used as a measure of the
significance of the theory. The larger the
difference, the more likely it is that the theory
has captured some regularity in the data.

In order to fully determine whether the theory
provides a worthwhile improvement over the
null hypothesis, it would be necessary to take
into account the complexity of the theory itself,
and see whether it could be represented in less
than S bits. This is beyond the scope of the
present paper.

Experiments

To assess this significance measure a number of
experiments were run. In each one a data set
was split randomly into two equal training and
test subsets 25 times. Equal splits were made
because the complexity measures are not linear
on small numbers of instances. keeping the test
and training sets equal allows easier comparison
of the complexities on the two sets. Several
different learning schemes were applied to these
splits:
1-rR (Holte, 1993)
C4.5 (Quinlan, 1986, 1993), generating
apruned decision tree
an unpruned decision tree
decision rules;
FOIL (Quinlan, 1990)
INDUCT (Gaines, 1991), generating
ripple-down rules
DNF rules.

In each case, S was computed. The data sets
used were those used by Holte (1993) and a
number of agricultural data sets supplied by the
Weka project (Garner et al., 1995).

Relating complexity to percent correct

To assess the reasonableness of S; as a
significance measure we relate it to the standard
percentage correct measure. The usual way that
the latter is used is to compare the percentage of
correct predictions made by the theory against
the percentage correct if just the most likely class
had been predicted. At first sight it is not clear
what relationship there might be between the
two measures. However, in some special cases
it is possible to analytically compute the
expected S¢ as a function of the percentage
correct.

Consider a data set where there are exactly
two classes, and assume that the theory always
predicts exactly one class. Let the number of
instances of the most likely class be i and the
corresponding probability be p=i/N. Let the
number of instances correctly predicted by the
theory be j, with corresponding probability
gq=j/N—in our experimental design q is the
percentage correct measure. \We now compute &
asafunction of p and q.

It is easily shown that

(N+1)!

1+ (DIQ) =log, =

and



(N +1)!

JUN=j)

Applying Stirling’s approximation to these
expressions, simplifying, and neglecting terms
of o(N™) and less gives:

St = N(E(p) - E(q))

I+ (DIT,Q) =log,

1-p
1-q

lD p O
_§éogza+logz é

where
E(p) =-plog, p—~(1-p)log,(1-p)

Note that S¢is 0 whenever p=q. Also the second
term, which is constant in N, is small on most
actual examples.

E(q) isadecreasing function of q (for g=1/2)
so S increases monotonically as q increases
beyond the default probability p. Thus the
percentage correct and Ss measures agree on the
ordering of theoriesin such cases.

Results

Figure 1a shows the result of one experiment. &
and percentage correct are plotted together for
the dataset CH taken from (Holte, 1993), in
which the classis binary. The learning schemes
C4.5-pruned, C4.5-unpruned, C4-rule and
Induct-ripple all produce just one prediction for
each instance in this case. The theoretical value
for St derived above is also shown and is seen
to lie very close to the data points for these
schemes—the expanded view in Figure 1b
emphasises this point.

The schemes FOIL and Induct-DNF depart
markedly from single predictions. The former
has between 40% — 80% multiply classified
instances and approximately 10% unclassified
instances; the latter has between 3% — 8%
multiply classified instances and 0% — 1%
unclassified instances. Their points are scattered
well off the theoretical curve.

Interestingly, while the percentage correct
figures for the Induct-ripple scheme lie clearly
outside the range for the majority of the
schemes, the value for S is not correspondingly
reduced. In the presence of multiple and
unclassified instances the predictions of
percentage correct and S may depart markedly.

This point is emphasised by the results in
Figure 2. This shows the plot of percentage
correct versus S on dataset “wcr”, one dataset
from an agricultural problem involving cow-
culling (McQueen et al., 1995). The data

consists of some 2000 instances of data about a
single farmer’s cows over aperiod of five years.
Aswell as data about the cows milk production,
breeding and other attributes, it also records
which cows were culled from the herd and
which died from other causes. The goal is to
determine what rules the farmer used for
deciding which cowsto cull.

There are several problems with this data.
The frequency of culling is very low—only
6.1% of the cows were culled. The frequency of
cows which died was also low—1.6%. These
instances were essentially random with respect
to the given data. In work using the standard
percentage correct measure to evaluate the
results, we have found that standard learning
schemes seem to be unable to develop any
significant theoriesto explain the data.

Although strictly speaking the conditions for
the analytic curve derived above do not hold in
this case, for there are more than two classes,
nevertheless the curve has been plotted using the
probability of the most frequent class for p.
Some of the schemes (C4.5-rule, and C4.5-
pruned) lie close to it, while others depart
markedly.

Of all the schemes only Induct-DNF has a
consistently positive &, and thus seems to have
captured some of the structure of the problem.
Closer investigation shows that it has a high
level of multiply classified instances (60% -
90%). Even more remarkably, this is
accompanied by a very low percentage correct
score. Using atraditional analysis the fact that
these rules had captured a significant part of the
data’'s structure would have been missed
entirely.

Preliminary results from other agricultural
data sets highlight the importance of rules which
make multiple (or no predictions) and
consequently of having an evaluation
methodology which takes these into account.
For example, in a study on the grading of
venison the classis essentially a discretisation of
acontinuous variable. Thusit is often difficult to
separate which of two adjacent grades should be
chosen. The most successful rules seem to
predict two possible classes in these cases.

In another set of experiments, the 16 data sets
used by Holte (1993) were tested against seven
different learning schemes, including the 1R and
C4.5-pruned schemes that Holte used. The
values for percentage correct and S averaged
over the 25 random splits are listed in Table 2,
which also includes the frequency of the default



class for each data set (the percentage correct
values are al shown in bold face). The Sf values
generally corroborate Holte' s conclusions about
the relative performance of 1R and C4.5. That
is, 1R generally does well compared to C4.5
except on two data sets CH and SO. It is
notable, however, that on the data set GL S
indicates 1R performing worse than the
percentage values would otherwise indicate.
There is little difference between pruned and
unpruned C4.5 (this is to be expected as
generally both these schemes generate rules
which make single predictions and so the
percentage correct and S; should give
comparable orderings). The major differences
between the two measures occur for FOIL on
G2 and LY and Induct-DNF on LY. In each of
these cases, the S; value indicates higher
significance than percentage correct. This seems
to be a consequence of these schemes generating
rules with multiple and unclassified instances
which may still perform well in these cases.

6. Summary and Conclusions

An adaptive MDL measure of the performance
of rule sets has been proposed. It has been
argued that it:

* provides an unbiased measure of different
learning schemes performance by evaluating
theories independent of the original
software;

* istheoretically well founded in complexity
theory;

* dealsin aprincipled way with theories that
sometimes make multiple or no predictions;

* provides a measure of the significance of a
theory

* agrees in simple cases with the “ percentage
correct” measure;

* dealsin a satisfactory way with data where
one class has a probability closeto 1.0.

It has been applied to several large
agricultural data sets, and found to provide an
intuitively reasonable account of the
performance of different rule sets on this data.
The work underlines the fact that it isimportant
for rule sets to be able to make ambiguous
predictions in some cases. evaluation metrics
must deal with this gracefully and correctly.

The work would be further enhanced by a
complexity measure for theories, in order to
detect overfitting and provide estimates of
performance on unseen test data. An attempt to
compute theory complexity by using general
Prolog rules failed in practice because actual
rules tend to be very specialised. In future work

we intend to implement a more specialised
measure of rule complexity, assess its ability to
measure overfitting, and use it to predict
performance on unseen data.
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Probability of Actual Class | Updates
1(DIQ) /n
I(D[T,Q) am 1 a-a+d
if in predicted set R am+p(n-m) m
if notinR B(n—m) 1 B-B+Y _ .
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Where nisthe number of classes
G isthe number of occurrences of classi
Risthe set of classes predicted by the rule set
m=|R
N=5%¢
b= . +1N +n
r= z P,
i0OR

Table 1. Algorithms for Computing I(D|T,Q).



Table 2. Average Percentage Correct and S for Datasets from (Holte, 1993).

[Scheme BC CH G2 a HD  HE H HY IR LA LY MU E3 Es) Vi  \0
Baseline 70.3 52.753.4 35.5 54.579.4 63.095.2 33.364.9 54.7 51.890.7 36.2 61.4 61.4
|accuracy
IR 68.4 67.9 72.0 49.6 70.5 71.4 81.1 89.5 93.1 45.6 /1.4 98.5 64.5 78.5 85.7 93.7
-4.1 132.2 9.0 14.3 23.6 1.3 50.6181.3 85.3 -0.8 13.9 3603.9 119.2 19.4 91.0 153.4
C45 pruned [ 70.6 99.2 74.2 63.7 73.0 69.7 78.2 91.0 94.1 65.7 74.8 100.0 /5.4 95.8 84.4 92.9
-3.5 1484.0 12.0 56.0 31.0 1.7 47.8251.4 89.2 1.9 18.8 4053.4 246.6 36.7 99.3 149.9
C4.5 rule 68.6 99.075.8 62.6 75.8 81.0 81.2 99.1 94.182.4 74.4 99.9 97.4 95.3 89.2 94.7
-3.2 1469.9 14.4 48.4 355 0.5 45.2318.7 89.5 6.3 17.4 3994.3 433.5 36.0 99.3 142.6
C4.5 unpruned] 66.9 99.0 74.4 63.3 72.3 60.8 44.7 88.1 94.1 53.3 74.4 100.0 73.8 95.8 81.1 91.1
-1.4 1468.9 12.4 54.6 29.5 1.8 6.4222.4 89.4 0.3 18.2 4053.4 206.€ 36.7 88.4 142.0
FOIL 54.3 31563.5 47.5 64.166.9 60.997.9 90.964.9 63.3 99.6 95.0 95.5 76.9 87.9|
2.7 316.6 20.8 62.0 47.0 6.1 39.0298.7 88.9 6.4 26.0 4037.4 398.7 39.8 94.4142.2
Induct-DNF 51.1 94.163.5 43.2 60.567.4 69.8 95.1 84.6 69.6 65.8 99.9 84.2 95.7 81.8 88.4
-1.6 1413.6 16.0 57.8 39.7 4.7 55.2312.4 86.2 5.0 29.3 4051.0 364.0 39.9 114.9 152.2
Induct-ripple| 65.1 97.8 73.2 61.7 70.7 78.1 80.0 98.6 93.8 80.0 76.0 100.0 96.3 97.1 87.9 94.0|
-1.3 1350.8 11.6 46.7 23.0 0.2 39.8266.9 88.1 4.7 22.1 4048.6 338.6 38.0 90.8 136.6
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Figure 1. Comparison of Percentage Correct and Sf for “CH” Dataset.
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Figure 2. Comparison of Percentage Correct and Sf for “wcr” Dataset.



