
Abstract

The modular nature of rules learned by most inductive machine learning algorithms makes

them difficult and costly to maintain when the knowledge they are based on changes.

Ripple-down rules, a tree-like rule-based concept description format, overcomes these

problems by using rules that operate in the context of other rules.

Whereas most algorithms use the standard propositional attribute–value

representation for input, relational learning with examples expressed in first-order

languages opens up a myriad of new classification tasks, and new approaches to existing

tasks. However, current relational learning algorithms employ simple rule formats that

lack the desirable features of ripple-down rules.

This thesis describes a system that combines techniques of propositional and

relational learning, and generates a concept description in ripple-down rule form. The

system can learn from purely propositional data, employing both propositional and

relational techniques, or relational data, using background knowledge presented as

extensional relation definitions. The system illustrates several benefits of the combined

approach, and its performance is compared with existing propositional and relational

learners, such as C4.5 and FOIL.
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1. Introduction

Machine learning algorithms examine a set of examples of a concept and generate a

description of the concept that summarises the training data, and can be used to predict

whether or not unseen examples also belong to the concept. A key issue is the way in

which the concept description is expressed. Two common methods are as an explicitly

stated generalisation, or a set of representative examples stored verbatim. The two forms

result from different methods of learning, and require different methods of evaluation.

Each is suited to a different set of learning tasks that are distinguishable by the

accessibility of training data, and the expected use of the concept description.

Explicit generalisations are usually produced from a fixed set of training examples,

and evaluated by matching terms in the concept description with the corresponding

features in the examples. When learning such a description, most of the computation

involves discovering regularities in the training data that lead to the generalisations. In

contrast, algorithms that keep a set of representative examples defer the computational

effort to the evaluation stage. These algorithms usually learn one example at a time,

comparing each with examples already stored and storing it also if it is sufficiently

different. In this approach there is no difference between learning and classification of

new examples, because all training examples are themselves classified like new examples

at some point. New examples are predicted to have the same class as the stored example

or examples that are most similar with respect to all the features of the objects.

Both methods of creating concept descriptions have been shown to be effective in

many classification tasks, with neither method having a significant advantage. However,

algorithms that produce explicit concept descriptions are favoured in machine learning

applications because the concept description can be used if the knowledge implicit in the

examples is required. Human experts can examine the concept description to identify

important features of the concept, and to provide explanations of classifications.

Conversely, algorithms using the exemplar-based approach tend to be “black boxes”

issuing a classification for an example with the only explanation being “it was closest to

an example of that class.” Although different measures of similarity are used by different

exemplar-based algorithms, they all essentially measure the distance between examples.

Inductive machine learning algorithms usually generate explicit concept descriptions

in the form of a decision tree or set of production rules. The most common rule form is

disjunctive normal form (DNF), although others have been used. Decision trees are readily

converted into DNF form, and this is often necessary for manipulation by programs other

than those that generated the trees. A rule set in disjunctive normal form consists of a
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number of conjunctive clauses for each class of the concept. An example of the concept

is classified by any rule that it matches. DNF rules are considered to be an intuitive form

for expressing many concepts, and are used widely in knowledge-based systems.

1.1 More expressive concept descriptions

Many inductive learning algorithms use zero-order propositional languages to describe

concepts. Examples are represented as tuples of values for a fixed set of attributes, and

concept descriptions are expressed with propositional terms using these attributes.

Typical examples of this type of term are length < 23.5 and colour = red. An example

matches a term if its value for the term’s attribute has the specified relationship with the

term’s value. For example, a green building block that is 15 mm long will match the first

term above, but not the second.

Although propositional rules are adequate for many classification tasks, there are

problems for which they are unsuited. In general, these problems are represented by

examples that are expressed as sets of objects, and the concept descriptions require rules

that specify relationships between the objects. For example, several instances used to

learn the concept “stack” in a blocks world domain might be represented by three blocks

each. Information about the colour and size of the individual blocks is not important to

this concept, whereas positional relationships between the blocks making up each

example are important. A propositional algorithm might produce a very specific concept

description stating that a stack must contain block A, block B and block C, or it must

contain block D, block E and block F, and so on. A relational algorithm, given some

background knowledge about the positions of the individual blocks, can state that a stack

must contain three blocks, with the first on top of the second and the second on the

third. This same background information can be provided for the propositional learner by

expressing every relation as an attribute that indicates its relevance to each example, but

this representation is cumbersome, and the resulting concept description will still be

specific to the values expressed in the data.

Most algorithms that learn with relational rules fall into the category of inductive

logic programming, a discipline that uses the firm theoretical background of

computational logic to formalise and constrain the learning process. The first-order

languages used by inductive logic programming systems are rigourously defined and form a

subset of the PROLOG logic programming language. The task of such systems can be

viewed as inducing a PROLOG program which will return the value true when an example

of the target concept is presented as a query, and false when the example is not of the

target concept. Because of the computational nature of first-order clauses, algorithms

must be careful to avoid problems such as infinite recursion and inefficient computation

resulting from ill-chosen relational terms.
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A logic program can also be viewed as a set of DNF rules. In fact, propositional DNF

rules are easily converted to PROLOG although they do not conform to some of the

restrictions of inductive logic programming. A common format such as PROLOG allows a

unified approach to evaluating concept descriptions.

1.2 A different approach to rules

Despite their widespread use in both propositional and relational forms, DNF rules are

difficult to maintain and update in changing information environments. Because each rule

is executed in isolation, its classification is not affected by the other rules. Therefore,

unseen examples that were not represented accurately by the training data may be

classified by many or none of the rules in the set. Multiple classifications and non-

classifications cause problems when evaluating rules and classifying new examples, because

there is no satisfactory method for determining the correct classification in these

situations.

Updating the rule set to provide a single correct classification for a new example is

difficult and costly, because every rule must be examined to determine the effect of

alterations on previously classified examples. An alternative approach is to provide

exceptions to rules to cover misclassified examples. This means that only minimal

changes need to be made to individual rules. There is no need to create a new rule to cover

a misclassified example, or to alter an existing rule to exclude it. Instead, a child rule is

added that distinguishes examples such as the new misclassified one from those of the

correct class. Examples matching both the parent and child rule are given the child’s

classification instead of the parent’s. Examples matching the parent rule only are given

its classification.

If a concept description is created solely using exceptions to previous rules, a

hierarchical structure results. Called a ripple-down rule, this has the form of a binary tree

similar to the decision trees generated by ID3 (Quinlan, 1986) and CART (Breiman et al.,

1984). The differences lie at the internal nodes. CART  trees, like ripple-down rules, are

binary, but they have only a single attribute–value relationship at each node. For

example, a node might specify that all examples with a value less than 5 for the attribute

x be classified by the left subtree, and all those with a value greater than 5 be classified by

the right subtree. If the attribute is symbolic the node specifies an equality relationship

instead of the inequality used for numeric attributes. Such a tree is a special case of a

ripple-down rule tree where each rule is only a single term. In general, however, rules may

have any number of terms.

ID3 trees are different again. Like CART trees they specify only a single attribute at

each node. However, if it is symbolic, the node has a branch for each possible value of the

attribute, so the tree need not be binary. Ripple-down rules have the advantage that the
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rule at each node may be as specific (many terms) or as general (few terms) as is desired.

Thus, a ripple-down rule tree that distinguishes two classes of a concept may have a single

node where an ID3 or CART tree requires several.

The use of a tree-like structure has another advantage over the use of DNF rules.

Often two classes will differ in only a few respects. A learning algorithm may have to use

several of the classes’ similarities to distinguish them from other classes. In a tree-like

structure this may result in the two classes being distinguished by a node some way down

the tree. A rule-based concept description, however, would duplicate large parts of rules in

order to first differentiate examples from the other classes. The final few terms of these

rules would distinguish the examples of the two classes in question.

1.3 HENRY

This dissertation describes the development of an inductive learning system that

combines propositional and relational learning techniques, and generates a concept

description in ripple-down rule form. The implementation, HENRY, is based on the

INDUCT propositional ripple-down rule learner (Gaines, 1991; Gaines, 1995). In addition

to the normal functionality of INDUCT, the new algorithm searches for relationships

between attributes in data expressed in attribute–value form. However, HENRY is also able

to use background knowledge in the form of extensionally defined relations to learn rules

that contain relational terms.

HENRY is not an inductive logic programming system. Rather it is an extended

propositional learner that makes use of relationships suspected to exist in the data. The

user supplies HENRY with extensional definitions of the suspected relations, and it

evaluates these in addition to the normal attribute–value terms when constructing rules.

HENRY can learn relational descriptions of concepts similar to those of FOIL. Differences

in output arise from the use of different heuristics for selecting “good” terms to add to

rules, and the different format of the rules themselves.

The use of ripple-down rules allows HENRY to generate concept descriptions that are

concise, contain little of the duplication necessary in DNF rules, and are updateable to

reflect changes in the target concept. However, all the logical and deductive capabilities

of DNF rules are retained, and the rules can be re-expressed in that form if necessary.

1.4 Thesis outline

The remainder of this report is in five chapters. Chapters 2 and 3 present background

information on the two major components of this project. Chapter 2 gives a detailed

description of ripple-down rules, discusses their benefits over other forms of concept

description, and compares them with other exception-based approaches. The first section

illustrates the structure of ripple-down rules, and shows how a concept description can be
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built from them by either a human expert or a learning algorithm. The next section

describes INDUCT and shows how it generates concept descriptions in both DNF and

ripple-down rule form. The final section discusses an exemplar-based learning technique

that uses exceptions, and compares its concept descriptions with ripple-down rules.

Chapter 3 examines relational learning, its advantages over propositional learning, and

explains how relational knowledge is represented. The first section introduces the types

of relation applicable to inductive learning, and describes how they are represented in the

training data and the concept description. The next section introduces inductive logic

programming, giving a taste of the theoretical background, and demonstrating the types

of problem applicable to this style of learning. The final section describes the relational

learner FOIL, a typical inductive logic programming system, and presents some of the

issues it encounters.

Chapters 4 and 5 cover the practical aspects of the project. Chapter 4 presents the

implementation of HENRY. The first section deals with specifics of the implementation

and extension of the INDUCT algorithm, and describes HENRY’s use of propositional and

relational data. The second section illustrates the various ripple-down rule output formats

and describes the uses of each one. The final section gives an overview of ABE, HENRY’s

partner in evaluating the ripple-down rules on test data. Chapter 5 presents and discusses

an experimental evaluation of the INDUCT algorithm, and compares relational learning

algorithms on several classification tasks.

Chapter 6 discusses the project’s conclusions and areas for future work. Particular

attention is paid to the suitability of ripple-down rules to relational learning,

characteristics of relational learning tasks presented in the literature, and shortcomings of

the current implementation of HENRY.

2.
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Ripple-down Rules

Concept descriptions express the information required to differentiate classes of a

particular concept. They may be used to summarise a set of instances, describe a method

for generating or identifying instances, or provide an explanation for the classification of

an instance. Concept descriptions can take many forms—in machine learning common

types include rules and decision trees. These are explicit descriptions of concepts, and are

matched against examples one attribute at a time. Some algorithms use the instances

themselves as the concept description, and compare new examples using distance metrics

that utilise many attributes at once.

Knowledge-based systems are a major application for concept descriptions. Figure 2.1

shows a description for the concept iris in the form of a set of rules. An expert system

might use this description to predict which iris cultivar is represented by a new example.

Typical knowledge-based systems employ large structures with many rules. For example,

Langley and Simon (1995), in their presentation of fielded machine learning applications,

describe a system used by British Petroleum to help configure oil and gas separation

vessels. The system was developed from 1600 examples, and contains 2500 rules

organised into twenty-five sets. Maintaining and updating such systems is an ongoing

requirement, but the complex interactions between rules mean that small changes at one

point in the concept description may have major effects elsewhere (Compton and Jansen,

1990). Even a relatively small rule set, such as that in Figure 2.1, can be difficult to

update. Suppose a new iris flower was found, with dimensions petal length = 2.6 cm, petal

width = 0.2 cm, sepal length = 5.1 cm, sepal width = 3.5 cm, and an expert declared it an

example of the cultivar iris setosa. If this flower was classified by the rule set in Figure 2.1

it would be misclassified by three of the rules. Concept descriptions generated from expert

knowledge, or automatically from a limited supply of data, often conflict with new rules

added to account for new examples. Tools are available that discover such inconsistencies,

but re-engineering the knowledge base to overcome these problems, while retaining the

meaning intended by the expert, is difficult. In the iris example three of the rules require

modification to allow the new example to be classified correctly. Changing the bounds for

the attribute–value tests in these rules may not suffice because the examples used to

create the rule set may then be misclassified by it.

"Iris-setosa" IF "petallength" < 2.45
"Iris-versicolor" IF "sepalwidth" < 2.10
"Iris-versicolor" IF "sepalwidth" < 2.45 AND "petallength" < 4.55
"Iris-versicolor" IF "sepalwidth" < 2.95 AND "petalwidth" < 1.35
"Iris-versicolor" IF "petallength" >= 2.45 AND "petallength" < 4.45
"Iris-versicolor" IF "sepallength" >= 5.85 AND "petallength" < 4.75
"Iris-versicolor" IF "sepalwidth" < 2.55 AND "petallength" < 4.95 AND

"petalwidth" < 1.55
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"Iris-versicolor" IF "petallength" >= 2.45 AND "petallength" < 4.55 AND
"petalwidth" < 1.55
"Iris-versicolor" IF "sepallength" >= 6.55 AND "petallength" < 5.05
"Iris-versicolor" IF "sepalwidth" < 2.75 AND "petalwidth" < 1.65 AND

"sepallength" < 6.05
"Iris-versicolor" IF "sepallength" >= 5.85 AND "sepallength" < 5.95 AND

"petallength" < 4.85
"Iris-virginica" IF "petallength" >= 5.15
"Iris-virginica" IF "petalwidth" >= 1.85
"Iris-virginica" IF "petalwidth" >= 1.75 AND "sepalwidth" < 3.05
"Iris-virginica" IF "petallength" >= 4.95 AND "petalwidth" < 1.55

Figure 2.1 A disjunctive normal form rule set describing the iris concept that might be
used in an expert system.

This example illustrates an important point: additions to knowledge-based systems

are usually made in the context of a previous erroneous inference. An expert is consulted

to provide an explanation for the exception to the standing rule, and this explanation

must be added to the system avoiding the problems outlined above. Compton and Jansen

(1990) describe a knowledge structure that allows changes to be made to the knowledge

base in the context of the faulty rule. By limiting the scope of the change to the area

where the problem exists, ripple-down rules significantly reduce the time and effort

required to make the alteration, and ensure its consistency. Gaines and Compton (1995)

cite an example system where the use of ripple-down rules increased the rate of

development of the rule base from two rules per day to ten rules per hour.

2.1 Ripple-down rule structure

The reasoning behind ripple-down rules (RDRs) is to provide a facility for expressing

exceptions to existing rules, rather than re-engineering the entire rule set. Instead of

changing the bounds of the attribute–value tests in the three rules that misclassify the new

iris flower, an exception handling rule could be added to each one. The expert could be

consulted to explain why the new flower violates the three existing rules, and the

explanations used to extend these rules only. For example, the fifth rule misclassifies the

new iris setosa as an example of the cultivar iris versicolor. Instead of altering the bounds

on any of the inequalities in the rule, an exception can be made based on some other

attribute:

“Iris versicolor” IF “petallength” >= 2.45 AND “petallength” < 4.45

EXCEPT “Iris setosa” IF “petalwidth” < 1.00

This rule says that the cultivar of a new iris flower is iris versicolor if its petal length is at

least 2.45 cm and less than 4.45 cm except  if its petal width is less than 1.00 cm, in which

case it is iris setosa.

Utgoff (1989) applied a similar, though more complicated, technique to the ID3

decision tree learner (Quinlan, 1986), allowing it to update the existing decision tree as
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new training examples were presented. Utgoff’s algorithm, ID5R, restructures parts of the

decision tree as new examples filter down and are misclassified. ID5R keeps track of

unused attributes and values of the examples that generated a leaf node, and uses these

attributes to split the leaf node when a new example with a different class arrives. The

subtree is also reordered, if necessary, to keep the attribute with the greatest information

gain at the root. This is a complicated operation, and may have to be performed

recursively back up to the root of the tree. However, the algorithm guarantees to produce

the same tree as ID3, given the same examples in any order. The ripple-down rule

approach is much simpler because exceptions are only activated in the context of their

parent rule. The addition of exceptions to existing rules does not affect those higher up in

the concept description.

Concept descriptions using ripple-down rules

In addition to providing exceptions in existing rule sets, RDRs can be used to represent

the entire concept description at the time it is created. Gaines and Compton (1995)

describe a medical diagnostic system that was reconstructed using only RDRs—part of the

structure is shown in Figure 2.2. The first stage in the generation of this structure is the

choice of a default classification for examples that fail to activate any exceptions inside

the RDR structure, and fall through to the bottom. The rule at the top of the structure is

left empty to ensure that all examples will at least be given the default classification.

From here an expert (or an inductive learning scheme as described in the next section)

can inspect examples of the concept, and decide how rules and their exceptions should be

formulated. For example, in Figure 2.2 the diagnosis 00 will hold if all examples are of

that type. However, when an example of type 46 is presented, the expert must decide

which features distinguish it from the examples presented previously. In this instance the

expert submits Rule 1.46 as an exception to the empty rule 0.00. Now, any example

matching rule 1.46 will be given diagnosis 46 and all others diagnosis 00. Next, the expert

may encounter an example of type 32 that fails to match rule 1.46. Another exception

to rule 0.00, rule 2.32, is created to accommodate this new class. Continuing in this

fashion, the structure can contain exceptions to exceptions, to any level.

Figure 2.2 shows that the RDR structure is a form of binary tree. The left child of a

node is activated if the rule at the node is true for an example; the right child is activated

if the rule is false. If an example fails to match a rule at a leaf node, the classification is

obtained from the leaf node’s most recent ancestor that matched the example

(Figure 2.3). During classification of a new example the system can note the classification

given by each rule that matches the example, and emit the most recent such classification

when a leaf node is encountered.

8



The structure of ripple-down rules permits the expert to be as general or as specific

as they desire at any stage of the construction process. This allows the concept

description to mimic the way the expert sees the particular classification problem. If the

expert chooses not to differentiate all examples in a multiple-class situation, an additional

if-true rule can be added to defer the decision to the next node. This might be done to

produce a pair of rules that the expert considers simpler, or more intuitive, than a single

longer rule, and can be important when the system must provide an explanation for a

classification. A trace of the rules activated by an example shows the expert’s line of

thought in classifying similar examples. Standard rule sets, in contrast, can provide no

such trace, as there is no significance to the order of the rules.

Rule 1.46
T3 is high

TSH is high
FTI is normal

antithyroid is true
Diagnosis 46

Rule 0.00

-

Diagnosis 00

Rule 2.32
T3 is low
FTI is low

Diagnosis 32

Rule 3.01
T3 is high
FTI is high

hyperthyroid is true

Diagnosis 46

Rule 497.48
TT4 is normal

T4U_BORD is high

Diagnosis 46

Rule 25.11
TSH is high

Diagnosis 46

if-true

if-false if-false

if-true if-true

Figure 2.2 Part of a ripple-down rule structure used in a medical diagnosis system (from
Gaines and Compton, 1995).

Rule structure

The rules presented so far have the form

IF condition1 AND condition2 AND ... AND conditionn THEN class is ...

9



This style of rule contains a conjunction of terms, requiring all the conditions in the first

part of the rule to be true before the classification can be applied. However, a knowledge

engineer is not restricted to this style of rule when creating ripple-down rules. Disjunction

may also be used within rules, requiring only one of a number of conditions to be true to

match an example. The disjunctive rule

IF condition1 OR condition2 OR ... OR conditionn THEN class is ...

is true if at least one of the conditions is true.

Rule 1.46

FAILS

Diagnosis 46

Rule 0.00

MATCHES

Diagnosis 00

Rule 2.32

FAILS

Diagnosis 32

Rule 3.01

FAILS

Diagnosis 46

Rule 497.48

Diagnosis 46

Rule 25.11

Diagnosis 46

if-true

if-false if-false

if-true if-true

Diagnosis is 00

backtrack backtrack

backtrack

Figure 2.3 Classification of an example that fails to match rules in a ripple-down rule
tree.

Mooney (1992) demonstrates that a system learning disjunctive rules generally

performs at least as well as algorithms that learn decision trees and conjunctive rules.

Despite this, most inductive learning algorithms generate rules with conjunctions in a

style called disjunctive normal form (DNF)—the rule set is a disjunction of conjunctive

rules. Mooney’s algorithm learns conjunctive normal form (CNF); a conjunction of

disjunctive rules. It is possible to generate rules that combine both conjunction and

disjunction, but this increases the learning algorithm’s search space substantially—

although the subsetting function of C4.5 (Quinlan, 1993) performs such a role. Mooney

suggests that the lack of research in developing CNF-based systems is a result of CNF

having a reputation as an “unnatural” representation for knowledge.

10
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E

Attribute y

Attribute x-0.5 0.5
0

20

Figure 2.4 A two-dimensional instance space containing examples of two classes, n and

p.

The algorithms presented in this thesis learn rules containing conjunctions of terms

only. This is principally due to the fact that existing implementations of RDR learning

algorithms generate rules of this form.

2.2 INDUCT

Although ripple-down rules can be updated manually, constructing the initial rule tree in

this manner from a data set of many examples would be impractical. This section

describes INDUCT, the first machine learning algorithm that generated ripple-down rules.

The RDR version of INDUCT is the third generation of a family of rule induction

algorithms that started with PRISM  (Cendrowska, 1987). Based on Quinlan’s ID3 decision

tree learner, PRISM  uses a different style of induction to generate modular rules instead of

decision trees. Whereas PRISM  is a covering algorithm, ID3 is a divide-and-conquer

algorithm.

Approaches to separating classes

11



Covering algorithms start with an n-dimensional space (where n is the number of

attributes used to describe the examples) and carve off sections of the space containing

counter-examples of the concept being learned. This process continues until the

remaining volume contains only examples of the correct class. Thus, a general

description of the concept (the entire space) is made more specific as new terms are

added. Concept descriptions with a number of classes can be constructed by returning the

examples in the removed sections back into the space, and repeating the exercise for each

class. Figures 2.4–2.6 show the procedure in a two-dimensional space of examples, E.

Examples are described by two attributes, one on each axis (Figure 2.4). Attribute x, on

the horizontal axis, has legal values ranging from –0.5 to 0.5; attribute y, on the vertical

axis, ranges from 0 to 20. A covering algorithm learning a concept description for

examples in the space might start by inducing a rule to cover examples in the class p. For

the first term in the rule describing this class, the algorithm splits the space at 0.1 on the

x axis, removing from the subset examples that have values of x less than 0.1

(Figure 2.5). To remove the remaining counter-examples the algorithm next adds a term

to the rule that splits the space at 12 on the y axis (Figure 2.6). Thus, the subset that

contains only examples of class p can be described with the predicate x > 0.1 and y > 12,

and the rule

IF x > 0.1 AND y > 12  THEN example is a “p”

E
20

p
p

p

n

n

n
n

n

Attribute y

Attribute x

-0.5
0

0.1 0.5

Figure 2.5 The instance space of Figure 2.4 divided by the term x > 0.1.
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p

n

n

n
n

n

E

Attribute y

Attribute x

-0.5 0.5
0

20

0.1

12

Figure 2.6 The instance space of Figure 2.5 further divided by the term y > 12.

can be used to decide whether new examples are also of class p. The process is repeated to

learn a rule for examples of class n.

Divide-and-conquer algorithms create a concept description that covers all classes in

one pass. The data is divided at each step by a test on a single attribute, and the subsets

produced are further split until they contain examples of a single class. For example, a

divide-and-conquer algorithm learning the above problem might first split the data set

using the x attribute. If it used a similar performance metric to the covering algorithm it

might also make the split at x = 0.1, and the space would be divided exactly as in

Figure 2.5. However, unlike the covering algorithm’s rules that specify a single class, the

concept description would take both classes n and p into account. The decision tree in

Figure 2.7 shows how the split creates two subsets. The subset in the left branch contains

only examples of class n, whereas the subset in the right branch contains examples of

both n and p. To split this subset and separate the different classes, the algorithm chooses

the y attribute, selecting y = 12 as the split point as before. The decision tree in Figure 2.8

shows how this split expands the right subtree, which now contains a decision node. The

children of this node contain examples of a single class each, n for the left child and p for

the right child, and the task is complete.

The goal of both approaches is to produce a concise and accurate concept

description, but they attack the problem from different directions. Divide-and-conquer

algorithms try to achieve high accuracy by creating the smallest possible concept

description, whereas covering algorithms try to produce a small concept description by

using the most accurate terms at each step.

13



x

n ?

≤0.1 >0.1

Figure 2.8 A decision tree that divides the data from Figure 2.4 into two subsets.

The two approaches, covering and divide-and-conquer, produce different forms of

concept description. The “one subset at a time” policy of covering algorithms naturally

produces concept descriptions as sets of rules, each rule describing a homogenous subset of

examples. The recursive splitting approach of divide-and-conquer algorithms leads to a

decision tree where each node represents a split in the data that reduces the “impurity” of

the subset being divided.

Cendrowska considers the decision tree style of output to be one of ID3’s major

weaknesses. She describes decision trees as being incomprehensible to humans, difficult to

manipulate by humans and computers, and difficult for providing explanations of

classifications. By producing a concept description in the form of modular rules, PRISM

overcomes these problems.

x

n y

≤0.1 >0.1

n p

≤12 >12

Figure 2.7 The decision tree in Figure 2.7 with the right subtree divided, this time by the
attribute y.
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function make_rules(Attrs, Training_set): dnf_rule_set
var Rule: dnf_rule

Rules: dnf_rule_set
begin

for Class  set_of_class_values do
while e : e  Training_set and eclass = Class begin

Rule.Class := Class
Rule.Clause := best_clause(Class, Attrs,

Training_set)
remove from Training_set examples of Class
Rules := Rules  Rule

end while
return examples of Class to Training_set

done
return Rules

end make_rules

A dnf_rule_set is a set of dnf_rules.
A dnf_rule is a structure with two components:

Clause: A dnf_clause.
Class: The class value predicted for an example that matches Clause.

A dnf_clause is a conjunction of dnf_terms.
A dnf_term has the form attribute–value.

Figure 2.9 Pseudocode outline of the PRISM covering algorithm.

PRISM

Figure 2.9 shows a pseudocode outline of PRISM . The code consists of two nested loops—

the outer loop selects a class value, and the inner loop generates rules until the class is

covered. The best_clause function returns a conjunction of terms that covers only

examples of the current class. PRISM uses a simple term selection heuristic based on the

probability that an example has a particular classification given some attribute–value pair.

The next term added to a rule is the one that selects the most positive examples, and the

fewest negative examples. This is given by the ratio z/s, where s is the number of

examples selected by the term, and z is the number of these that are positive. Terms are

added until the rule selects only positive examples, that is, until z = s.

PRISM guarantees a rule set is complete—every example is covered by at least one

rule—and consistent—every example is predicted to belong to only one class.

Statistically well-founded induction

INDUCT differs from PRISM  in two respects. First, the best_clause function prunes

each rule when it is completed (Figure 2.10). Working back from the end of the rule,

terms are removed until the rules “quality” (measured by the m-function, described next)

is maximised. Pruning allows INDUCT to improve rules that overfit the training data. For

example, a rule may select twenty examples, all of which are positive (z/s = 20/20 = 1),

and removing the last term gives z/s = 35/37 = 0.946. Although the shortened rule selects
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function best_clause(Class_value, Attrs, Training_set): dnf_clause
var Temp_term: dnf_term

Clause: dnf_clause
z,s: integer

begin
loop forever begin

Temp_term := term with attribute A and value V, that
when added to Clause, minimises m(Clause)

Clause := Clause + Temp_term
remove A from Attrs
z := number of examples of Class_value in Training_set for 
which Clause is true
s := number of examples in Training_set for which clause is 
true
if z = s then break

end loop
while m(Clause) > m(Clause - last_term) do

Clause := Clause - last_term
return Clause

end best_clause

Figure 2.10 Pseudocode outline of the best_clause function used by INDUCT.

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

0 1 2 3 4 5 6 7 8 9 10 11

m

Terms in rule

Figure 2.11 Curve showing how local minima in the m-function may be encountered as a
rule is generated.

negative examples it is more general—a desirable feature in machine learning. Incomplete

rules such as this may result in training examples being given several classifications, but

this behaviour is acceptable because accuracy is expected to increase on new examples.

Pruning, instead of stopping a rule when its quality begins to decrease, allows INDUCT

to overcome local maxima that may be present in the search space (Figure 2.11). If the

algorithm stopped the rule at three terms because the m-value of the next term increased

(a low m-value suggests high rule quality), it would miss the continuation of the downward

trend at the seventh term. If it stops adding terms before reaching the seventh term

because the rule is complete, it can prune back to the third term to minimise the m-value.

Figure 2.12 shows the basis for INDUCT’s statistical test: the m-function. The set E is

the universe of examples, the subset Q is defined by the predicate to be learned (the target

predicate), and the subset S is one of many defined by the test predicates being evaluated.

The intersection of Q and S contains examples of the target predicate that are selected by

the test predicate, and will be closest to Q for the test predicate best describing the target

predicate. The heuristic used to evaluate competing test predicates compares each with a

random selection of the same number of examples, and asks “what is the probability that

a random selection of the same number of examples would achieve the same or greater

accuracy?” An algorithm using this heuristic attempts to identify the test predicate that is

the least likely to have arisen by chance.

The formula used to calculate the probability that if s = |S| examples are selected at

random, without replacement, exactly z = |Q  S| of them are in class c (defined by Q), is
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function make_rdr(Default_class, Attrs, Training_set): rdr_rule
var T: rdr_rule

Temp_clause: rdr_clause
begin

for Class  set of class values do
if Class  Default_class then begin

Temp_clause := best_clause(Class, Attrs, Training_set)
if m(Temp_clause) < m(T.Clause) then begin

T.Clause := Temp_clause
T.Class := Class

end if
end if

done
Covered := {e  Training_set: T.Clause(e) is true}
Not_covered := {e  Training_set: T.Clause(e) is false}
if e : e  Covered and eclass  Class then begin

remove from Attrs any attributes used in T.Clause
T.If_true := make_rdr(Class, Attrs, Covered)
restore removed attributes to Attrs

end if
if e : e  Not_covered and eclass = Class then

T.If_false := make_rdr(Default_class, Attrs, Not_covered)
return T

end make_rdr

An rdr_rule is a data structure with four components:
Class: The default class used if none of the rules below this one match an example.
Clause: An rdr_clause.
If_true: An rdr_rule activated if Clause is true for an example.
If_false: An rdr_rule activated if Clause is false for an example.

An rdr_clause is a conjunction of rdr_terms.
An rdr_term is of the form attribute-relation-value.

Types rdr_clause and rdr_term are equivalent to dnf_clause and dnf_term respectively.

Figure 2.13 Pseudocode outline of the INDUCT(RDR) algorithm.

E

Q Q ∩ S S

Examples

incorrectly selected

by rule

Examples selected

by rule

Examples correctly

selected by rule

Examples not selected by

rule that should have been

Examples that should

be selected by rule

Figure 2.12 A set theory representation of INDUCT’s probabilistic rule evaluation

heuristic.

where k = |Q| and n = |E|, because z examples will be among the set of k examples that

have class c, and s – z examples will be among the n – k examples that do not have class

c. Of the s cases selected by S, z are in class c, so the probability that a randomly selected

subset will be more accurate than S must sum for all values from z up to s (or k if S selects

more examples than are in class c):

m S
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∑

However, this is expensive to calculate when there are many examples, and an

approximation can be obtained using sampling with replacement. This gives a constant

probability k/n that a selected example will be in class c. The formula
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gives an approximation for m ,
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It is this approximation that Gaines uses in his discussion of the INDUCT algorithm. In

fact Gaines uses the sum
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which is incorrect when the number of examples selected by the rule exceeds the number

in the class. As there is no possible random (or any other) selection that can exceed k

examples of class c, the part of the sum from s – k up to s is not valid. Chapter 5 presents

an experimental comparison of the correct formula for m  (a hypergeometric distribution)

and the approximation m  (a binomial distribution).

Induction of ripple-down rules

Gaines and Compton (1995) applied the statistical methodology of the INDUCT1

algorithm to the task of learning ripple-down rules. The recursive nature of the new

algorithm (Figure 2.13) reflects that of the RDR structure itself. First, a default class value

is selected for the top level empty rule—Gaines uses the class that occurs most frequently

in the training data for this value. The algorithm then finds the rule pertaining to any

class other than the default class that has the smallest m-value using the best_clause

function of the standard INDUCT algorithm. The training set is then split into two

subsets: the first containing all examples for which the clause is true, and the second

containing all examples for which it is false. If either of these subsets contains more than

one class—a situation made possible by pruning—the algorithm calls itself recursively on

that subset. The call on the set of examples covered by the rule uses the class value of the

rule. For the other subset, the existing default class is used again.

2.3 Nested Generalised Exemplars

Standard rule sets without exceptions divide the instance space of a concept with

axis-parallel planes. Each term in a rule adds another plane to the space, reducing the

volume predicted to contain instances of a given class. Figure 2.14 shows two examples of

two-dimensional spaces as they might be partitioned by DNF rule sets. The first diagram

shows the simplest means of dividing the space—all examples with value  0.5 for attribute

1 Henceforth the RDR-learning version of the original INDUCT algorithm shall be refered to as

INDUCT(RDR) and the DNF version as INDUCT(DNF).
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Figure 2.16 The instance space in Figure 2.15 showing the effect of moving the right-
hand bound on the region predicting class p.
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Figure 2.14 Two example instance spaces divided by DNF rule sets.

x are predicted to be in class p, and all those with a value > 0.5 are predicted to be in class

n. This division can be made with a very simple rule set:

IF x  0.5 THEN p

IF x > 0.5 THEN n

The second diagram shows a more complex situation. The rule set defining these

regions is:

IF x  0.3 THEN p

IF x > 0.5 AND y  0.6 THEN n

These two rules correctly predict examples falling within the two shaded areas only.

Examples falling in the unshaded region are not classified by either of the rules. In this

situation the bounds of a region with the same class as a new example can be moved so

the example falls inside the region. INDUCT learning ripple-down rules does not allow this

“empty” space to occur—all examples falling outside the scope of the rules are given the

default prediction.

r

n

r

n t

p

p

Figure 2.15 An instance space divided into regions predicting four classes.
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Figure 2.15 shows how a space may be completely divided up to predict four different

classes. When a new example is misclassified by one of these regions the bounds of that

region must also be altered to correct the prediction. If a new example of class r fell into

the region of class p on the left side of Figure 2.15, the right-hand bound of that region

could be moved leftward extending the central r region to cover the new example

(Figure 2.16). However, this reduction of the region for p also enlarges the two regions

predicting n, and any examples of p that may have fallen into these areas will now be

misclassified. The RDR solution to this problem does not alter the bounds of p. Instead, it

introduces a region inside p that predicts r (Figure 2.17), and is defined by an exception to

the rule that defines p.

Exceptions in exemplar-based learning

Introducing exceptions into existing regions is not unique to ripple-down rules. Salzberg

(1990) presents Nested Generalised Exemplars (NGEs), a theory for learning where the

predicting regions in the instance space are specified by actual examples rather than as

rules. Salzberg’s NGE learner, called EACH (Exemplar-Aided Constructor of

Hyper-rectangles), falls into the field of exemplar-based learning, where new examples are

classified by the example or examples that are most similar according to a measure of the

distance between examples in the instance space. The most popular metric measures

Euclidean distance in n-space, with all attributes normalised to eliminate the bias of

different scales (Aha et al., 1991). Figure 2.18 shows how a classification is made using

this nearest neighbour technique in two-dimensional space. The new example is closest to

an example of class p, so it is given this classification. Cleary and Trigg (1995) discuss the

use of entropy as an alternative measure of distance.

r

n

r

n t

p

p

Figure 2.17 The instance space of Figure 2.15 with an exception region surrounding the
new example of class r.
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Figure 2.18 A Euclidean distance function used to determine the stored example most
similar to the new example.

NGE differs from the instance-based approach of Aha’s IB algorithms, and Cleary

and Trigg’s K*, which store examples as points in the instance space. Instead, it allows

EACH to generalise examples to form predictive regions similar to those defined by rules.

“Filling in” the space between examples produces axis-parallel hyper-rectangles

(Figure 2.19), which along with point instances that have not been generalised, are called

exemplars, because they represent characteristics of previous examples without

necessarily storing them explicitly. In instance-based learning exemplars are actual

examples.

New examples falling inside hyper-rectangles are predicted to have the class of the

examples that bound the region. Figure 2.20 shows an example is classified as p despite

being nearer the stored example of class n than either of the points defining the

encompassing hyper-rectangle. Examples falling in the space between exemplars are

classified using a Euclidean measure of the distance to the nearest plane of any hyper-

rectangles and point of any single-instance exemplars. The region of influence generated

by this technique is illustrated in Figure 2.21. The diagram shows a new example classified

p

n

n

Figure 2.19 An example two-dimensional instance space with two hyper-rectangular
exemplars and one point exemplar.
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Figure 2.20 The new example is classified as a p because it falls within the hyper-
rectangle.

as an n by an instance-based scheme, measuring the distance from each stored example, is

classified as a p by an NGE-based algorithm because it is nearer to the edge of the hyper-

rectangle than the point exemplar.

If EACH misclassifies a new example that falls outside the existing hyper-rectangles,

the exemplar with the correct class value that lies closest to the example is extended to

cover it. If that exemplar is a single point a new hyper-rectangle is created from the two

examples.

If a new example that falls inside a hyper-rectangle is correctly classified, the

exemplar is left unchanged, and the new example is discarded because it provides no new

information about the concept. If the new example is misclassified, it is stored as a point

inside the exemplar (Figure 2.22). This single example cannot be used for classification

on its own because any new examples falling near it in space will be swallowed up by the

encompassing hyper-rectangle. Unless the new example and the exemplar have identical

values for every attribute there will always be a piece of the hyper-rectangle between

them, so the distance to the hyper-rectangle will always be 0. However, if there is already

?
n

p

p

?
n

p

p

Figure 2.21 Instance-based and generalised-exemplar methods for classifying a new

example.
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Figure 2.23 Two point exemplars in the class p hyper-rectangle are joined forming an
exception exemplar.
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Figure 2.22 Examples falling near the point exemplar are classified as class p because they
fall inside the hyper-rectangle.

a point exemplar of the same class inside the encompassing hyper-rectangle, EACH

creates an exception hyper-rectangle between the two points (Figure 2.23). The

algorithm is allowed to nest hyper-rectangles in this manner to any degree, providing

exceptions to exceptions just as in a ripple-down rule tree.

Comparing nested generalised exemplars and ripple-down rules

There are important differences between INDUCT learning ripple-down rules and EACH

learning nested generalised exemplars. The first relates to the “empty” space between

exemplars in NGE. This is the only place where EACH must use its distance metric,

because examples falling inside an exemplar are 0 distance from it by definition. In a

many-dimensional space, partitioning the space between hyper-rectangles becomes very

complex. INDUCT avoids this problem by “filling” the empty space with the default class

value, an action akin to EACH filling it with an exemplar before learning commences.

Every new example that differed from the default class would then create exception

exemplars, and no distance metric would be required. However, choice of a default class is

difficult for an incremental learning algorithm such as EACH. Although INDUCT can

obtain class distribution information from a data set prior to learning, EACH must assume

an equal distribution of classes in the training data.

The second issue involves determining the bounds for the predictive regions in the

instance space, and arises from the way each algorithm imbibes training examples. EACH

is an incremental learner, meaning it examines one example at a time, and may not

necessarily know the ranges of values for numeric attributes, or the distribution of

symbolic values such as “class”. It uses examples as the bounding points of hyper-

rectangles, assuming that any new example falling between the examples defining the

hyper-rectangle will have their class value. Nesting exception exemplars allows EACH to

amend the concept description if this assumption is incorrect. The algorithm can extend
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the bounds of existing exemplars to cover new examples, but the values of observed

examples always define where these edges may be. INDUCT is not incremental, and

requires all the training examples at once. This gives it the luxury of viewing all of the

training examples before determining the best place to divide an attribute, and it can set a

boundary in place with the assurance that all the necessary training examples will fall

within that boundary.

Experimental comparison of EACH and INDUCT is presently limited to two data

sets—the iris data set introduced earlier, and a data set used to predict recurrence of breast

cancer. The third data set used by Salzberg was not available for testing. Although it is not

possible to make a direct comparison between the size and structure of concept

descriptions, the accuracy attained by the two algorithms is similar. On the iris data set

EACH achieved between 88% and 95% accuracy (depending on the setting of a feature

adjustment rate) using a random selection of 66% of the data for training, with the

remainder used for testing. INDUCT averaged 94% accuracy using the same sample sizes

over twenty-five runs. On the breast cancer data EACH achieved between 69% and 73%,

using 70% of the data for training, and INDUCT achieved 70%, again over twenty-five

runs.

These results indicate that there is little difference in performance between NGE and

RDR. However, further investigation is necessary to determine the effects of NGE’s

distance metric and RDR’s default class approach to the “empty space” issue.

An important point, in the context of this project, is that ripple-down rules can be

extended to include relational terms. This opens up the RDR technique to an array of

classification problems for which NGE’s attribute–value-only approach is inappropriate.

3.
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Relational Rules

The rules generated by INDUCT and PRISM  contain terms of the form attribute–

relationship–value. These algorithms use the “equal” relationship because they learn from

symbolic data, but any binary relationship can be applied. An example matches a term if

its value for the term’s attribute has the specified relationship with the term’s value. For

example, the numeric term height > 160.05 mm would be true for a pygmy marmoset

Figure 3.1 Eight blocks representing the “standing up” concept.

that was 174 mm tall, and false for a stock cube that was 20 mm high. With symbolic

attributes equality can be used as the relationship. The term height = tall might be true for

a giraffe, and false for a guinea pig. Often the meaning of symbolic values, such as “tall”,

is only valid in the context of the concept, or attribute, in question. In a data set

consisting solely of guinea pigs, it might be possible to refer to some as “tall”.

Rules that make use of such terms are propositional because the attribute–value

language used to define them has the same expressive power as propositional calculus

(Lavrac and Dzeroski, 1994). In many classification tasks propositional rules are

sufficiently expressive for concise, accurate concept descriptions. The iris concept, for

example, is well described by propositional rules. However, there are situations where a

more expressive form of rule would provide a more intuitive and concise concept

description. Suppose we have a set of eight building blocks of various shapes and sizes

(Figure 3.1), and we wish to learn the concept “standing up”. This is a two-class problem

with class values “standing” and “lying.” The four shaded blocks are positive (standing)
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1,2,4,'standing'

Figure 3.4 A block misclassified by the rules in Figure 3.3.

@relation standing_up
@attribute width integer
@attribute height integer
@attribute edges integer
@attribute class {lying,standing}
@data
2,4,4,standing
3,6,4,standing
4,3,4,lying
7,8,3,standing
7,6,3,lying
2,9,4,standing
9,1,4,lying
10,2,3,lying

Figure 3.2 An ARFF file containing information about the width, height, and number of
edges of the building blocks in Figure 3.1.

"lying" IF width >= 3.50 AND height < 7.00

"standing" IF height >= 3.50

Figure 3.3 Two propositional rules describing the “standing up” concept generated from
the data file in Figure 3.2.

examples of the concept, and the unshaded blocks are negative (lying) examples. The

only information the learning algorithm will be given is the width, height, and number of

sides of each block. Figure 3.2 shows this data in ARFF  format (Garner et al., 1995). The

first line of the file gives the name of the target concept—in this case “standing_up”.

This is followed by four lines defining the attributes used to describe examples of the

concept. The first three are numeric, giving dimensional information about each block;

and the fourth is the value to be predicted using some function of the first three.

Running INDUCT(DNF) on this data set produces the rules in Figure 3.3. This rule set

is concise and reasonably accurate, remembering that INDUCT will have pruned the rules

to prevent overfitting, classifying only one block (the large triangular block at bottom

centre) as both “standing” and “lying”. However, the rules are intuitively bad—the block

in Figure 3.4 would not be classified by either rule, and it is easy to devise many legitimate

blocks that would “fit” the data set but not the rules. One solution to this problem is to

introduce new attributes that contain more information about the blocks, but it is difficult

to see how to do this without just repeating the class value.

Another solution is to let the learning algorithm examine more than just the values

of the attributes independently. A human classifying the eight blocks would probably say

“the standing blocks are those that are taller than they are wide”. This “rule” does not

compare attributes with specific values—it compares the attributes with each other:

“If the value for the attribute height is larger than the value for the attribute

width then the block is standing”,

or

“If height is greater than width then the block is standing”.

For an example matching this rule the actual values of height and width are no longer

important, as long the relationship between the two attributes is true. Rules of this form
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are relational, because they express relationships between attributes. Section 3.2 presents

a more formal definition of relations, and describes how they may be used in learning.

The new block that failed to match the propositional rules will be classified correctly

by the relational rules in Figure 3.5. These rules were generated by the algorithm that

produced the propositional rules, suitably extended to search for relationships such as

“attribute x is always larger than attribute y” in the training data.

"lying" IF width is-bigger-than height
"standing" IF width is-smaller-than height

Figure 3.5 Two rules that describe “standing up” concept that specify relationships
between the attributes of the blocks.

3.1 Learning relations

To use relations for comparing attributes a learning algorithm can exploit knowledge

implicit in the data type of each attribute. In the “standing up” example the learning

algorithm was able to use the “is bigger than” relation on width and height because they

are numeric attributes. It would not make sense to use the same relation on symbolic

attributes such as colour or texture. Comparing a symbolic attribute and a numeric

attribute is also invalid because there is no sensible relationship that can apply to both

numbers and symbols.

Standard relations

If no other relations are supplied the following may be used on attributes of the same

type:

< and  (or  and >) for numeric attributes,

and

= for symbolic attributes.

Incorporating these three relations into INDUCT(DNF) requires an addition to the

best_clause function. It is now required to search for terms with two attributes of the

same type, and a relation applicable to those attributes2. The alteration is small, but it

enlarges the search space dramatically. The original search for a single propositional term

covers a space of a n×  terms in the worst case (if every example has a unique value for

2 Details of the alteration and its implementation are defered to section 4.1.
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each attribute), where a is the number of attributes and n is the number of examples.

Searching for inter-attribute relationships adds an additional a n2 ×  terms.

Techniques to reduce the search space are covered in Section 3.3 on the FOIL

algorithm. However, there are simple heuristics, such as the type-dependent limitations of

the <, , and = operators described above, that can be applied in general. Removing the

need to search through terms that compare numeric and symbolic attributes is the most

fundamental space reduction method, but “type checking” of attributes can be taken

further than the numeric/symbolic differentiation. Often attributes of the same type will

be quite obviously incompatible for comparison. Continually checking to see whether the

values of colour are always equal to the values for smell in a data set of flowers is

pointless. Although both of these would be symbolic attributes, that is where the

similarity ends. Colour  would use an entirely different set of values to smell, so we know a

priori that the term colour = smell will never arise in the rule set.

Even when the sets of values used by two symbolic attributes are identical we may

not want the learning algorithm to compare them. For example, the letters A, B, C, D,

and E might represent the colours red, blue, green, yellow, and black on a colour chart,

and also values for the smell attribute. These attributes should not be compared because

the assignment of the five letters is completely arbitrary. If the algorithm found the term

colour = smell to be a good discriminator, it would do so purely by chance. Changing the

assignment of the letters to different colours would not change the meaning of the data,

but it would alter the chances of that particular term being selected again.

Incompatibilities also arise in numeric attributes. Although all numeric attributes use

the same “set of values” we may not necessarily wish to compare every pair of them. In

the “standing up” example the two attributes compared in the rules are measurements of

distance. Here, a comparison of the two numeric attributes is legitimate because the units

of measurement are the same. If the data also included a temperature measurement for

each block we would not want the learning algorithm to compare this attribute with either

height or width. The different units used to quantify these features makes a comparison

invalid, and once again, the size and origin of the units is arbitrary. Changing from the

Celsius scale to the Kelvin scale would not change the meaning of the data, but it could

affect relationships between the values of temperature and the other numeric attributes.

The choice of units may also obviate relationships that genuinely exist in the data. If

the unit used for width in the “standing up” example was the millimetre instead of the

centimetre, “is bigger than” would not have been selected for the rule. The learning

algorithm compares all integers on the same scale, and all those in the width column

would be larger than those in the height column—there is nothing to learn from that

relationship. It is possible to make more operators available to detect relationships hidden
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by such things as different scales. For example, “attribute x is less than 10 times attribute

y” might discover the “is bigger than” relationship in the “different units” blocks data.

However, the infinite number of possible relations, and the difficulty of selecting a small

set that is meaningful in any particular context, make this impractical.

User relations

In addition to the “standard” relations that can be applied to any pair of attributes of the

same type, it might be appropriate to provide new relations specifically for an individual

problem. Suppose we wish to classify a set of technical report abstracts as either related or

not related to machine learning. Most text classification approaches would represent the

abstracts as vectors of Boolean values indicating the presence or absence of each word in

the collection. Figure 3.6 shows data of this form in ARFF format. Every word in the set

of abstracts is an attribute, and each abstract is represented by a tuple of values indicating

whether or not each word appears. A propositional learning algorithm applied to this data

might produce the rules in Figure 3.7. Although these rules might appear acceptable it is

easy to think of examples that would violate them. For example, a report discussing a

natural language parsing algorithm would be misclassified as pos by the second rule. If we

chose to represent the abstracts in the form illustrated in Figure 3.8, we can introduce

several relations that will help produce more useful rules. Here, the positions of the words

in the abstract are the attributes, and the words that can fill each position are the values.

Providing the learning algorithm with the relations in Figure 3.9 allows it to search for

relationships amongst the attributes and produce rules that contain relationships

involving word position and order (Figure 3.10). The first rule classifies an abstract as pos

if the word “learning” immediately follows the word “machine” anywhere in the text, and

is more precise than merely requiring the presence of both words. The relation successor

specifies a positional relationship between words that cannot be expressed with

propositional rules.
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@relation ml_document
@attribute class {neg,pos}
@attribute c4.5 {T,F}
@attribute algorithm {T,F}
@attribute tree {T,F}
@attribute ability {T,F}
@attribute common {T,F}

…
@attribute array {T,F}
@data
pos,T,F,T,F,F,T,T,F,F,F,F,T,F,F,F,F,F,T,F,T,T,T,F,F,T,F,T,T,F,F,F,F,F,F,F,F
neg,F,F,T,F,T,T,F,F,F,T,T,T,F,F,F,T,T,F,T,F,F,F,T,F,T,F,T,F,F,F,T,T,T,F,F,F
neg,F,F,T,F,T,F,F,T,F,T,T,F,F,F,F,F,F,T,F,F,F,F,F,F,T,F,T,F,F,F,F,F,T,T,T,T

…
pos,T,T,T,F,T,T,F,F,F,T,F,F,T,F,T,T,T,F,F,T,T,T,F,F,T,F,T,F,T,T,T,T,F,F,F,F

Figure 3.6 An ARFF file representing technical report abstracts as word-appearance

tuples.

@relation ml_document
@attribute class {neg, pos}
@attribute word#0 {C4.5, a, the, algorithm, the, learning, the, the, a, most, when,
approach, like}
@attribute word#1 {is, machine, 1995, that, ability, how, 1995, quality, common,
of, making, that, a}
@attribute word#2 {a, learning, conference, induce, to, to, conference, of,
algorithm, the, an, can, machine}
@attribute word#3 {machine, algorithm, on, decision, induce, use, on, learning,
for, trees, environmental, induce, learning}
@attribute word#4 {learning, such, machine, trees, decision, a, milling, in,
sorting, had, decision, decision, to}
@attribute word#5 {algorithm, as, learning, from, trees, milling, quality, many,
an, come, trees, making, drive}
@attribute word#6 {of, C4.5, to, a, as, machine, was, primary, array, to, and, in,
a}
@attribute word#7 {high, can, develop, set, a, can, held, schools,  of, a, plants,
many, car}
@attribute word#8 {quality, induce, an, of, way, be, at, is, integers, decision,
should, areas, can}
@attribute word#9 {and, a, algorithm, data, to, very, the, very, is, that, be,
where, be}
@data
pos, C4.5, is, a, machine, learning, algorithm, of, high, quality, and
pos, a, machine, learning, algorithm, such, as, C4.5, can, induce, a
pos, the, 1995, conference, on, machine, learning, to, develop, an, algorithm
pos, algorithm, that, induce, decision, trees, from, a, set, of, data
pos, the, ability, to, induce, decision, trees, as, a, way, to
neg, learning, how, to, use, a, milling, machine, can, be, very
neg, the, 1995, conference, on, milling, quality, was, held, at, the
neg, the, quality, of, learning, in, many, primary, schools, is, very
neg, a, common, algorithm, for, sorting, an, array, of, integers, is
neg, most, of, the, trees, had, come, to, a, decision, that
neg, when, making, an, environmental, decision, trees, and, plants, should, be
neg, approach, that, can, induce, decision, making, in, many, areas, where
neg, like, a, machine, learning, to, drive, a, car, can, be

Figure 3.8 An ARFF file representing the abstracts using word positions as attributes.

"class" = "pos" IF "machine" = T AND "learning" = T
"class" = "pos" IF "algorithm" = T

Figure 3.7 Two propositional rules that define positive examples from the set of

abstracts.

The terms in Figure 3.10 differ in their use of relations from those that use the three

standard relations introduced earlier. The term height is-bigger-than width specifies the

names of two attributes that are compared by the relation is-bigger-than. This means

that no matter what value an example has for the width attribute, this term will be true if

the value for height is larger than that value. The term successor(machine, learning)

specifies two words, or attribute values , that are compared by the relation successor.

Regardless of which pair of attributes  have the values machine and learning, this term will

be true if the relation successor is defined for them. Thus, the second example is classified

as pos because word#1 has the value machine and word#2 has the value learning, and the

relation successor is defined for word#1 and word#2. The sixth example has word#6 with

the value machine and word#0 with the value learning, but there is no definition for

successor with those two word positions so the example is classified as neg.

30



"class" = "pos" IF successor ("machine","learning")

"class" = "pos" IF successor ("induce","decision" ) AND 

successor ("decision","trees")

Figure 3.10 Two relational rules that define positive examples from the set of abstracts.

In general, relations can specify any number of attributes. For example, a relation

describing the components of a list may have three attributes, components (L,H,T), where

L refers to the entire list, H to the head or first element, and T to the remainder of the

list. Constructing relations of the standard type with more than two attributes is also

possible. A relation with three attributes, a1  a2  a3, could be used in a rule indicating that

width is never larger than depth, which in turn is never larger than height, for some class

of objects. However, as noted earlier, the infinite variety of such relations makes

searching through them impractical.

Representing relations

Because relations can be specific to individual classification problems, they can be

considered part of the data that represents the concept. These extra relations provide

background information that propositional learners cannot use. Often the line between

the background information and the “actual data” can be indistinct. Learning systems

such as FOIL (Quinlan, 1990) do not distinguish the examples from the background

relations. The target concept is represented by relations in the same form as the

background information, and the algorithm attempts to generate a rule set that describes

the concept in terms of these relations.

FOIL uses a representational form similar to PROLOG Horn clauses, and learning a

successor(word#0,word#1). after(word#0,word#1).

successor(word#1,word#2). after(word#0,word#2).

successor(word#2,word#3). after(word#0,word#3).

… …

before(word#1,word#0). near1(word#0,word#1).

before(word#2,word#0). near1(word#1,word#0).

before(word#3,word#0). near1(word#1,word#2).

… …

Figure 3.9 Extensional definitions for relations used in the text categorisation example.

measurement: continuous.

standing(measurement,measurement,measurement)
2,4,4
3,6,4
7,8,5
2,9,4
;
4,3,4
7,6,5
9,1,4
10,2,5
.

Figure 3.11 A FOIL input file representing the blocks in the “standing up” problem.
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c4.5(doc1,word#0). to(doc5,word#2).
c4.5(doc2,word#6). to(doc5,word#9).

… to(doc6,word#2).
…

machine(doc1,word#3).
machine(doc2,word#1). from(doc4,word#5).

… …

drive(doc13,word#5). environmental(doc11,word#3).
… …

Figure 3.12 Extensional predicate definitions describing the positions of words in the
technical report abstracts.

definition for a target relation resembles identifying a PROLOG-like program that

produces the target relation as output. This form of learning is called inductive logic

programming, and is discussed in the next section. Data intended for propositional

learning is readily converted to a relational form that can be used by inductive logic

programming systems. Figure 3.11 shows how the blocks data might be represented in a

form suitable for FOIL. The class value “standing” is the target relation, and the four

examples of standing blocks are the first four triples in its definition. The class value

“lying” is regarded as “not standing,” so the four examples of lying blocks become

negative examples of standing and appear after the semicolon. A more complete

after (X,Y)  successor (X,Y).

after (X,Y)  successor (X,Z) AND after (Z,Y).

Figure 3.13 An intentional definition for the relation after.

description of the FOIL input format is given in Section 3.3.

The technical report abstract data can also be represented in relational form—

Figure 3.12 shows part of such a data set. The definition machine(doc1,word#3) indicates

that the word “machine” appears as the third word of document one. Similar relations

describing the positions of every other word express the complete set of abstracts.

Relations exemplified so far have all been defined extensionally; that is, every

combination of values for which the relation is true is defined separately. This can lead to

very large sets of definitions for relatively small data sets. For example, if the technical

report abstracts were all twenty-five words long there would be three hundred definitions

for the relation after. By defining a relation in terms of other relations, the number of

definitions can be greatly reduced. Such definitions are called intentional, and are often

recursive. Figure 3.13 shows an intentional definition for after that reduces the number of
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after(word#2,word#4) ← successor(X,Z), after(Z,Y).

after(word#2,word#4) ← successor(word#2,Z), after(Z,word#4).

after(word#2,word#4) ← successor(word#2,word#3), after(word#3,word#4).

Figure 3.14 Derivation of the truth value of after(word#2,word#4) from the intentional
definition in Figure 3.13.

definitions from three hundred to two. The first makes use of the extensionally defined

relation successor, and provides a base for the second, recursive definition to build on.

This simple definition shows that successor  after, so there is no need to define both

separately. The second definition uses two relations: the first selects a pair of values from

the successor relation, and the second is a recursive call to after that uses a new variable

(Z) introduced by successor. Figure 3.14 shows how this definition can be used to define

the relation after(word#2,word#4). Letting X = word#2 and Y = word#4 the first

definition fails because there is no definition for successor(word#2,word#4), and it is

assumed to be false under the negation-as-failure rule (Lavrac and Dzeroski, 1994).

However, the second definition uses another variable Z that may be instantiated to any

value. If a value can be found for Z, after(word#2,word#4) will be true by this definition

(line 2 of Figure 3.14). The definition successor(word#2,word#3) from Figure 3.9 gives a

value of word#3 for Z. The definition is now complete (line 3 of Figure 3.14) as long as

after(word#3,word#4) is true. There is a definition for successor(word#3,word#4), so this

relation matches with the first definition of after.

3.2 Inductive logic programming

Inductive logic programming (ILP) is the intersection of inductive machine learning and

logic programming (Lavrac and Dzeroski, 1994; Muggleton, 1991). Although a relatively

young field it benefits from decades of research in logic and logic programming. This

provides a strong theoretical basis, which accounts for much of the fields popularity, and

the experimental nature of machine learning research ensures it is oriented towards

practical applications.

Logic programming
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variables: X
Word
P4

predicate &
function symbols: b

tail
last4letters

Figure 3.15 Examples of valid variables, and predicate and function symbols.

Logic programming, and subsequently inductive logic programming, takes its terminology

from the fields of computational logic and deductive database theory. The following

definitions are taken from Lavrac and Dzeroski (1994), and build up to the syntax of the

PROLOG language. They are intended to give an illustration of the depth of the

theoretical background provided by computational logic, and will aid in the discussion of

ILP systems such as FOIL.

Objects in a logic program are described with a first-order alphabet consisting of

variables, predicate symbols, and function symbols. A variable is represented by an

uppercase letter followed by zero or more lowercase letters and digits. Predicate symbols

and function symbols consist of a lowercase letter followed by zero or more lowercase

letters and digits. Figure 3.15 shows three examples each of variables, and predicate and

function symbols.

A term  is a variable or a function symbol followed immediately by a bracketed n-

tuple of terms. A term containing a k-tuple has arity of k; a term with arity 0 is also

called a constant. Figure 3.16 shows two terms of arity 3, and two constants.

A predicate symbol followed immediately by a bracketed n-tuple of terms is called an

atom. A literal is an atom or the negation of an atom.

A clause  has the form

( )∀ ∀ ∀ ∨ ∨X X X L L Ln m1 2 1 2

where each Li is a literal and X1,...Xn are variables occurring in L1,...Ln. If any of the

literals are negative literals, for example ( )L L L Li i1 2 1∨ ∨ ∨ ∨+ , De Morgan’s

Theorem and material implication3 allow the clause to be written

L L L Li i1 2 1∨ ∨ ← ∧ ∧+

3 De Morgan’s Theorem, ( ) ( )~ ~ ~p q p q∨ ≡ ∧ , and material implication,

( ) ( )~ p q p q∨ ≡ → , are two of ten rules of replacement presented by Copi (1979). Using these

rules derivation of the second form of the clause from the first can be performed in two steps.
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terms: append(X,Y,Z)
f(g(X),h,Y)

constants: pi()
jpl7j74()

Figure 3.16 Examples of valid terms and constants.

which is commonly abbreviated to

L L L Li i1 2 1, , , ,← +

The quantification symbols are dropped as all variables are assumed to be universally

quantified.

A Horn clause is a clause that contains not more than one positive literal. A definite

program clause is a clause that contains exactly one positive literal and has the form

T L L Ln← 1 2, ,

where T, L1,... Ln are atoms. A definite logic program is a set of definite program clauses.

A program clause has the same form as a definite program clause, but with the

restriction that T is an atom, and L1,... Ln have the form L or not L where L is an atom.

A normal program is a set of program clauses. A predicate definition is a set of program

clauses that  have the same predicate symbol (and arity) in the positive literal. The

intentional definition for after in Section 3.1 is a predicate definition.

Two special cases of clauses are given additional definitions. A Horn clause with no

positive literal is a definite goal. A definite program clause with no negative literals is a

positive unit clause. In PROLOG a positive unit clause is called a fact.

Database terminology

Inductive logic programming also borrows terminology from the field of relational

databases. The development of deductive databases, which can be implemented using

logic programming, allowed relations to be defined intentionally or extensionally.

Therefore several definitions in database theory have counterparts in computational

logic.

An n-ary relation is a subset of the Cartesian product of n domains, where a domain

is a set of values. A relation is equivalent to a predicate in a logic program, but it can be

typed, meaning the values taken by variables in a relation are limited to specific sets. This

is equivalent to the search space pruning introduced in the previous section, where the

learning algorithm is prevented from comparing the attributes colour and smell.
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DDB terminology LP terminology

relation name p predicate symbol p

attribute of relation p argument of predicate p

tuple a1,...,an ground fact p(a1,...,an)

relation p—a set of tuples definition of predicate p—a set of ground

facts

Table 3.1 Relating database and logic programming terms (from Lavrac and Dzeroski, 1994).

A database clause is a typed program clause, and a deductive database is a set of

these. Database clauses can use variables and function symbols in predicate arguments, so

the language of deductive databases is more expressive than that of relational databases.

The use of clauses allows relations in deductive databases to be defined intentionally,

whereas in relational databases they can only be defined extensionally. The intentional

definition for after shows that relations in deductive databases can have a very compact

representation.

Table 3.1 (from Lavrac and Dzeroski, 1994) shows how the terms of deductive

databases (and inductive learning) relate to those in logic programming. A data set in

propositional learning is essentially a two-dimensional database, and the terminology of

database theory is used in inductive learning. The ARFF  file in Figure 3.2 illustrates this

point. The data represents the target relation “standing_up,” the columns of data are

attributes, and each row is a tuple defining an instance of the relation. It is easy to see

how this data could be presented as a set of extensional predicate definitions.

Empirical inductive logic programming

Inductive logic programming algorithms, such as FOIL and GOLEM (Muggleton and Feng,

1992), fall into the discipline of empirical ILP, and their task can be expressed as:

Given a set of training examples E consisting of true (E+) and false (E–) ground

facts of an unknown predicate p (called the target predicate), a description

language L specifying syntactic restrictions on the definition of p, and background

knowledge B defining predicates qi which do not include p and may be used in the

definition of p, find a definition H for p expressed in L such that H is complete

and consistent with respect to E and B (Lavrac and Dzeroski, 1994, p. 30).

The concepts of consistency and completeness are the same as those introduced

during the description of PRISM , and can be defined more formally using the notion of

coverage. Empirical ILP employs extensional coverage where the background knowledge
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is restricted to being specified extensionally. If background knowledge is supplied

intentionally it can be replaced with all true ground facts that can be derived from the it

using SLD-resolution (Lloyd, 1987). The set of ground facts derivable from background

knowledge B is called a ground model M of B.

First we define intentional coverage where background knowledge can be defined

intentionally. Given background knowledge B, hypothesis H, and examples E, H is said to

cover example e  E if B  H logically entails e,

covers (B,H,e) = true if B  H  e,

The function covers (B,H,E) is thus defined

covers (B,H,E) = {e  E | B  H  e}.

A hypothesis H is complete if covers (B,H,E+) = E+, and consistent if covers (B,H,E–) =

Ø.

Extensional coverage with respect to a ground model M restricts this definition to

coversext (M,H,e) = true if  c = T  Q  H and a substitution , such that T = e and Q =

{L1,...,Ln}  M.

Suppose the background knowledge B contains the predicate definitions in

Figure 3.17. This set of predicates produces the model shown in Figure 3.18. An empirical

ILP system might produce a hypothesis H that includes the clause

c = p (X,Y,Z)  r(X), s(Y), t(Z).

To see if H covers the example e = p (a,b,c) use the substitution  = {X|a, Y|b, Z|c}. From

the definition of extensional coverage T = p (X,Y,Z), and T = p(a,b,c) = e. Also Q = {L1,

L2, L3} = r(X), s(Y), t(Z), and Q = {r(a), s(b), t(c)}  M. Thus, e is covered by H.

Concept learning can be viewed as a search problem, and a learner can be described in

terms of the structure of its search space and its search strategy (Lavrac and Dzeroski,

1994). In inductive logic programming the search space is specified by the language of

logic programs, or a subset of it, which places syntactic restrictions on the dimensions of

the space. The next section describes FOIL, which restricts the search by allowing only

function-free Horn clauses.

l(a). r(X)l(X).
l(e). s(X)m(X).
m(b). t(X)n(X).
m(f).
n(c).
n(g).

Figure 3.17 Intentional and extensional predicate definitions providing background
knowledge for a relational learning task.
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l(a). r(a).
l(e). r(e).
m(b). s(b).
m(f). s(f).
n(c). t(c).
n(g). t(g).

Figure 3.18 The set of ground facts derived from the predicate definitions in Figure 3.17.

3.3 FOIL

This section describes the empirical ILP system FOIL (Quinlan, 1990), and provides an

overview of a typical relational learner. Points covered include FOIL’s search strategy and

heuristics, and language and data restrictions. Several example classification problems are

also presented.

FOIL learns function-free Horn clauses from data expressed as relations. Given an

extensional definition of a target relation expressed as a set of ground facts, the algorithm

employs the covering method of induction to generate an intentional definition using the

ground examples and other user-defined background relations. FOIL was designed to

overcome the limited expressiveness of inductive learning algorithms that use

propositional languages for describing objects and concept descriptions. It combines

search techniques from propositional learning algorithms with a first-order description

language that allows it to learn concepts outside the scope of propositional systems.

Covering algorithms have been described earlier so this section focuses on particular

aspects of FOIL such as input and output representation, selection of literals, and

restrictions on the search space. These issues are important for all empirical ILP

systems—and inductive learning algorithms in general—and FOIL provides successful and

often-cited responses to them (for example, Dzeroski and Lavrac, 1992; Lavrac and

Dzeroski, 1994; Mooney, 1992; Pazzani and Kibler, 1992; Pazzani et al., 1992).

Defining the search space

The search space of any learning algorithm is defined by language it uses to describe

objects and concept descriptions. FOIL uses the language of function-free Horn clauses to

represent concepts. Relations constituting the input to the program are defined

extensionally, and are a subset of this language. The search space encompasses all literals

of the form

P X X X L L Lm n( , ,..., ) , ,...,1 2 1 2←

where each Li has one of four forms

X Xj k= , X Xj k≠ , Q V V Vr( ,..., ),1 2 , or ¬Q V V Vr( ,..., ),1 2 ,
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block:a1,b1,c1,a2,b2,c2,a3,b3,c3,a4,b4,c4.

arch(block,block,block)
1,b1,c1
4,b4,c4
;
2,b2,c2
3,b3,c3
.
*supports(block,block)
b1,a1
c1,a1
b3,a3
c3,a3
b4,a4
c4,a4
.
*touches(block,block)
a1,b1
b1,a1
a1,c1
c1,a1
a2,b2
...

Figure 3.19 Part of a FOIL input file for the “arches” problem.

where the Xi s are existing variable, the Vi s are existing or new variables, and Q is some

relation.

Figure 3.19 shows part of a FOIL input file4 for the classic “arches” problem (see

Section 5.2). The file describes twelve blocks that make up four objects, two of which are

arches and two not. Figure 3.20 shows how the blocks are arranged. The input file defines

seven relations, starting with the target relation arch, which has three attributes all of

type block. The first line of the file defines the type block as twelve specific objects. The

definitions given under arch  are tuples describing the two combinations of blocks that

constitute valid arches—these are positive examples of the concept. The two tuples

following the semicolon describe the two combinations in Figure 3.20 that are not

arches—these are negative examples. If the negative examples are omitted FOIL uses the

closed-world assumption to infer that all ground tuples, other than the given positive

examples, are not in the relation. This implies that every other combination of blocks is

not an arch. For example, blocks a1, b4, and c2 do not form an arch in the positions

specified by the other six relations.

The remaining relations specify background knowledge about the position and shape

of the twelve blocks. The relations supports, touches, and left-of identify positional

relationships between pairs of blocks, and brick, wedge , and parallelepiped describe the

shape of each block. As with the target relation these are all defined extensionally.

4 The input, output, and options discussed in this section are for FOIL6.
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a1

b1 c1

b2

a2 c2

a3

b3 c3

a4

b4 c4

Figure 3.20 Four examples used to learn the “arch” concept.

The seven relations refer specifically to the twelve blocks in the type definition. The

goal for FOIL is to find a more general description of arch  that covers the two positive

examples and any new examples described in a similar manner, though not necessarily

using the same constants. If a new object comprised of three blocks a5, b5, c5 has the

appropriate background relationships defined, the concept description should classify it

correctly despite blocks a5, b5, and c5 not being mentioned in the training data.

To ensure the literals found by FOIL meet this criterion no constants are allowed in a

clause—arguments appearing in predicates may only be variables. Some of these variables

will originate from the target predicate in the head of the clause, and, within some

restrictions, as many new variables as necessary may be introduced to satisfactorily

complete the clause.

Restricting the search space

The search space resulting from even a small number of examples and background

relations is often very large. However, much of it is either invalid in the context of the

target relation, or poor in terms of classification accuracy. Determining where these

regions lie in the space allows the learning algorithm to “prune” the search, resulting in

more rapid completion of the learning process, with a more satisfactory concept

description.

FOIL restricts the search by placing three limitations on literals that may appear in

clauses. First, each literal must contain at least one variable that already exists in the

clause. Thus, an n-ary predicate symbol can introduce no more than n – 1 new variables.

This prevents the algorithm adding predicates that provide no new understanding of the

target relation—a situation that may arise when the quality of the literals remaining in

the search space is very poor. Another justification for this restriction concerns the order

of literals in the body of the clause. Although the logical meaning of a clause is

40



independent of the order of literals, computational efficiency often is not. For example,

the two clauses

Q(X) = R(X,Y), S(Y)

Q(X) = S(Y), R(X,Y)

have the same logical meaning, but one may be faster to compute. If S is easily proved to

be false and R requires much computation, the value for Q will be more quickly computed

by the second definition. Additionally, negated literals that contain variables not

appearing in the head of the clause can change the logical meaning of the clause,

depending on their position in the clause. The clause

Q(X)  R(X,Y), S(Y)

is true when the relation R contains a tuple with a value for Y that does not appear in S.

However, the clause

Q(X)  S(Y), R(X,Y)

is never true if S contains any tuples at all. Logically the bodies of the two clauses are

interpreted as Y (R(X,Y)  S(Y)) and (Y S(Y))  Y R(X,Y) respectively. The second

interpretation has a very different meaning to the first.

The second limitation restricts the possible arguments of a predicate in the body of

the clause if it is the same as the target relation, and prevents FOIL from generating

clauses that are infinitely recursive. To do this FOIL identifies an irreflexive partial

ordering, <, on variables in the body of the clause, such that x < x never holds for any

constant x. If the target predicate P(X1, X2, ..., Xk) invokes the predicate P(V1, V2, ...,

Vk)  it is sufficient for one of the pairs of variables X1,V1, X2,V2, ..., Xk,Vk to satisfy the

partial ordering. For example, the second clause of the after relation in Figure 3.13

contains a recursive call:

after (X,Y)  successor (X,Z), after (Z,Y)

To guarantee that the call does not use the value of X for Z, resulting in an infinite loop,

FOIL must ensure that X and Z satisfy the partial ordering X < Z. The definition of the

relation successor provides this partial ordering because if successor(X,Z) is true for some

instantiation of X and Z there is no definition for successor(Z,X). By the closed-world

assumption all possible definitions for successor that are not defined are assumed to be

false, so successor(X,Z) is logically equivalent to X < Z. Conversely, the literal after(Y,X)

cannot be considered because no partial order has been determined for X and Y.

The final limitation on the search space is a result of the heuristic used to evaluate

literals. The form of this heuristic allows FOIL to disregard literals that add nothing to the

understanding of the target predicate.
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Evaluating literals

FOIL’s basis for evaluating literals is taken from Quinlan’s ID3 decision tree learner. The

heuristic assesses the usefulness of a new literal by estimating the amount of information

it provides in distinguishing examples of each class. Suppose a training set Ti contains

examples of two classes, Tin of class n and Tip of class p. The information I required to

indicate that an example in Ti is of class p is

( )I T
T

T Ti
i

p

i
p

i
n

= −
+






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log 2 .

If a literal L yields the new set Ti+1 the information to give the same signal is
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If K of the examples of class p from Ti are present in Ti+1 the information gain regarding

examples of class p is given by

( ) ( )( )Gain L K I T I Ti i( ) = × − +1 .

The gain function favours literals that select many positive examples while reducing the

total number of examples in the new set. The literal that provides the largest information

gain is selected for addition to the current clause.

As mentioned earlier a side effect of the Gain  heuristic is its capacity to reduce the

search space. Suppose a literal L contains new variables and their replacement with

existing variables can never increase K, and such replacement at best produces a set Ti+1

containing only examples of class p. If the gain achieved by this best substitution is less

than the best gain achieved by any literal so far, there is no need to investigate any

literals resulting from the same substitution.

Learning the concept of an arch

The arches problem provides a simple illustration of an empirical ILP system in

operation. The input file in Figure 3.19 defines the relations that FOIL may use to

formulate a more general definition for the arch  relation. However, for best performance

the two definitions of negative examples of the arch  relation are excluded. If these

examples are included the number of negative examples is limited to two. FOIL assumes it

is being supplied with all the information necessary to learn the target relation, and the

absence of other negative examples, such as a1, b4, c2, causes problems when the

algorithm tries to use relations containing these values. The two negative examples in
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Figure 3.20 are intended for Winston’s learning system which requires “near misses” to

help refine its definition of an arch (Gennari et al., 1990).

Omitting the near misses FOIL can assume that all other combinations of blocks are

negative examples. Figure 3.21 shows the output from FOIL6, with the definition for arch

highlighted. This definition reflects the general-to-specific nature of the search with the

literals selected being minimally sufficient to distinguish the examples from those not in

the relation.

4.

FOIL 6.2   [September 1994]
--------

Relation arch

Relation *leftof

Relation *supports

Relation *touches

Relation *brick

Relation *wedge

Relation *parallelpiped

----------
arch:

State (2/1728, 34.4 bits available)

        Save supports(B,A) (2,72 value 9.1)
        Save supports(C,A) (2,72 value 9.1)

Best literal leftof(B,C) (7.4 bits)

State (2/48, 27.0 bits available)

        Save supports(C,A) (2,3 value 17.5)
        Save touches(A,B) (2,5 value 16.3)
        Save touches(A,C) (2,5 value 16.3)

Best literal supports(B,A) (7.4 bits)

State (2/3, 20.6 bits available)

        Save clause ending with not(touches(B,C)) (cover 2, accuracy 100%)

Best literal not(touches(B,C)) (6.4 bits)

Clause 0: arch(A,B,C) :- leftof(B,C), supports(B,A), not(touches(B,C)).

arch(A,B,C) :- leftof(B,C), supports(B,A), not(touches(B,C)).

Time 0.4 secs

Figure 3.21 Example FOIL output for the “arches” problem.
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HENRY and ABE

Two programs were designed and implemented for this project. The first, HENRY, is an

implementation of the INDUCT(RDR) algorithm extended to learn with relational rules5.

The first two sections of this chapter describe HENRY, its input and output formats,

extensions allowing learning of relational rules, and restrictions placed on these

extensions. The final section describes ABE, a program that evaluates the ripple-down

rules generated by HENRY on new examples.

4.1 HENRY

HENRY is written in C and uses the ARFF  data manipulation library from the WEKA

project (Holmes et al., 1994). This library provides support for the ARFF  file format,

including data structures and procedures for handling training examples. The names and

legal values of attributes are read from the ARFF  file, and stored for output purposes. The

examples in the ARFF  file are stored in a table for quick reference using array accesses.

HENRY implements both the INDUCT(RDR) and INDUCT(DNF) algorithms. The DNF

version is included primarily for testing and debugging of the best_clause function. It is

similar to the PRISM and INDUCT(DNF) covering algorithms, with some modifications to

handle missing values and numeric data. Unless otherwise indicated, all references to

HENRY will describe the RDR version.

Implementation overview

HENRY has four major sections. The first parses command line parameters to identify

training data and relation files, determine the manner of output required, and adjust the

learning algorithm to the user’s needs. Table 4.1 gives a brief description of the

parameters currently supported by HENRY. All but the first parameter are optional, and if

none are given HENRY displays a help message.

The second section loads the training data and relation definitions into memory.

Attributes are stored as an array of records, each one containing the name, data type, and

an array listing the values appearing in the training data. For symbolic data this list is

obtained from the attribute declaration in the ARFF  file. For numeric attributes every

unique value appearing in the data set is stored in a sorted list—the reason for this is

explained below. The examples are stored in a table that identifies attributes by their

5 The name “HENRY” is intended to retain a link, if somewhat vague, with the program’s

propositional ancestor—the henry is the unit of electrical inductance.
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Parameter Description

–i arff file Specifies the training data file (required).

–b Use the binomial approximation instead of the
hypergeometric function.

–c n Use column n as the class value instead of the last column.

–d filename Specifies a file to contain a DOTTY-interpretable concept
description.

–D Generate a DNF concept description instead of RDRs.

–h Display a counter showing how much of the training data has
been covered by the concept description.

–o filename Specifies a file to contain an ABE-interpretable concept
description.

–r filename | builtin | noprop Use relational terms in the concept description—filename
specifies a file containing relation definitions; builtin
specifies the use of the three standard relations; noprop
specifies that propositional terms should not be used.

–s Disable all output normally sent to the terminal.

–t n Terminate after n minutes, regardless of the state of
computation, and output the current concept description.

–w Disable warnings normally sent to the terminal.

–X ... Available for experimental use.

Table 4.1HENRY’s command line parameters.

position in the attribute list, and values by their position in the array that accompanies

the attribute. Relations are stored in a linked list containing tables for each one’s set of

definitions.

The third section executes the learning algorithm with the parameters specified by

the user. HENRY differs from inductive logic programming systems and propositional

learning algorithms because it learns clauses that can contain both propositional and

relational terms—the user can specify that rules contain either one, or both, of these.

Because HENRY is based on the INDUCT algorithm, and INDUCT is a propositional

learner, this was the first part implemented. If the user supplies no background relations,

and does not specify the use of standard relations, HENRY will simply function as the

INDUCT(RDR) algorithm. The next section gives a brief description of HENRY’s version

of the best_clause function in its propositional guise. The relational version is

discussed in the subsequent section.

INDUCT and PRISM  learn from symbolic data and only use the equality relation.

Numeric attributes can be expressed in symbolic form by partitioning the range of values

and assigning a symbol to each, but the lack of inequality relations, such as <, means that

the order of the partitions cannot be used. HENRY uses inequality relations, and can learn
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from numeric data without resorting to arbitrary partitioning. The list of unique values

stored for each attribute provides a finite set of “break points” that can be evaluated in a

term using either < or . In fact, HENRY uses a value midway between each consecutive

pair of values as the breakpoint. This ensures that all possible partitions are represented

by at least one example, and each value in the training data falls comfortably inside a

partition. The training data is expected to be representative of the concept domain, so

placing the breakpoint at a value specified in the data could unnecessarily segregate

examples of the same class.

HENRY’s fourth section displays the resulting concept description for the user.

Section 4.2 discusses the three types of output produced by an in-order traversal of the

RDR structure stored in memory, with specific formatting determined by the intended use

of each style. HENRY also displays other information during and after the learning

process. A “heartbeat monitor” indicates the percentage of examples so far covered by

the concept description, and the learning time and the overall execution time are shown

after each run.

Learning propositional terms

The best_clause function used by HENRY is shown in Figure 4.1. The vague description

of the choice of the best term in Figure 2.10 has been replaced with pseudocode of the

actual implementation. This part of the function can be implemented in a number of

ways. The method shown in Figure 4.1 does not explicitly differentiate between numeric

and symbolic attributes except at the point where relations are selected. Only the

matches function is concerned with the actual meaning of the relations. This function

determines values for z, s, k, and n (from Section 2.2), and returns the m-value for these

numbers. All four values depend on the training subset passed to best_clause, and z and

s also depend on the term being evaluated. The matches function runs through the

training subset counting the number of examples that match the term (s), and the number

of these that are positive examples (z). For propositional terms this is a matter of

determining whether the specified relationship between the example’s and the term’s

value holds. If the example’s value is missing it is assumed to match the term, but z is not

incremented if it is a positive example. This is the most conservative method for

handling msising values. Having determined the appropriate values for z, s, k, and n, they

are passed to the m-function. Depending on the parameters specified by the user this will

either be the hypergeometric version or the binomial approximation.
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function best_clause(Class_value, Attrs, Training_set): dnf_clause
var ...

A: attribute
R: relation
V: value

begin
loop forever begin

for A  Attrs do
Temp_term.A := A;
for R  {<,,=} such that R is applicable to A do
     Temp_term.R := R;
     for V  {all values of A in data set} do

    Temp_term.V := V;
    if matches(Temp_term)<matches(Best_term)

then
         Best_term := Temp_term

     done
done

done
...

end loop
return Clause

end best_clause

Figure 4.1 Pseudocode of HENRY’s best_clause function.

In its current form best_clause contains loops nested three-deep. This is

inefficient when two relations selected in the second loop use the same set of values

because the set is rebuilt for each iteration. The < and  operators apply to the same set of

discrete ranges for each attribute. Combining the two relations in a single iteration would

remove one iteration from the second loop—a reduction of one third. One solution is to

treat the  operator as not  <, and evaluate the terms A < V and A not < V together.

HENRY’s best_clause function, like those of INDUCT and PRISM , continues to add

terms until a rule covers examples of a single class. If the training data contains many

missing values, or is inadequate to distinguish classes, the algorithm may be unable to

complete a rule. In such situations HENRY stops the rule at that point, warns the user of

the problem, and continues with the next rule. The if-true branch for this node will

contain examples of several classes, and the recursive call on this set will try to generate a

new rule. However, HENRY will be unable to find a term to start the rule, and the branch

will remain a leaf with the class of its parent.

Learning relations

HENRY can include both standard relations ( <, , and = ) and user-defined relations in

terms. Use of standard relations is specified by a command line flag, and is applicable to

any data file intended for propositional learning. In addition to searching for

propositional terms to fit the data the algorithm will examine relationships between all

pairs of numeric attributes, and all pairs of symbolic attributes. HENRY does not currently

allow the user to specify the attributes that are comparable, and those that are not. A
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Reading data file:
Relation: shapes2
Attributes: 4
Examples: 8

Creating rules for attribute 4: class
class value 1 - lying: 4 examples
class value 2 - standing: 4 examples

Ripple-down rules for classifying attribute 4: class
Generated from ARFF file: /home/jlittin/592/src/shapes2.arff

IS width is-smaller-than height [4/4] f [4/4 1.429% (1.428571e-02)]?
No Yes -> class = standing
|
class = lying

User defined relations:

Number of rules: 1
Average rule length: 1.00 terms

Training time: 0.00 seconds
Total elapsed time: 0.06 seconds

Figure 4.2 Example output for HENRY using relational terms on the “standing up” data.

means of doing this is necessary to reduce the search space, thereby producing a quicker

search, and reducing the likelihood of relationships appearing by chance. An example

HENRY run using only the three standard relations on the “standing up” data set from

Chapter 3 is shown in Figure 4.2. Because this is a small data set the RDR tree produced is

very similar to the single DNF rule generated for each class (Figure 3.5). But by using the

“lying” class as the default value HENRY does not need to generate a rule for that value—

any examples not matching the rule for “standing” will be classified with the default

value.
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The modifications necessary for the best_clause function to search for these three

relationships are limited to the addition of another loop at the third level (Figure 4.3). At

this point in the algorithm an attribute A and a relation R have been selected. Before

proceeding through the set of values for A in search of a propositional term the attribute

is compared with every other attribute of the same type using the attribute comparison

version of R.

User-defined relations are handled quite differently. As noted in Chapter 3 user-

defined relations differ slightly from the three standard relations, and require a new

recursive function, best_rel. This function tests every possible combination of legal

values for the attributes compared by each of the user’s relations. A description of the

function is given in the next section.

The best_clause function also requires another loop shown in bold in Figure 4.4.

This loop is separate from the existing search code for two reasons. First, the terms are

concerned with relations specified by the user, not those that may exist in the data. This

restricts the search to the list of extensional definitions provided by the user. The second

reason is to let the user control the type of search used on a data set. Two distinct search

loops provide an easy means of selecting the style of relational terms to examine.

Three restrictions are applied to user-defined relations—the first two for practical

reasons due to the time limits of this project; the third results from the structure of the

concept description. The first restriction is that relations must be defined extensionally.

Implementation of a resolution system that could utilise intentional definitions, and

verify that the definitions are not problematic, would require considerable effort. In any

function best_clause(Class_value, Attrs, Training_set): dnf_clause
var ...

A: attribute
R: relation
V: value

begin
loop forever begin

for A  Attrs do
Temp_term.A := A
for R  {<,,=} such that R is applicable to A do

Temp_term.R := R
for A’  Attrs, A’  A, A’ is comparable to A

do
Temp_term.A’ := A’
if m(Temp_term) < m(Best_term) then

Best_term := Temp_term
done
for V  {all values of A in data set} do
...

done
done
...

end loop
return Clause

end best_clause

Figure 4.3 Pseudocode outline of best_clause used in the relational extension to
HENRY.
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case, this limitation is also enforced by FOIL6, so no ground is yielded here when

comparing the algorithms.

Unlike FOIL, which can use the closed-world assumption to infer the class of all other

possible examples, HENRY requires negative examples of a concept. Like most other

propositional learners, HENRY expects the training data to be representative of the

distribution of classes in the whole population. If no negative examples are presented the

algorithm assumes that no such examples exist, and generates a concept description that

says all instances are positive. To simulate the closed-world assumption it is necessary to

include every possible negative example in the training data file. This is not difficult in

principle, although there may be many such examples.

The third restriction imposed by HENRY is a result of the structure of ripple-down

rules. Most ILP systems allow recursive definitions of the target predicate to be

generated. These definitions are usually composed of several clauses, with one providing a

base for the recursive call of the other. The target predicate in ripple-down rules is

defined by a single RDR tree, and HENRY does not allow terms to “call” the top level

node of the tree. This would be akin to having a recursive logic program clause that could

only refer to itself. Such a definition would never terminate with a true result—only the

failure of a term would cause computation of the clause to cease.

Variables

The best_rel function introduces variables into the relation currently being evaluated.

The function is tail recursive, allowing it to cycle through all possible constant values

while introducing new and previously used variables into the relation. Unlike FOIL,

HENRY can use constants in relational terms. Although a term containing only constants,

such as left_of (a1, b1) would match every example because it is always true by definition,

function best_clause(Class_value, Attrs, Training_set): dnf_clause
...
begin

loop forever begin
for A  Attrs do

...
done
for R  {user-defined relations} do

for Rdef  {definitions of R} do
Temp_term := best_rel(R,Rdef)
if m(Temp_term) < m(Best_term) then

Best_term := Temp_term
done

done
...

end loop
return Clause

end best_clause

Figure 4.4 Pseudocode outline of the best_clause function used to search the space of
user-defined relations.
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combinations of variables and constants might prove useful. For example, a term such as

left_of (X, b1) may be fruitful in a problem classifying combinations of blocks where

individual blocks may be included in several objects. Any object containing a block that is

to the left of block b1  will match this term.

HENRY will try introducing between 1 and n – 1 variables into an n-ary relation. If

this relation is the first to appear in the clause all variables will be new, and will bind to

every value in the same position of the relation’s definition. For example, the variable X

in the term left_of (X, Y) will bind to the set {b1, b2, b3, b4} from the definition in

Figure 3.19. HENRY does not try using the same variable more than once in any term,

because of uncertainty about the bindings of each argument in logical and computational

terms.

If relational terms already exist in the current clause HENRY examines all valid

combinations of the variables in these terms before introducing new ones. For example, if

the clause already contained the term left_of (X, Y), HENRY would try the variables X and

Y in a new relation. Using the variable X in the term supports (X, Z) (from Figure 3.19)

reduces the set of possible bindings for X to {b3, b4}. If a new variable had been

introduced here it would be bound to {b1, b3, b4, c1, c3, c4}. HENRY’s use of existing

variables where possible is in line with FOIL’s policy on the matter. Although HENRY does

not require an existing variable to be used in any new relational term, in practise this

usually appears to happen (see examples in Section 5.2).

HENRY does not place many restrictions on the search space with regard to using

variables. None of the three restrictions discussed in the description of FOIL are

implemented in the best_rel function. Preventing problematic recursion is perhaps the

most important of these three, but because ripple-down rules cannot reference themselves

this issue does not arise. However, restrictions on the introduction of new variables would

make the search more efficient.

4.2 Ripple-down rule output formats

HENRY presents ripple-down rules in three formats. The first is intended for user

interpretation, and is a modified form of that presented in Chapter 2; the second is for an

evaluation program to test on new examples; the third is used by a directed graph drawing

package to present the ripple-down rules in a format suitable for use in paper documents.

All three are generated by a recursive procedure that traverses the RDR data structure in

memory.
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Text-based format

The default output style is a text-based binary tree (Figure 4.5) that is printed to the

user’s terminal when the program terminates. The structure differs from that shown in

Chapter 2 in that the default classification, formerly at the top of an RDR substructure,

has been moved to replace the empty if-false node at the bottom of the structure. The

change retains the meaning of the original RDR structure, and makes it easier to read

because the user no longer has to keep track of default classifications from higher up in

the structure. This representation also eliminates the need for the null rule in the top-

most node.

The text-based tree in Figure 4.5 was generated from the iris data, and provides a

good comparison with the disjunctive normal form rule set of the same data in Figure 2.1.

This format is intended for human use, and provides more information than the machine-

readable Lisp version described next. The first line of the structure is a rule that would

appear in the second box of the RDR structure in Chapter 2. This rule is of the if... then...

else... type, as described in Section 2.1, but it is presented as a question that is either true

or false with respect to an example being classified. If the example matches the rule the

Yes branch of the tree is followed, otherwise the No branch is followed. The structure is

traversed as described in Chapter 2, except that a classification is given at the final if-false

(No) node in the structure as described earlier.

The other information spread throughout the rule is largely for the user’s interest.

The square-bracketed ratio after each term shows the number of positive examples

selected at this point in the rule’s execution, over the number of examples of all classes

that it selects—this is the same z/s ratio used by PRISM . The letter following the ratio,

  IS "petallength" >= 2.45 [50/100] t AND "petalwidth" < 1.75 [49/54] t AND
"petallength" < 5.35 [49/52] t [49/52 0.000% (1.076637e-34)]  ?
  No     Yes
  |      |
  |      IS "petallength" >= 4.95 [2/4] f AND "petalwidth" < 1.55 [2/2] t [2/2
10.962% (1.096197e-01)]  ?
  |      No     Yes -> "class" = "Iris-virginica"
  |      |
  |      IS "sepallength" < 4.95 [1/2] f AND "sepalwidth" >= 2.45 [1/1] t [1/1
33.333% (3.333333e-01)]  ?
  |      No     Yes -> "class" = "Iris-virginica"
  |      |
  |      "class" = "Iris-versicolor"
  |
  IS "petallength" >= 3.35 [47/48] t [47/48 0.000% (4.097019e-34)]  ?
  No     Yes
  |      |
  |      IS "petallength" < 4.85 [1/3] t AND "sepallength" < 5.95 [1/1] t [1/1
33.333% (3.333333e-01)]  ?
  |      No     Yes -> "class" = "Iris-versicolor"
  |      |
  |      "class" = "Iris-virginica"
  |
  "class" = "Iris-setosa"

Figure 4.5 Text-based ripple-down rule tree generated from the iris data.
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( setf ruleset
'((rule "petallength" >= 2.45 t AND "petalwidth" < 1.75 t AND "petallength" < 5.35
t)

((rule "petallength" >= 4.95 f AND "petalwidth" < 1.55 t)
(classification "class" "Iris-virginica")
((rule "sepallength" < 4.95 f AND "sepalwidth" >= 2.45 t)

(classification "class" "Iris-virginica")
(classification "class" "Iris-versicolor")))

((rule "petallength" >= 3.35 t)
((rule "petallength" < 4.85 t AND "sepallength" < 5.95 t)

(classification "class" "Iris-versicolor")
(classification "class" "Iris-virginica"))

(classification "class" "Iris-setosa"))))

(setf user-defined-relations nil)

Figure 4.6 Lisp-based ripple-down rule tree generated from the iris data.

either a t or an f, is part of an experiment in dealing with missing values (see Section 5.1).

The letter indicates whether or not an example with a missing value for the attribute in

the preceding term should match the term (t) or not (f). The value expressed is the result

of matching a hypothetical example that has the attribute’s average value for the training

examples that remained at that point in the rule’s construction. This value is also present

in the machine-readable format of the RDR structure, and its use in classification depends

on the evaluator. Normally an example fails to match a term if the value for the specified

attribute is missing.

The final square-bracketed field in the rule contains information about the entire

rule. The first item is the z/s ratio for the entire rule, and is the same as the value for the

last term. The next item is the m-value (expressed as a percentage) for the entire rule,

and the final item is the m-value expressed as accurately as possible in floating point

form. This information is provided to differentiate m-values that are very similar,

particularly those close to 0, such as the first rule and its No descendent in Figure 4.5

which are both 10–34. The high precision allows HENRY to choose between terms with

m-values that are this similar. The percentage value given prior is intended for “at a

glance” comparison of rules.

Lines in the RDR tree that do not begin with IS  are classification nodes. When an

example works its way down the tree to one of these nodes it is classified with the label at

the node. An example that matches the first rule in Figure 4.5 but neither of the rules in

its Yes branch will be classified as “Iris-versicolor” by the leaf node in the No branch of

the third rule. In the RDR structure of Chapter 2 this classification would be made with

the default value of the second rule.

Lisp format

The second output format is used by an external evaluation program, ABE, described in

Section 4.3. ABE is written in Common Lisp so this format presents ripple-down rules as
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a Lisp data structure (Figure 4.6). The structure is similar to the text-based format of the

previous section in that the concept description is represented as a binary tree. Most Lisp

data structures are constructed from lists of objects, and the binary tree is formed from a

set of nested lists. A Lisp binary tree has one of two forms:

(rule-list  if-true-subtree  if-false-subtree),

or

(classification  class-name  class-value).

The rule-list item at the head of the first list represents the conjunction of terms to be

evaluated at this point in the tree, and if-true-subtree and if-false-subtree are binary trees.

If an example matches the rule the if-true-subtree is traversed, otherwise the if-false-

subtree is traversed. The second form represents a leaf node, and provides a classification

for examples reaching that node.

The rule-list item is itself a list containing the conjunction of terms to be matched at

the node. For example:

(rule “petallength” >= 4.95 f AND “petalwidth” < 1.55 t).

The first item, rule, lets ABE recognise this as a rule, rather than a leaf node. The

remainder of the list is a series of propositional terms separated by AND items. The ts and

fs at the end of each term match those in the text-based format described earlier.

The last line of the Lisp-based output declares a variable called user-defined-

relations. This is part of the relational learning system and is discussed in Section 4.3.

Dotty format
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The final output format is also intended for interpretation by an external program—in

this case DOTTY, an application for drawing directed graphs. DOTTY reads a file

containing a definition of a graph, and formats the graph nicely on the screen. The

binary-tree structure of ripple-down rules is suited to representation as a directed graph,

and DOTTY provides a means of reproducing concept descriptions in a format suitable for

inclusion in paper documents (Figure 4.7).

HENRY generates an input file for DOTTY such as the one in Figure 4.8. Each line

represents either a node in the graph or an edge between two nodes. Nodes representing

rules in the RDR structure are labelled with the rules, and those representing classifications

(leaf nodes) with the class value. Every rule node has two edges leading to two other

nodes; the leftmost edge leading to the if-true subtree and the rightmost edge leading to

the if-false subtree. These edges are labelled T and F.

Translating ripple-down rules to PROLOG

Title:  HenryDottyOutput
Creator:  dot version 95 (4-10-95)
CreationDate:  

Figure 4.7 Ripple-down rules for the iris data as displayed by DOTTY.
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digraph HenryDottyOutput {
node_1 [label="petallength >= 2.45\npetalwidth < 1.75\npetallength < 5.35"]
node_2 [label="petallength >= 4.95\npetalwidth < 1.55"]
node_3 [color=lightgray style=filled shape=box label="Iris-virginica"]
node_2->node_3 [label="T"]
node_4 [label="sepallength < 4.95\nsepalwidth >= 2.45"]
node_5 [color=lightgray style=filled shape=box label="Iris-virginica"]
node_4->node_5 [label="T"]
node_6 [color=lightgray style=filled shape=box label="Iris-versicolor"]
node_4->node_6 [label="F"]
node_2->node_4 [label="F"]
node_1->node_2 [label="T"]
node_7 [label="petallength >= 3.35"]
node_8 [label="petallength < 4.85\nsepallength < 5.95"]
node_9 [color=lightgray style=filled shape=box label="Iris-versicolor"]
node_8->node_9 [label="T"]
node_10 [color=lightgray style=filled shape=box label="Iris-virginica"]
node_8->node_10 [label="F"]
node_7->node_8 [label="T"]
node_11 [color=lightgray style=filled shape=box label="Iris-setosa"]
node_7->node_11 [label="F"]
node_1->node_7 [label="F"]
}

Figure 4.8 DOTTY input file for the ripple-down rules generated from the iris data.

Although the ripple-down rule structure has characteristics that make it different from

the logic programs generated by FOIL, it is possible to translate RDRs to a PROLOG-like

DNF form. The procedure is identical to that of producing DNF rules from an ID3 or C4.5

decision tree. A clause is produced for each leaf node by traversing the tree and adding the

terms at each internal node to the clause. If an if-false branch is in the path to the leaf

the terms at the node are bracketed, and the expression is negated. Figure 4.9 shows an

example RDR tree with the path to a leaf node highlighted. This path translates to the

clause shown at the bottom of the figure. A set of such rules is logically equivalent to the

RDR tree they are translated from, and retains the structure’s properties. For example,

the rule set will not give multiple classifications which are possible with rules initially

generated in DNF form.

Although the PROLOG form of an RDR tree can be viewed as a logic program HENRY

is not an inductive logic programming system, because the DNF rules violate a number of

the principles of ILP. For example, the negation of a conjunction of literals, such as not

(L1,L2), is not allowed in the body of a clause. However, HENRY can duplicate in RDR

form many of the concept descriptions generated by inductive logic programming

systems, with the only real limitation being on recursive definitions.

4.3 ABE

The PROLOG/DNF form of ripple-down rules allows PROLOG-based evaluators, such as

PREVAL (Garner et al., 1995), to evaluate them on new data sets, but the format is rather

verbose, and requires duplication of many parts of the structure. An RDR-specific

56



IS "petallength" >= 2.45 AND "petalwidth" < 1.75 AND "petallength" <
5.35 ?
  No     Yes
  |      |
  |      IS "petallength" >= 4.95 AND "petalwidth" < 1.55 ?
  |      No     Yes -> "class" = "Iris-virginica"
  |      |
  |      IS "sepallength" < 4.95 AND "sepalwidth" >= 2.45 ?
  |      No     Yes -> "class" = "Iris-virginica"
  |      |
  |      "class" = "Iris-versicolor"
  |
  IS "petallength" >= 3.35 ?
  No     Yes
  |      |
  |      IS "petallength" < 4.85 AND "sepallength" < 5.95 ?
  |      No     Yes -> "class" = "Iris-versicolor"
  |      |
  |      "class" = "Iris-virginica"
  |
  "class" = "Iris-setosa"

class(Iris-virginica) :- petallength >= 2.45, petalwidth < 1.75,
petallength < 5.35, not (petallength >= 4.95, petalwidth < 1.55), 
sepallength < 4.95, sepalwidth >2.45.

Figure 4.9 Translation of ripple-down rules to an equivalent PROLOG-like format.

evaluator requires little change to the standard output format, and it can evolve as

necessary to contend with changes to the rule formats—a point endorsed by the

introduction of relational terms in the rules.

ABE (A Basic Evaluator) is written in Common Lisp and uses list-like data structures

to represent rules and binary trees. The choice of Lisp as the implementation language

was largely pragmatic. It provides many useful data structure manipulation facilities that

are frequently employed because ABE spends most of its time searching through a binary

tree structure matching lists of attributes along the way. Although HENRY must do this

also, the evaluator is kept separate from the learning program. The different nature of

the learning and evaluation tasks, and the distinct input and output corresponding to each,

implies a different program for each task. It would be bad software engineering practise

for HENRY to perform both tasks.

Input and output

The format of the input rule structure (described in Section 4.2) represents the entire

RDR tree as a nested list. ABE reads this file as a normal Lisp input file and assigns the
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ripple-down rules to the variable ruleset. A second variable, user-defined-relations, also

specified in this file, is a list of the extensional definitions for relations appearing in the

rule set. The ARFF  library filter ARFFTOLISP converts the test data file into three Lisp

data structures. The first contains the target relation’s name; the second is a list of the

concept’s attributes; and the third is a list of examples, each expressed as a list of values.

ABE’s output is usually a list of the examples misclassified by the rule set. Each

example is identified by its place in the ARFF  file, and is displayed in full. Following this,

ABE displays a confusion matrix—a grid with the class values along both axes. Entries in

the matrix show the distribution of correct and incorrect classifications for each class

value. Figure 4.10 shows ABE output from a test on the iris data. The 150 examples were

divided into two data sets—66% for training and 34% for testing. HENRY was run on the

training sample, and the resulting RDR tree, along with the test data, was presented to

ABE for evaluation. The ripple-down rules misclassified four irises in the test data, #3 and

#13 of cultivar iris versicolor, and #27 and #33 of cultivar iris virginica. The confusion

matrix shows that the two misclassified iris versicolor were predicted to be iris virginica,

and the iris virginica were predicted to be iris versicolor. This indicates HENRY had little

difficulty distinguishing iris setosa from the other two cultivars, but the examples of iris

versicolor and iris virginica were sufficiently similar to produce some overlap in the

classifications. This characteristic is well documented for this data set (Salzberg, 1990).

In addition to displaying misclassified examples ABE can display every example with

its HENRY-predicted class value. This output can be filtered to create a new data set using

the predicted class value in place of the original value.

%% ABE - A Better Evaluator, Version 951218.1654 %%
ABE is evaluating rulefile iris-train-rules.l on data file iris-test.arff
;; Loading file _.rules.l ...
;; Loading of file _.rules.l is finished.
;; Loading file _.arff.l ...
;; Loading of file _.arff.l is finished.

Misclassified instance #3: 5.9,3.2,4.8,1.8,"Iris-versicolor"
Misclassified instance #13: 6.2,2.2,4.5,1.5,"Iris-versicolor"
Misclassified instance #27: 6.3,2.8,5.1,1.5,"Iris-virginica"
Misclassified instance #33: 4.9,2.5,4.5,1.7,"Iris-virginica"

Correctly Classified Instances    47    92.16%
Incorrectly Classified Instances  4     7.84 %
                                 ------
                                  51

 Classified as -> Iris-se.. Iris-ve.. Iris-vi..
                  ------------------------------
      Iris-setosa 17
  Iris-versicolor           16        2
   Iris-virginica           2         14
                  ------------------------------
DONE

Figure 4.10 Output from ABE evaluating ripple-down rules on the iris data.
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Matching examples

ABE employs a recursive function to traverse the RDR structure using the method

described in Chapter 2. The test example passes down the left branch of a node if it

matches the rule at that node, and down the right branch if it does not match. Reaching a

leaf node, the classification given at the node is compared with the actual class value of

the example, and the confusion matrix is updated accordingly.

To classify an example ABE compares it to the terms in each rule from left to right

(the order they were added to the rule by HENRY). If at any point a term is encountered

that does not match the example the rule fails, and the example is immediately passed

down the if-false branch of the node. If the current term is propositional the list

representing the example is searched to find the value for the term’s attribute. The

term’s value is then examined, and the corresponding relationship between the values in

the term and the example is assessed.

If the current term is relational ABE searches the list of extensional definitions of

the specified relation for one that is satisfied by the example. If no such a definition is

found the rule immediately fails, and the example passes down the node’s if-false branch.

For example, if the relational term

( C = 1 AND D = 1 AND left-of (C D) )

was to be matched with an example with value 0 for block_e and 1 for attributes block_d

and block_f, ABE would search the list of definitions of left-of for one that matched the

example. The definition ( left_of block_d block_f ) would be satisfied by the example, but

the definition (left_of block_e block_f ) would fail because block_e and block_f do not

both have the value 1.

Missing values

ABE can treat examples with missing values in two ways. First, and in common with most

rule evaluation methods, a missing value always fails to match a term using the particular

attribute. With ripple-down rules this procedure will at worst result in an example being

given the default classification. A similar example classified with DNF rules will usually

have no prediction made because it fails to match any rule.

The second method uses the ts and fs described in Section 4.2. If a term has a t for its

missing value option any examples with missing values for its attribute will automatically

match. Similarly, any such examples will fail to match a term with an f as the missing

value option. This method assumes the missing value in the example is near the mean for

that value (determined from the training data). If the assumed value is lower than the

value specified in a term with the operator <, the missing value option would be t and the
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example would match the term. A comparison of the two missing value methods is

presented in Chapter 5.

5.
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Results

This chapter presents results of eight experiments using HENRY and ABE. The first four

experiments evaluate HENRY on sixteen propositional data sets, and compares it with

other machine learning algorithms. The algorithm also provides the basis for comparing

different term evaluation heuristics and rule evaluation methods. The last four

experiments involve relational learning and test the corresponding extensions to HENRY.

5.1 Experiments on UCI data sets

The sixteen data sets originated from the UCI machine learning repository, and form a

core of data sets used for many empirical comparisons of machine learning algorithms

(Salzberg, 1995). The data sets and method of evaluation used here are the same as those

used by Holte (1993) in his 1R experiments. The data sets range in size from 47 to 8124

examples, with between 5 and 36 attributes. A summary of the contents of each data set

is given in the appendix.

Table 5.1 shows the results for eight learning schemes on the sixteen data sets. Each

scheme was run twenty-five times on each data set, using a random selection of 66% of

the examples as training data, and the remaining 34% as test data. The first column lists

the data sets, and the second shows the percentage of values that were missing in each

one. The values in the last seven columns are the average percentage accuracy on the test

data over the twenty-five runs. The bottom row of the table shows the average

classification accuracy for each scheme over the sixteen data sets; this gives an indication

of the relative performance of each scheme.

The schemes used were (from left to right in Table 5.1) HENRY using the

hypergeometric measure, HENRY using the binomial approximation, HENRY using an

informational measure similar to that of ID3, C4.5 producing a pruned decision tree, 1R,

HENRY with the missing value evaluation heuristic, HENRY using =,<, and  inter-attribute

relations, and FOIL. Unless otherwise indicated HENRY uses the hypergeometric measure

for selecting terms, and concept descriptions are evaluated with missing values always

failing to match terms.
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MISSING

HENRY HENRY HENRY C4.5 1R HENRY HENRY FOIL

HYPERGE

OMETRIC

BINO

MIAL

INFORMA

TIONAL

MISSING

VALUES

RELATI

ONAL

BC 0.31% 64.0 64.8 64.0 71.4 68.7 64.2 63.6 54.1

CH - 98.2 98.1 93.8 99.3 67.6 98.2 98.1 29.7

G2 - 74.0 74.3 68.5 73.5 72.9 74.0 72.8 67.8

GL - 69.1 67.6 51.5 66.9 53.8 69.1 49.1 49.6

HD 0.17% 72.3 72.2 71.3 73.0 73.4 72.2 53.9 65.1

HE 5.39% 78.7 78.5 76.4 70.1 76.3 79.8 47.5 67.3

HO 22.77% 73.9 77.3 76.2 77.3 81.0 74.7 77.0 61.3

HY 6.48% 98.6 98.7 79.6 91.0 97.2 99.0 96.8 98.0

IR - 93.6 93.3 93.5 95.1 93.5 93.6 97.1 91.0

LA 33.64% 76.2 79.4 77.9 74.1 71.5 82.5 62.8 70.3

LY - 77.8 78.0 72.0 74.9 70.7 77.8 73.4 64.7

MU 1.33% 100.0 100.0 100.0 100.0 98.4 100.0 100.0 99.6

SE 6.48% 96.8 96.5 78.2 75.7 95.0 96.8 92.2 95.1

SO - 97.2 97.2 96.5 96.8 91.0 97.2 91.7 96.8

V1 5.47% 87.7 87.2 85.7 83.8 86.8 87.4 86.5 77.3

VO 5.30% 94.8 94.1 90.0 93.4 95.2 94.7 93.6 88.0

mean 84.6 84.8 79.7 82.3 80.8 85.1 78.5 73.5

Table 5.1 Accuracy results for eight learning schemes on sixteen UCI data sets using the

method described by Holte (1993).

The first experiment compares the classification accuracy of three algorithms:

HENRY (simulating INDUCT(RDR) with numeric extensions), C4.5, and 1R. C4.5

(Quinlan, 1993) is the benchmark by which machine learning algorithms are compared,

whereas 1R (Holte, 1993) provides a baseline accuracy value for any data set. The second

experiment uses HENRY to compare three term selection measures. This comparison is

intended to determine the effectiveness of the binomial approximation of the

hypergeometric measure, and to compare the probabilistic approach with an information-

based approach. The third experiment examines the abilities of relational learners with

propositional data. FOIL is compared with HENRY using the three “standard” relations

introduced in Section 3.1. The final experiment compares two methods for evaluating

rules on examples that have missing values. The first method fails any example with a

missing value for the attribute in a term. The second method uses the technique described

in Section 4.3 where a truth value for each term is generated from the average value for

the particular attribute in the training data. C4.5 uses a similar technique for classifying

examples with missing values, and this can increase the accuracy of a decision tree by

several percent. In these experiments C4.5 decision trees are evaluated with PREVAL,
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using the “missing values fail” method—the fourth experiment is intended to evaluate

different methods for evaluating ripple-down rules.

Comparing propositional algorithms

The aim of this experiment was to compare the INDUCT(RDR) algorithm with two other

propositional learning algorithms: C4.5 and 1R. C4.5 is a decision tree learner and uses

several techniques that differ from their counterparts in HENRY. The difference in

performance of the systems will reflect the combined effectiveness of these techniques.

The first dissimilarity is C4.5’s use of an information-based metric for assessing the

utility of attributes. The attribute providing the largest information gain (as described in

Section 3.3) at each node in the decision tree is used to split the tree. If the attribute is

symbolic each of its values is used to create a branch down which examples with the

particular value pass. If the attribute is numeric a threshold value is determined, and a

binary split is used. Examples with values less than the threshold pass down one branch,

and those with values greater than or equal to the threshold pass down the other. The

second difference is that a C4.5 decision tree has a single attribute test at each node, and

if the attribute used is symbolic the tree need not be binary. The ripple-down rule

structure is binary because symbolic terms specify a single value, and instead of one

attribute–threshold-value term at each node, RDRs may have a conjunction of such

terms.

1R generates a rule set that uses a single attribute to divide the data set into individual

classes. The rules are intended to be the simplest that can be used to categorise the data,

and therefore provide a baseline accuracy for other algorithms to better. Any concept

description larger than the 1R rule set, but less accurate at classifying new examples, is

overfitting the training data.

Method

The three algorithms were evaluated on the sixteen data sets in the manner described by

Holte (1993). ABE evaluated HENRY’s ripple-down rules on the test data, using the

“missing values fail” method. C4.5 decision trees were evaluated by converting to them to

the equivalent DNF representation in a PROLOG-like form, and processing them with

PREVAL. Accuracy values for 1R are from Holte (1993).

Results

The results pertaining to this experiment are in columns three, six, and seven of Table

5.1. HENRY was the best of the three schemes on ten of the data sets (G2, GL, HE, HY,

LA, LY, MU, SE, SO, V1); C4.5 was best on four data sets (BC, CH, IR, MU); and 1R was

best on three data sets (HD, HO, VO). HENRY also had the highest average accuracy of
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84.6% on the test data; C4.5 had an average accuracy of 82.3%; and 1R had an average

accuracy of 80.8%.

Conclusions

These results show that all three algorithms are closely matched on these sixteen data

sets. HENRY is at least as accurate as C4.5 on ten of the data sets indicating that it may

have a slight edge. However, as discussed by Salzberg (1995), it is not possible to say

definitively that one algorithm is significantly better than the other on these particular

data sets. It is possible to “tune” either algorithm to perform better on any particular data

set, and the default values for various thresholds are chosen so the algorithms perform

well on a range of data sets. If a different group of data sets had been chosen C4.5 may

have produced slightly higher accuracy figures than HENRY. Nevertheless, there is

sufficient evidence to suggest that the INDUCT(RDR) algorithm is comparable to C4.5 in

terms of accuracy.

This experiment provides several insights into the UCI data sets. First, the three data

sets on which 1R was the most accurate may indeed be characterised by the values of a

single attribute. In the VO data set this is certainly the case—the attribute physician-fee-

freeze can be used to correctly classify 95.6% of the examples by simply saying “class is

democrat if physician-fee-freeze is false”. Second, the extra complexity of the concept

descriptions generated by HENRY and C4.5 provides less than 5% greater accuracy on the

sixteen data sets. As discussed by Holte (1993), this is a characteristic of data sets

typically used for evaluating machine learning algorithms. These data sets generally have

simple target concepts that are well described by simple rule sets, such as those of 1R.

Comparing rule evaluation heuristics

The aim of this experiment was to evaluate term selection heuristics. The

hypergeometric measure is compared with the binomial approximation and a version of

the information-based metric used in C4.5 and FOIL. The hypergeometric formula, used

to estimate the probability that a rule can be bettered by a random selection of examples,

is expensive to compute. With many examples, values used in the computation can

approach the bounds of the processor’s numeric precision. Therefore, the use of a less

expensive approximation would be beneficial in terms of speed and precision. The

binomial approximation and the informational metrics are considerably less costly than

the hypergeometric measure. Although the binomial measure is intended as a replacement

for the hypergeometric measure, the informational measure is evaluated here as an

alternative approach to assessing the “quality” of a rule.

Method
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The three rule evaluation heuristics are all implemented in HENRY—a command line

parameter indicates which measure to use when selecting terms—otherwise, the

algorithms are identical for each run. Again the experiment used the sixteen UCI data sets

in the manner described by Holte. ABE evaluated the ripple-down rules produced by each

heuristic, using the “missing values fail” method.

Results

The results for this experiment are in columns three, four, and five of Table 5.1. The

average accuracy values across the sixteen data sets for the hypergeometric and binomial

metrics are similar at 84.6%, and 84.8%, respectively. The informational metric has a

slightly lower average accuracy of 79.7%. The average size of the ripple-down rule

structure produced by the hypergeometric and binomial measures was also similar at 16.0

rules (internal nodes) with 2.8 terms per rule, and 16.7 rules with 2.9 terms per rule,

respectively. The informational measure produced average RDRs with 80.4 rules, and 3.0

terms per rule.

Conclusions

The average accuracy and RDR structure size of the hypergeometric and binomial

measures are almost identical, indicating the less expensive binomial approximation is a

worthy replacement for the hypergeometric measure. The informational measure was

nearly as accurate as the two probabilistic measures, but its concept descriptions were far

larger. Although there is no obvious reason for this, it is worth noting as FOIL, the

relational algorithm used in the next experiment, also uses an information-based search

measure.

Comparing relational algorithms

The aim of this experiment was to compare the performance of HENRY and FOIL on

propositional data. FOIL was designed primarily to operate on relational data, but it is

capable of generating rules using propositional terms. Although these rules do not

conform to the restrictions imposed by inductive logic programming, they are necessary

when no background knowledge is provided. HENRY is able to search for both

propositional and relational terms in propositional data using the three standard relations

=, <, and . When searching the space of new literals HENRY evaluates relational terms

first. A “tie” between a propositional term and a relational term will always be resolved in

favour of the relational term, because a new term must be significantly better than the

existing best term to replace it.

Method
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Again HENRY and FOIL were evaluated in the manner described by Holte. HENRY’s RDRs

were evaluated with ABE, using the “missing values fail” method. Because FOIL generates

a concept description that classifies an example as being either a member or not a

member of a relation, it was necessary to create a training set for every class value

present in each data set. For a three-class problem FOIL would be run three times, with

each class once being the target concept, and twice being part of the set of negative

examples of another class value. The three rule sets were then combined to produce a

single set that covered every class. PREVAL was used to test the rule sets generated by

FOIL.

Results

The results for this experiment are in columns nine and ten of Table 5.1. The average

accuracy values of the two algorithms are similar at 78.5% for HENRY and 73.5% for

FOIL. The individual values are quite different for many of the data sets, with the most

extreme difference being for the CH data set where HENRY scores 98.1% and FOIL scores

29.7%—a difference of 68.4%.

Conclusions

As with the previous experiments the difference in average accuracy is too small to

indicate a decided advantage for HENRY. However, it is noteworthy that HENRY

continues to come out on top in these close situations. The most obvious point of

interest is the often large difference in accuracy on some data sets, particularly CH. In

most cases HENRY’s results are close to those for the purely propositional runs. Figure

5.1 shows a section of the relational RDR tree generated from the IR data set. The

profusion of propositional terms suggests the concept is best described in that form. The

lower accuracy of the relational version indicates that, by searching the relational terms

before propositional terms, HENRY may be making poor decisions where the m-values for

two terms are very similar. The relational terms selected may be identifying regularities in

the training data that are better expressed with propositional terms. Swapping the order

of search, and thus specifying a preference for propositional terms, could result in better

accuracy on these data sets. However, the existence of relationships within the data that

are truly better expressed with relational terms would obviate such “tuning” of the

algorithm.

FOIL’s poor performance on many of the data sets indicates it is less suited to

classification tasks of this form. Whereas HENRY can combine relational and

propositional terms as necessary, FOIL uses either one or the other. Given purely

propositional data, even when represented in relational form, FOIL acts as a propositional

learner, producing PROLOG-like rules that contain propositional literals. The poor
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  IS sepalwidth is-bigger-than petallength [31/31] f [31/31 0.000% (2.185124e-26)]
?
  No   Yes -> class = Iris-setosa
  |
  IS petalwidth < 1.75 [32/35] t AND petallength < 5.35 [32/33] t [32/33 0.000%
(1.103604e-23)]  ?
  No   Yes
  |   |
  |   IS petallength > 5.05 [1/2] f AND sepallength >= 6.15 [1/1] f [1/1 35.354
% (33.535354e-01)]  ?
  |   No Yes -> class = Iris-virginica
  |   |
  |   class = Iris-versicolor
  |
  IS petallength < 4.85 [1/3] t AND sepallength < 5.95 [1/1] t [1/1 33.333%
(3.333333e-01)] ??

Figure 5.1 A section of a relational ripple-down rule tree generated from the IR data set.

performance on some of these data sets may be a reflection of the performance of the

informational measure used in the previous experiment.

The relative unsuitability of relational learning to these data sets again illustrates

Holte’s point that these “standard” data sets contain very simple concepts.

Comparing missing value methods

The aim of this experiment was to evaluate different methods for dealing with missing

values in ripple-down rules. The normal method is to fail the match of any example that

has a missing value for an attribute specified in any term of a rule. In DNF rule sets the

worst case scenario for such a procedure results in an example failing every rule and being

unclassified. Ripple-down rules do not allow this to happen because the example would

reach the leaf of the RDR tree that specifies the original default classification. Thus, the

example would be classified as the most frequent class in the training data.

The alternative method employed in this experiment appends a truth value to each

term in the RDR tree that specifies whether a missing value should match or fail to match

the term. The truth values are determined by assuming the example has the average value

of the examples in the training data for the attribute in question. If the attribute is

symbolic this value will be the most frequent in the training data.

When ABE is evaluating the ripple-down rules on a test example and a missing value

is encountered, the program examines the truth value associated with the current term

and matches or fails the example on the strength of that value. Thus, an example with all

values missing would be considered an instance of the most representative examples of

the concept. All the examples at any node in the RDR tree share a number of features

that allowed them to reach the node. This approach assumes any of these examples with

a missing value will also share that value with the other examples at the node. This

experiment will determine if the difference in approach is significant.
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Method

HENRY was run twice on the sixteen data sets in the manner described by Holte. On the

first run ABE used the “missing values fail” method, and the “average value” method on

the second run. Note that the concept descriptions generated by in both runs would be

identical for the same training data—it is the way they are used to classify new examples

that is different.

Results

The results for this experiment are in columns three and eight of Table 5.1. As expected

the results are identical for data sets with no missing values (indicated by dashes in the

MISSING column of Table 5.1). The average accuracy is 84.6% for the first method, and

85.1% for the second. Table 5.2 shows the results on the seven data sets with more than

5% of the values missing. On these data sets the average accuracy is 86.7% for the first

method, and 87.8% for the second.

Conclusions

The average accuracy of the two evaluation methods is very similar with the “average

value” method having a slight edge. The results on the data sets with many missing values

show where this small advantage is gained. Although it is not possible to compare the

average accuracy over the sixteen data sets with that of the seven in Table 5.2, the

relative difference in the accuracy values for these seven is noteworthy. The average

value method is comfortably more accurate on the data set with the most missing

values—LA with 33.64% missing. On the remaining six data sets the difference between

“average value” and “always fail” is between 0% and 1.1%, with only the VO and V1 data

showing a lead for the latter. Although these differences are small HENRY appears to

benefit from the “average value” approach. Further testing on data sets with differing

MISSING ALWAYS

FAIL

AVERAGE

VALUE

HE 5.39% 78.7 79.8

HO 22.77% 73.9 74.7

HY 6.48% 98.6 99.0

LA 33.64% 76.2 82.5

SE 6.48% 96.8 96.8

V1 5.47% 87.7 87.4

VO 5.30% 94.8 94.7

mean 86.7 87.8

Table 5.2 Accuracy results for two missing value evaluation methods on seven data sets
with more than 5% missing values.
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amounts of missing values is necessary to determine the true extent of this apparent

advantage.

5.2 Experiments on relational data sets

This section discusses four experiments using relational data. The first two, the arches

problem and the trains problem, are presented by Quinlan in his original discussion of

FOIL (Quinlan, 1990). The results for FOIL are repeated, and compared with HENRY. The

next problem involves classification of small excerpts from artificial report abstracts.

The objective is to generate a concept description that classifies each abstract as being

related or unrelated to machine learning, and is based on an experiment described by

Cohen (1995). The objective of the final experiment is to specify a set membership

constraint given background knowledge about a set of integers.

In all these experiments the entire data set is used for training, and ABE is not used.

Although ABE is capable of evaluating relational ripple-down rules, the emphasis is on

comparing the form of the concept descriptions generated by HENRY and FOIL. All the

data sets are relatively small compared to the UCI data sets, and both algorithms classify

most examples correctly. Because relational data sets are typically generated from the

target concept that the algorithms are trying to recognise, only a few representative

training examples are used in each case.

The arches problem

The arches problem was discussed by Winston in his work on structured learning and is

often used as a example classification task (Gennari et al., 1990; Quinlan, 1990). The

objective is to create a concept description that distinguishes objects consisting of three

blocks that form a valid arch from objects that are not arches. Winston provided four

such objects (Figure 3.20), two that were arches, and two “near misses” that differed only

slightly from the valid arches. The task’s domain contains the following relations:

arch(A, B, C) blocks A, B, and C form an arch with lintel A

supports(A, B) block A supports block B

left-of(A, B) block A is to the left of block B

touches(A, B) the sides of blocks A and B touch

brick(A) block A is a brick

wedge(A) block A is a wedge

parallelepiped(A) block A is a brick or a wedge

A set of extensional definitions based on these relations provides background information

about the twelve blocks that make up the four objects.

FOIL’s solution

69



The data set used by FOIL is shown in the appendix (file arches.foil). This file displays the

extensional definitions that provide the background information for the task. The first

two lines provide type information for the relations defined later, with the twelve blocks

are identified as type block. The definition for the arch  relation shows the two objects

that are positive examples of the concept. Because no negative examples are given, FOIL

uses the closed-world assumption to determine that all other combinations of blocks are

negative examples. The two near misses in Figure 3.20 are unnecessary, and their

presence in the data can in fact restrict FOIL by reducing the number of negative

examples.

FOIL learns the following definition for arch:

arch(A,B,C) :- leftof(B,C), supports(B,A), not(touches(B,C)).

This description is intuitive, and sufficiently general to cover other examples of arch .

The general-to-specific nature of the covering algorithm is illustrated in the absence of

literals such as supports(C,A) or parallelepiped(A), which are unnecessary to distinguish

the training examples.

HENRY’s solution

HENRY requires three input files to specify this data set. The first defines the

combinations of the twelve blocks that constitute valid blocks, and is shown in the

appendix (file arches.arff). In this file each block is an attribute of the relation, and

examples are described by these twelve attributes. The object comprising blocks a1, b1,

and c1 is an arch, and is identified by the tuple

pos, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0

where a 1 indicates the presence of the corresponding block, and a 0 indicates its absence.

The other arch is similarly defined. Because HENRY does not use the closed-world

assumption, it is necessary to provide negative examples of the concept.

The background relations are provided in two files, one for unary and one for binary

relations. The first “attribute” in each of these files lists the names of the relations

defined in the files, and the remaining attributes specify the objects that may appear as

their arguments. This is equivalent to the FOIL input file’s type specification.

From this data HENRY learns the definition for arch  shown in Figure 5.2. The first

two relations are identical to those used by FOIL, indicating their importance to the

concept. However, this definition differs from FOIL’s in three ways. First, HENRY’s

concept description is a ripple-down rule tree, although its single internal node is

computationally similar to the rule generated by FOIL. The small size is of the concept

description is a theme that  permeates these experiments.
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The second difference is inside the relational terms in the rule. The first term

specifies that an example can only match left-of(A B) if it has two attributes (blocks) with

the value 1 that also appear in one of the extensional definitions of left-of. The example

illustrated earlier matches this term because it has the value 1 for attributes B1 and C1,

and the definition left-of(B1, C1) is present in the binary relation file. The second term is

satisfied in a similar manner, although the block in the first argument of left-of must be

the first argument for the definition of supports.

The final difference between the two concept descriptions occurs in the third term,

A3 = 0. Because HENRY does not use negative literals, it is unable to find the term

not(touches(B,C)). The term HENRY selects is a propositional term, and its m-value

would be identical to many others. This term says that a collection of blocks is an arch if

it does not contain block A3. (Remember that a 0 indicates a block is not present.) The

actual value chosen for this term is arbitrary because the absence of any one of six blocks

would give the same result.

This last term illustrates a deficiency in HENRY’s search. By introducing the constant

value A3, HENRY has produced a concept description that is less generally applicable than

FOIL’s. If HENRY had been able to search the space of negated literals it too may have

been able to use the touches relation. Although this term would have the same m-value as

the propositional term chosen here, HENRY’s preference for relational terms would have

seen it retained.

The trains problem

The trains problem is also described by Quinlan in his discussion of FOIL. In this task each

learning algorithm is presented with descriptions of ten trains, and must generate a

concept description distinguishing trains travelling east from those travelling west. Trains

consist of an engine and a number of cars, and the following relations define features of

these objects:

eastbound(T) train T is eastbound

has-car(T,C) C is a car of train T

infront(C,D) car C is in front of car D

IS (A = 1 AND B = 1 AND left-of(A B)) AND (A = 1 AND C = 1 AND supports(A C)) AND
A3 = 0 ?
No     Yes -> class = pos
|
class = neg

Figure 5.2 Relational ripple-down rules generated by HENRY for the arches problem.
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long(C) car C is long

open-rectangle(C) car C is shaped as an open rectangle

... similar relations for five other shapes

jagged-top(C) car C has a jagged top

sloping-top(C) car C has a sloping top

open-top(C) car C has an open top

contains-load(C,L) car C contains load L

1-item(C) car C has one load item

... similar relations for two and three load items

2-wheels(C) car C has two wheels

3-wheels(C) car C has three wheels

A set of extensional definitions based on these relations provides background information

about the thirty cars that make up the ten trains in the problem. This learning task

illustrates the kind of objects with different structures that are difficult to represent in

propositional form.

FOIL’s solution

The input file for FOIL is shown in the appendix (file trains.foil), and is similar to that of

the arches problem. However, a set of negative examples of the target concept eastbound

are provided. These negative examples are trains that are westbound, and serve to reduce

the size of the search space by enumerating every possible train.

From this data FOIL finds the definition:

eastbound(A) :- has-car(A,B), not(long(B)), not(open-top(B)).

This concept description is again sufficient to cover all the eastbound examples, but the

more specific nature of this learning task makes it less generally applicable than the

arches definition.

HENRY’s solution

HENRY again requires three ARFF  files to specify the data for this experiment (files

trains.arff, train_1rel.arff, and train_2rel.arff). In this case the attributes in the first

ARFF  file are similar to the type c in the FOIL input file. Each train is defined by a tuple

indicating its direction, eastward or westward, and the presence or absence of each of the

thirty cars. The other two files specify the other unary and binary background relations.

From this data HENRY generates the concept description in Figure 5.3.

Because eastbound appears first in the list of class values, and there are equal

numbers of each class, it is used as the default class, and HENRY learns a rule to describe
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westbound trains. FOIL6 learns the following definition for westbound (this is achieved by

swapping the negative and positive examples in the eastbound definition):

westbound(A) :- has-car(A,B), jagged-top(B).

Quinlan (1990) gives a different definition, which may be the result of differences in the

version of the FOIL implementations used. Quinlan’s definition for westbound is:

IS (A = 1 AND  long (A)) AND c11 = 0 AND c31 = 0 AND c51 = 0 ?
No     Yes -> class = westbound
|
class = eastbound

Figure 5.3 Relational ripple-down rules generated by HENRY for westbound trains.

westbound(A) :- has-car(A,B), long(B), 2-wheels(B), not(open-top(B)).

The first difference between HENRY’s definition and FOIL’s is the absence of the

has-car relation. This relation is not defined in HENRY’s data set because the information

is given along with the class value in the trains.arff file. The has-car relation provides a

link between the variable representing the train in the head of the FOIL definition with

the variable representing the car in the body of the clause. The definitions generated by

HENRY assume all objects identified in the clause are cars. The second literal in Quinlan’s

westbound definition is the same as the first in HENRY’s definition. Following that the

problem with negative literals, discussed in the previous section, arises again.

Figure 5.4 shows the concept description generated by HENRY with the order of the

class values reversed. This is HENRY’s equivalent to FOIL’s eastbound definition and quite

obviously suffers from not having negated terms. Allowing HENRY to search through the

space of negative terms would be beneficial for classification tasks such as this and the

arches problem.

IS (A = 1 AND  three-wheels (A)) AND c81 = 0 ?
No     Yes -> class = eastbound
|
IS c21 = 1 ?
No     Yes -> class = eastbound
|
IS c41 = 1 ?
No     Yes -> class = eastbound
|
class = westbound

Figure 5.4 Relational ripple-down rules generated by HENRY for eastbound trains.

The text classification problem
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IS (A = "machine" AND B = "learning" AND  "succ" (A B)) ?
No     Yes
|      |
|      IS "0" = "like" ?
|      No     Yes -> "class" = "neg"
|      |
|      "class" = "pos"
|
IS (C = "induce" AND D = "decision" AND  "succ" (C D)) AND
   (E = "decision" AND F = "trees" AND  "succ" (E F)) ?
No     Yes -> "class" = "pos"
|
"class" = "neg"

Figure 5.5 Relational ripple-down rules generated by HENRY for the text classification
problem.

The text classification problem is similar to that introduced in Section 3.1. The data

represents the first ten words of thirteen artificial technical report abstracts, five of

which are about machine learning (the target concept). The abstracts are intended to be

difficult for a propositional scheme to distinguish using data that only indicates the

appearance of words. The planned definition specifies positional relationships between

important words in the text.

The learning algorithms are given the following background relations defining

positional relationships between words:

ml_document(D) document D is about machine learning

succ(A,B) word B immediately follows word A

The words themselves are identified by the document they occur in and their position in

that document:

c4.5(D,N) “c4.5” is the Nth word of document D

ability(D,N) “ability” is the Nth word of document D

... similar definitions for every other word in the text

A set of extensional definitions based on these relations provides background information

about the positions of the words in the thirteen abstracts.

FOIL’s solution

The FOIL input file contains the definitions as they are described above. Each word

becomes a relation name, with an extensional definition for every occurrence of the word

in an abstract. From this data FOIL learns the following definition for the ml_document:

ml_document(A) :- algorithm(A,B), not(the(A,B)).

ml_document(A) :- as(A,B).

HENRY’s solution
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HENRY requires two ARFF  files for this problem. The first specifies the thirteen example

abstracts as tuples indicating their class value and the word that appears in each position

in the abstract. The attributes pertaining to word positions are declared with every word

from the text because HENRY only compares symbolic attributes declared with the same

set of symbols. The second data file contains extensional definitions for the successor

relation over the first ten word positions. Figure 5.5 shows the concept description

generated by HENRY.

In this task HENRY has learned a concept description that appears more intuitive

than FOIL’s. Although FOIL’s solution is simpler, it is more specific to the training

examples than HENRY’s RDR tree. HENRY has recognised two important phrases that

appear in the machine learning abstracts. The first, “machine learning”, accounts for

three positive examples and one negative example, hence the exception to the first rule

that specifically identifies the negative example as having “like” as its first word

(position 0). The second phrase is “induce decision trees”, which covers the other two

positive examples.

HENRY’s version of the text data differs in form from the data sets presented in the

previous two experiments, where the values in the propositional data set indicated the

presence of absence of an object, and were therefore equivalent to the truth values true

and false. In this data set the values can be any of the words that appear in the text. This

removes the need to define the type document that provides the link between the target

relation and the background relations in the purely relational form. It would be possible to

represent this data set in a manner similar to that used for FOIL, with the propositional

data set mapping each document’s class value to an object of type document. The first

rule in the RDR tree might then look like:

IS A = “t” ... AND machine(A B) ... AND learning(A C) ... AND succ(B C) ?

Here the variable A refers to an object of type document and the variables B and C refer

to objects of type word. The next task shows a data set expressed using the “mapping”

approach.

The numbers problem

The objective of this task is to identify a set membership constraint for a group of

integers, ranging from 0 to 18. Background information is in the form of four

mathematical properties, which each learning algorithm must use to determine the

membership criterion for a given subset of the integers. The following relations are used

to specify these properties:

prime(A) integer A is a prime

odd(A) integer A is odd
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IS (A = "t" AND  "prime" (A)) AND (A = "t" AND  "less_than" (A "12"))?
No     Yes -> "class" = "pos"
|
"class" = "neg"

Figure 5.6 Relational ripple-down rules generated by HENRY for the numbers problem.

even(A) integer A is even

less_than(A,B) integer A is less than integer B

A set of extensional definitions using these relations defines the properties of the

nineteen integers in the expected manner.

FOIL’s solution

The FOIL input file is shown in the appendix (file nums3.foil). The name of the target

definition (indicated by the absence of an asterisk in front of its declaration) betrays the

intended membership criterion. The type num defines the nineteen integers, and these

appear as positive and negative examples of the target relation as expected. The

remainder of the file defines the other mathematical properties.

From this data FOIL generates the following definition for primeslessthan12:

primelessthan12(A) :- prime(A), lessthan(A,B), lessthan(B,C), lessthan(C,D), 
prime(B).

This definition is true for all five positive training examples, but it is intuitively bad.

The addition of new negative examples (and positive examples if any existed) would cause

it to fail. Even though it uses no constant values, the definition is specific to the number

of training examples.

HENRY’s solution

HENRY again requires three arff files for this data. The first defines the nineteen integers

(file nums3.arff), and the others (nums3_1rel.arff and nums3_2rel.arff) define the unary

and binary background relations in the usual way. The file defining the integers does no

more than map each integer value to an attribute name, and specify whether or not the

integer is a member of the target concept. It is a grid with a diagonal line of “t”s showing

where the nth column intersects the nth row. From this data HENRY generates the

concept description in Figure 5.5.

An integer N matches this definition if it has a “t” for an attribute that has

definitions for prime and less_than(N,”12”)—HENRY has found the intended set

membership constraint of “prime and less than 12”. Although the rule contains a

constant value, the definition would endure with new negative examples. This task
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indicates how HENRY can combine variables and constant values in relational terms, and

how this can be beneficial in some classification tasks.

6.
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Conclusions

HENRY shows that both a probabilistic search heuristic and a tree-like concept description

format can be used successfully in relational learning. Despite the experimental nature of

the implementation it is capable of managing, in a reasonable amount of time, a number

of the standard relational learning tasks presented in the literature. However, some

characteristics of the ripple-down rule structure place other tasks, learnable by inductive

logic programs, outside HENRY’s scope. Some limitations in the implementation, imposed

largely by the project’s timespan, also make some of the concept descriptions generated

by the program less than satisfactory.

Combining propositional and relational terms

One of the main advantages HENRY has over standard inductive logic programming

systems is its ability to combine both propositional and relational terms in a single rule.

Relational terms using a mixture of variables and constant values are also outside the

restrictions imposed by the ILP framework, yet their use by HENRY is shown to be

beneficial in one experiment. The use of different-order terms is not limited to ripple-

down rules, and HENRY can also use them in DNF concept descriptions. However, ripple-

down rules provide a more concise description, as shown with the iris data set.

The ability to combine relational and propositional terms means that HENRY can

apply three relational operators to purely propositional data. These three relations,

equality for symbolic attributes and two inequalities for numeric data, can be used on any

pair of attributes of the same type, and increase the classification accuracy of the concept

description for the iris data by 4%. HENRY’s performance on the other UCI data sets

using these relations is less remarkable, and may be due to the character of the individual

attributes. In the iris data set all the attributes (apart form the class) are numeric, and all

are measurements of length using the same unit. Therefore, these attributes are suitable

for comparison using the < and  relations,  as evidenced by the increase in accuracy. The

other data sets, however, often have a combination of numeric and symbolic attributes,

the units of which are incompatible for comparison. For example, there is little point in

directly comparing an attribute representing time with one representing weight. Most

symbolic attributes are also incompatible for direct comparison even when they share the

same set of symbols. The assignment of the symbols is arbitrary and a different

assignment would result in a different set of relational regularities appearing in the data.

At present HENRY compares every pair of numeric attributes and every pair of

symbolic attributes in a data set if the user specifies the use of the three standard

relations. It would be better to assume that no pair of attributes are comparable, and
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require the user to specify sets of attributes that share the same meaning. This would

reduce the search space of the algorithm, and also eliminate the possibility of

relationships that occur by chance being discovered.

Experimental results

The relational experiments presented in Chapter 5 show that HENRY is able to learn

concept descriptions similar to those learned by FOIL, given a similar set of background

relations. In most cases the initial positive literals in FOIL’s definition of a concept are

mirrored in HENRY’s ripple-down rules. However, the nature of the learning tasks

highlights deficiencies in HENRY’s current implementation. The tasks were selected to

illustrate the capabilities of FOIL, and show the range of problems it is able to solve. Part

of this range involves learning recursive definitions for such concepts as list membership

and reversal. HENRY is unable to learn recursive definitions using ripple-down rules,

because the structure cannot make reference to itself. Moreover, the feasibility of

multiple-tree concept descriptions is equivocal. Structures of this form might be necessary

to attain the same level of meaning expressed in a multi-clause logic program, but it is

unclear how such concept definitions would be generated and evaluated.

Negated literals

Another feature that FOIL finds advantageous is the use of negated literals, which allows

the algorithm to practically double the number of relations it can search through.

Empowering HENRY with such an ability is possible, and it would have additional benefits.

Presently the program uses three propositional operators, <, , and =. A negation operator

would allow the set of operators to be replaced with <, not  < (same as ), =, and not  =. This

would provide a certain symmetry between the symbolic and numeric operators, although

the worth of  “not equal” is not obvious.

Another approach to this issue would be to re-express many of the learning problems

that make use of negated literals so that the reciprocal of the relation is stated in the

background knowledge. In the arches problem, the touches relation could be replaced with

an extensional definition for not_touches or gap_between. This relation would then be

used in the clauses defining arch  producing what might be considered a more satisfactory

solution. The important feature of the upright blocks in an arch is that there is a gap

between them, and this should be expressed in a positive manner. It is possible to think of

many relationships in addition to touches that are not  true for a pair of blocks.

The other side of this issue is concerned with reducing the number of extensional

definitions required to specify a relation such as touches. With the intent of using the

negated form of this relation, FOIL need only be given knowledge about the few blocks

that do touch. The extensional definition for gap_between would contain every
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combination of blocks not covered by touches. In some situations re-expressing a relation

in this manner might be impractical, and could also interfere with the use of the closed-

world assumption.

Ripple-down rules

The search for relational terms increases the search space for any learning task. FOIL

employs several restrictions to limit its search, but the space explored is still large. Partly

for this reason, and partly because they are designed around a simple predefined target

relation, the example relational learning tasks presented in the literature tend to be very

small. The concept descriptions defining these relations often contain one or two clauses,

with only a few literals each. The simplicity of the target relations makes redundant

many of the features of ripple-down rules. HENRY is able to express the target concept in

many cases as an RDR tree with a single rule. The if_false branch of the tree classifies an

example as the default class, and the if_true branch is also empty.

The ripple-down rule structure gains much of its advantage over traditional rule

formats in propositional domains. Here, data sets often contain many thousands of

examples described by tens or hundreds of attributes, and the diffuse nature of the target

concepts often necessitates large rule sets or decision trees for accurate representation.

Ripple-down rules excel in these situations by removing much of the redundancy present

in DNF rules. The binary nature of the logic used to match examples to rules means that

any one rule can only distinguish examples of a single class. This is not a problem for an

algorithm learning ripple-down rules because it defers discrimination of all examples not

matching the current rule to the if_false subtree of the rule. A DNF learner in the same

situation may have to duplicate large parts of rules to cover each class in turn.

The definition of a covering algorithm means it must generate a description for

every class in the target concept. If there are three classes, as in the iris data, the

algorithm must generate at least one definition for each class. However, the definition of

inductive logic programming means that ILP systems need only learn concepts that have

two classes. These concepts define a set of objects that belong to the target relation, so

the two classes for any problem are the set of objects belonging to the target relation, and

the set not belonging to the relation. The computational meaning of logic programming

implies an ILP system need only present a definition for membership to the target

relation. Any object not matching this definition is not a member of the target relation

by the negation-as-failure rule.

The use of two-class domains for relational learning is another factor in the limited

application of ripple-down rules to these tasks. Ripple-down rules that describe a two-class

concept can often degenerate into a list-like binary tree, where examples are continually
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passed down if_false branches, and classified by the first rule they match. The RDR tree in

Figure 4.7 shows how a multi-class problem can produce a more balanced tree. To learn an

equivalent concept two-class algorithms such as FOIL must generate three definitions, one

for each cultivar of iris in turn. Classification of new examples then requires matching

against all three concept descriptions, the combination of which may have a number of

redundant clauses.

The ripple-down rule structure removes two of the uncertainties that arise when

evaluating DNF rules. Examples that match two or more rules in a DNF rule set may be

given more than one classification, and examples that match none of the rules will be

given no classification. Ripple-down rules avoid these problems by providing default

classifications for examples that do not match any rules in the tree. The tree-like

structure also ensures that examples can follow only a single path to a leaf node and be

given a single classification. Inductive logic programming systems overcome these

problems by producing rules that define a single class, thus eliminating the possibility of

multiple classifications. Any examples not matching any of the clauses in the definition

are simply classified as negative examples of the target concept, and no examples are left

uncategorised.

Missing values

Missing values can be a cause of new examples not matching rules and being misclassified.

The traditional approach to this situation is to assume the missing value would not have

matched the term in question, and the example fails to match the rule. If an example is

missing a value for every attribute, an RDR concept description will see it classified as the

most frequent class in the training data—the example will fail to match every rule and

will be given the default definition of the top-most rule. This method assigns an

“unclassifiable” example to the class that is most likely to be correct, given no

information about the example. An alternative approach is to assume the example is

similar to the other examples arriving at term that evokes the missing value. This

method assumes the example has the average of the values seen at a given point in the

RDRs, and uses that value instead of simply failing to match the term. The “average

example” approach allows examples that are missing only a few values to match rules

that also match examples similar in terms of other attributes. Experimental results show

that this method is at least as good as the “always fail” technique, and improves the

performance of the concept description on data sets with many missing values.

In combination with the other features of HENRY, this approach to missing values

establishes the algorithm as an auspicious addition to the field of machine learning. With

additional work on the missing value issue, and rectification of the other shortcomings
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identified in the implementation, HENRY should prove successful at combining the duties

relational and propositional learning.
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Appendix

The UCI datasets

Dataset Examples Attributes Missing values Class values Notes

BC 286  10  9 2 Recurrence of breast cancer

CH 3196  37  0 2 Chess end games

GL 214  10  0 7 Glass types, no examples of class 4

G2 163  10 7 2 GL with classes 1 and 3 combined,
classes 4-7 removed

HD 303  14  7 5 Heart disease

HE 155  20  167 2 Hepatitis

HO 368  23  1927 2 Horse cholic

HY 3163  26  5329 2 Thyroid disease - hypothyroid

IR 150  5  0 3 Iris

LA 57  17  326 2 Labour negotiations

LY 148  19  0 4 Lymphography

MU 8124  23  2480 2 Mushrooms

SE 3163  26  5329 2 Thyroid disease - sick-euthyroid

SO 47  36  0 4 Soybean diseases

VO 435  16  392 2 Voting records

V1 435  17  381 2 VO with attribute “physician-fee-
freeze” removed

The arches dataset

arches.arff
@relation arches neg,1,0,0,0,0,1,0,0,0,1,0,0
@attribute class {neg,pos} neg,1,0,0,0,0,1,0,0,0,0,1,0
@attribute A1 {1,0} neg,1,0,0,0,0,1,0,0,0,0,0,1
@attribute A2 {1,0} neg,1,0,0,0,0,0,1,0,1,0,0,0
@attribute A3 {1,0} neg,1,0,0,0,0,0,1,0,0,1,0,0
@attribute A4 {1,0} neg,1,0,0,0,0,0,1,0,0,0,1,0
@attribute B1 {1,0} neg,1,0,0,0,0,0,1,0,0,0,0,1
@attribute B2 {1,0} neg,1,0,0,0,0,0,0,1,1,0,0,0
@attribute B3 {1,0} neg,1,0,0,0,0,0,0,1,0,1,0,0
@attribute B4 {1,0} neg,1,0,0,0,0,0,0,1,0,0,1,0
@attribute C1 {1,0} neg,1,0,0,0,0,0,0,1,0,0,0,1
@attribute C2 {1,0} neg,0,1,0,0,1,0,0,0,1,0,0,0
@attribute C3 {1,0} neg,0,1,0,0,1,0,0,0,0,1,0,0
@attribute C4 {1,0} neg,0,1,0,0,1,0,0,0,0,0,1,0
@data neg,0,1,0,0,1,0,0,0,0,0,0,1
pos,1,0,0,0,1,0,0,0,1,0,0,0 neg,0,1,0,0,0,1,0,0,1,0,0,0
pos,0,0,0,1,0,0,0,1,0,0,0,1 neg,0,1,0,0,0,1,0,0,0,1,0,0

neg,0,1,0,0,0,1,0,0,0,0,1,0
neg,1,0,0,0,1,0,0,0,0,1,0,0 neg,0,1,0,0,0,1,0,0,0,0,0,1
neg,1,0,0,0,1,0,0,0,0,0,1,0 neg,0,1,0,0,0,0,1,0,1,0,0,0
neg,1,0,0,0,1,0,0,0,0,0,0,1 neg,0,1,0,0,0,0,1,0,0,1,0,0
neg,1,0,0,0,0,1,0,0,1,0,0,0 neg,0,1,0,0,0,0,1,0,0,0,1,0
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neg,0,1,0,0,0,0,1,0,0,0,0,1 neg,0,0,1,0,0,0,0,1,0,0,1,0
neg,0,1,0,0,0,0,0,1,1,0,0,0 neg,0,0,1,0,0,0,0,1,0,0,0,1
neg,0,1,0,0,0,0,0,1,0,1,0,0 neg,0,0,0,1,1,0,0,0,1,0,0,0
neg,0,1,0,0,0,0,0,1,0,0,1,0 neg,0,0,0,1,1,0,0,0,0,1,0,0
neg,0,1,0,0,0,0,0,1,0,0,0,1 neg,0,0,0,1,1,0,0,0,0,0,1,0
neg,0,0,1,0,1,0,0,0,1,0,0,0 neg,0,0,0,1,1,0,0,0,0,0,0,1
neg,0,0,1,0,1,0,0,0,0,1,0,0 neg,0,0,0,1,0,1,0,0,1,0,0,0
neg,0,0,1,0,1,0,0,0,0,0,1,0 neg,0,0,0,1,0,1,0,0,0,1,0,0
neg,0,0,1,0,1,0,0,0,0,0,0,1 neg,0,0,0,1,0,1,0,0,0,0,1,0
neg,0,0,1,0,0,1,0,0,1,0,0,0 neg,0,0,0,1,0,1,0,0,0,0,0,1
neg,0,0,1,0,0,1,0,0,0,1,0,0 neg,0,0,0,1,0,0,1,0,1,0,0,0
neg,0,0,1,0,0,1,0,0,0,0,1,0 neg,0,0,0,1,0,0,1,0,0,1,0,0
neg,0,0,1,0,0,1,0,0,0,0,0,1 neg,0,0,0,1,0,0,1,0,0,0,1,0
neg,0,0,1,0,0,0,1,0,1,0,0,0 neg,0,0,0,1,0,0,1,0,0,0,0,1
neg,0,0,1,0,0,0,1,0,0,1,0,0 neg,0,0,0,1,0,0,0,1,1,0,0,0
neg,0,0,1,0,0,0,1,0,0,0,1,0 neg,0,0,0,1,0,0,0,1,0,1,0,0
neg,0,0,1,0,0,0,1,0,0,0,0,1 neg,0,0,0,1,0,0,0,1,0,0,1,0
neg,0,0,1,0,0,0,0,1,1,0,0,0
neg,0,0,1,0,0,0,0,1,0,1,0,0

arch_1rels.arff
@relation 1-ary_rels brick,C3
@attribute rel-def {brick,wedge,p-

ped}
brick,C4
wedge,A4

@attribute a
{A1,A2,A3,A4,B1,B2,B3,B4,C1,C2,C3,C4}

p-ped,A1
p-ped,A2

@data p-ped,A3
brick,A1 p-ped,B1
brick,A2 p-ped,B2
brick,A3 p-ped,B3
brick,B1 p-ped,B4
brick,B2 p-ped,C1
brick,B3 p-ped,C2
brick,B4 p-ped,C3
brick,C1 p-ped,C4
brick,C2 p-ped,A4

arch_2rels.arff
@relation 2-ary_rels touches,A1,B1
@attribute rel-def {supports,left-

of,touches}
touches,B1,A1
touches,A1,C1

@attribute a
{A1,A2,A3,A4,B1,B2,B3,B4,C1,C2,C3,C4}

touches,C1,A1
touches,A2,B2

@attribute b
{A1,A2,A3,A4,B1,B2,B3,B4,C1,C2,C3,C4}

touches,B2,A2
touches,A2,C2

@data touches,C2,A2
left-of,B1,C1 touches,A3,B3
left-of,B2,C2 touches,B3,A3
left-of,B3,C3 touches,B3,C3
left-of,B4,C4 touches,C3,B3
supports,B1,A1 touches,C3,A3
supports,C1,A1 touches,A3,C3
supports,B3,A3 touches,A4,B4
supports,C3,A3 touches,B4,A4
supports,B4,A4 touches,A4,C4
supports,C4,A4 touches,C4,A4
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arches.foil
#block:a1,b1,c1,a2,b2,c2,a3,b3,c3,a4

,b4,c4.
a4,b4
b4,a4
a4,c4

arch(block,block,block) c4,a4
a1,b1,c1 .
a4,b4,c4 *brick(block)
. a1
*leftof(block,block) b1
b1,c1 c1
b2,c2 a2
b3,c3 b2
b4,c4 c2
. a3
*supports(block,block) b3
b1,a1 c3
c1,a1 b4
b3,a3 c4
c3,a3 .
b4,a4 *wedge(block)
c4,a4 a4
. .
*touches(block,block) *parallelepiped(block)
a1,b1 a1
b1,a1 b1
a1,c1 c1
c1,a1 a2
a2,b2 b2
b2,a2 c2
a2,c2 a3
c2,a2 b3
a3,b3 c3
b3,a3 a4
a3,c3 b4
c3,a3 c4
b3,c3 .
c3,b3

The trains dataset

trains.arff
@relation trains
@attribute class {eastbound,westbound}
@attribute c11 {1,0}
@attribute c12 {1,0}
@attribute c13 {1,0}
@attribute c14 {1,0}
@attribute c21 {1,0}
@attribute c22 {1,0}
@attribute c23 {1,0}
@attribute c31 {1,0}
@attribute c32 {1,0}
@attribute c33 {1,0}
@attribute c41 {1,0}
@attribute c42 {1,0}
@attribute c43 {1,0}
@attribute c44 {1,0}
@attribute c51 {1,0}
@attribute c52 {1,0}
@attribute c53 {1,0}
@attribute c61 {1,0}
@attribute c62 {1,0}
@attribute c71 {1,0}
@attribute c72 {1,0}
@attribute c73 {1,0}
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@attribute c81 {1,0}
@attribute c82 {1,0}
@attribute c91 {1,0}
@attribute c92 {1,0}
@attribute c93 {1,0}
@attribute c94 {1,0}
@attribute c101 {1,0}
@attribute c102 {1,0}
@data
eastbound,1,1,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
eastbound,0,0,0,0,1,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
eastbound,0,0,0,0,0,0,0,1,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
eastbound,0,0,0,0,0,0,0,0,0,0,1,1,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
eastbound,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0
westbound,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,0,0,0,0,0,0,0,0,0,0,0
westbound,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,0,0,0,0,0,0,0,0
westbound,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,0,0,0,0,0,0
westbound,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,0,0
westbound,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1

train_1rel.arff
@relation 1-ary one-item,c21
@attribute rel {long,open-

top,jagged-top,sloping-top,one-
item,two-items,three-items,two-
wheels,three-wheels}

one-item,c22
one-item,c31
one-item,c32
one-item,c33

@attribute a1
{c11,c12,c13,c14,c21,c22,c23,c31,c32,
c33,c41,c42,c43,c44,c51,c52,c53,c61,c
62,c71,c72,c73,c81,c82,c91,c92,c93,c9
4,c101,c102}

one-item,c41
one-item,c42
one-item,c43
one-item,c44
one-item,c51

@data one-item,c52
long,c11 one-item,c53
long,c13 one-item,c62
long,c33 one-item,c71
long,c52 one-item,c72
long,c61 one-item,c81
long,c73 one-item,c82
long,c81 one-item,c91
long,c92 one-item,c92
long,c102 one-item,c93
open-top,c11 one-item,c94
open-top,c13 one-item,c101
open-top,c14 two-items,c23
open-top,c21 two-items,c102
open-top,c22 three-items,c11
open-top,c31 three-items,c61
open-top,c41 two-wheels,c11
open-top,c42 two-wheels,c12
open-top,c44 two-wheels,c14
open-top,c51 two-wheels,c21
open-top,c62 two-wheels,c22
open-top,c71 two-wheels,c23
open-top,c72 two-wheels,c31
open-top,c82 two-wheels,c32
open-top,c91 two-wheels,c41
open-top,c93 two-wheels,c42
open-top,c94 two-wheels,c43
open-top,c101 two-wheels,c44
open-top,c102 two-wheels,c51
jagged-top,c73 two-wheels,c53
jagged-top,c92 two-wheels,c61
sloping-top,c12 two-wheels,c62
one-item,c12 two-wheels,c71
one-item,c13 two-wheels,c72
one-item,c14 two-wheels,c73
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two-wheels,c82 two-wheels,c102
two-wheels,c91 three-wheels,c13
two-wheels,c92 three-wheels,c33
two-wheels,c93 three-wheels,c52
two-wheels,c94 three-wheels,c81
two-wheels,c101

trains_2rel.arff
@relation 2-ary infront,c22,c23
@attribute rel {infront} infront,c31,c32
@attribute a

{c11,c12,c13,c14,c21,c22,c23,c31,c32,
c33,c41,c42,c43,c44,c51,c52,c53,c61,c
62,c71,c72,c73,c81,c82,c91,c92,c93,c9
4,c101,c102}

infront,c32,c33
infront,c41,c42
infront,c42,c43
infront,c43,c44
infront,c51,c52

@attribute b
{c11,c12,c13,c14,c21,c22,c23,c31,c32,
c33,c41,c42,c43,c44,c51,c52,c53,c61,c
62,c71,c72,c73,c81,c82,c91,c92,c93,c9
4,c101,c102}

infront,c52,c53
infront,c61,c62
infront,c71,c72
infront,c72,c73
infront,c81,c82

@data infront,c91,c92
infront,c11,c12 infront,c92,c93
infront,c12,c13 infront,c93,c94
infront,c13,c14 infront,c101,c102
infront,c21,c22

trains.foil

#t:t1,t2,t3,t4,t5,t6,t
7,t8,t9,t10.

t2,c21 t10,c101

t2,c22 t10,c102
#c:c11,c12,c13,c14,c21
,c22,c23,c31,c32,c33,c
41,c42,c43,c44,c51,c52
,c53,c61,c62,c71,c72,c
73,c81,c82,c91,c92,c93
,c94,c101,c102.

t2,c23 .

t3,c31 *infront(c,c)

t3,c32 c11,c12

t3,c33 c12,c13

t4,c41 c13,c14
eastbound(t)

t4,c42 c21,c22
t1

t4,c43 c22,c23
t2

t4,c44 c31,c32
t3

t5,c51 c32,c33
t4

t5,c52 c41,c42
t5

t5,c53 c42,c43
;

t6,c61 c43,c44
t6

t6,c62 c51,c52
t7

t7,c71 c52,c53
t8

t7,c72 c61,c62
t9

t7,c73 c71,c72
t10

t8,c81 c72,c73
.

t8,c82 c81,c82
*has-car(t,c)

t9,c91 c91,c92
t1,c11

t9,c92 c92,c93
t1,c12

t9,c93 c93,c94
t1,c13

t9,c94 c101,c102
t1,c14
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.

*long(c)

c11

c13

c33

c52

c61

c73

c81

c92

c102

.

*open-top(c)

c11

c13

c14

c21

c22

c31

c41

c42

c44

c51

c62

c71

c72

c82

c91

c93

c94

c101

c102

.

*jagged-top(c)

c73

c92

.

*sloping-top(c)

c12

.

*one-item(c)

c12

c13

c14

c21

c22

c31

c32

c33

c41

c42

c43

c44

c51

c52

c53

c62

c71

c72

c81

c82

c91

c92

c93

c94

c101

.

*two-items(c)

c23

c102

.

*three-items(c)

c11

c61

.

*two-wheels(c)

c11

c12

c14

c21

c22

c23

c31

c32

c41

c42

c43

c44

c51

c53

c61

c62

c71

c72

c73

c82

c91

c92

c93

c94

c101

c102

.

*three-wheels(c)

c13

c33

c52

c81

.

The numbers data

nums3.foil

#num:0,1,2,3,4,5,6,7,8
,9,10,11,12,13,14,15,1
6,17,18.

primelessthan12(num)

2

3

5

7

11

;

0

1

4

6

8

9

10

12

13

14

2



15

16

17

18

.

*even(num)

0

2

4

6

8

10

12

14

16

18

.

*odd(num)

1

3

5

7

9

11

13

15

17

.

*prime(num)

2

3

5

7

11

13

17

.

*lessthan(num,num)

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

0,9

0,10

0,11

0,12

1,2

1,3

1,4

1,5

1,6

1,7

1,8

1,9

1,10

1,11

1,12

2,3

2,4

2,5

2,6

2,7

2,8

2,9

2,10

2,11

2,12

3,4

3,5

3,6

3,7

3,8

3,9

3,10

3,11

3,12

4,5

4,6

4,7

4,8

4,9

4,10

4,11

4,12

5,6

5,7

5,8

5,9

5,10

5,11

5,12

6,7

6,8

6,9

6,10

6,11

6,12

7,8

7,9

7,10

7,11

7,12

8,9

8,10

8,11

8,12

9,10

9,11

9,12

10,11

10,12

11,12

0,13

1,13

2,13

3,13

4,13

5,13

6,13

7,13

8,13

9,13

10,13

11,13

12,13

0,14

1,14

2,14

3,14

4,14

5,14

6,14

7,14

8,14

9,14

10,14

11,14

12,14

13,14

0,15

1,15

2,15

3,15

2



4,15

5,15

6,15

7,15

8,15

9,15

10,15

11,15

12,15

13,15

14,15

0,16

1,16

2,16

3,16

4,16

5,16

6,16

7,16

8,16

9,16

10,16

11,16

12,16

13,16

14,16

15,16

0,17

1,17

2,17

3,17

4,17

5,17

6,17

7,17

8,17

9,17

10,17

11,17

12,17

13,17

14,17

15,17

16,17

0,18

1,18

2,18

3,18

4,18

5,18

6,18

7,18

8,18

9,18

10,18

11,18

12,18

13,18

14,18

15,18

16,18

17,18

.

nums3.arff
@relation primes_less_than_12
@attribute "class" {"neg","pos"}
@attribute "0" {"t","f"}
@attribute "1" {"t","f"}
@attribute "2" {"t","f"}
@attribute "3" {"t","f"}
@attribute "4" {"t","f"}
@attribute "5" {"t","f"}
@attribute "6" {"t","f"}
@attribute "7" {"t","f"}
@attribute "8" {"t","f"}
@attribute "9" {"t","f"}
@attribute "10" {"t","f"}
@attribute "11" {"t","f"}
@attribute "12" {"t","f"}
@attribute "13" {"t","f"}
@attribute "14" {"t","f"}
@attribute "15" {"t","f"}
@attribute "16" {"t","f"}
@attribute "17" {"t","f"}
@attribute "18" {"t","f"}
@data
"neg","t","f","f","f","f","f","f","f","f","f","f","f","f","f","f","f","f","f","f"
"neg","f","t","f","f","f","f","f","f","f","f","f","f","f","f","f","f","f","f","f"
"pos","f","f","t","f","f","f","f","f","f","f","f","f","f","f","f","f","f","f","f"
"pos","f","f","f","t","f","f","f","f","f","f","f","f","f","f","f","f","f","f","f"
"neg","f","f","f","f","t","f","f","f","f","f","f","f","f","f","f","f","f","f","f"
"pos","f","f","f","f","f","t","f","f","f","f","f","f","f","f","f","f","f","f","f"
"neg","f","f","f","f","f","f","t","f","f","f","f","f","f","f","f","f","f","f","f"
"pos","f","f","f","f","f","f","f","t","f","f","f","f","f","f","f","f","f","f","f"
"neg","f","f","f","f","f","f","f","f","t","f","f","f","f","f","f","f","f","f","f"
"neg","f","f","f","f","f","f","f","f","f","t","f","f","f","f","f","f","f","f","f"
"neg","f","f","f","f","f","f","f","f","f","f","t","f","f","f","f","f","f","f","f"
"pos","f","f","f","f","f","f","f","f","f","f","f","t","f","f","f","f","f","f","f"
"neg","f","f","f","f","f","f","f","f","f","f","f","f","t","f","f","f","f","f","f"
"neg","f","f","f","f","f","f","f","f","f","f","f","f","f","t","f","f","f","f","f"
"neg","f","f","f","f","f","f","f","f","f","f","f","f","f","f","t","f","f","f","f"
"neg","f","f","f","f","f","f","f","f","f","f","f","f","f","f","f","t","f","f","f"
"neg","f","f","f","f","f","f","f","f","f","f","f","f","f","f","f","f","t","f","f"
"neg","f","f","f","f","f","f","f","f","f","f","f","f","f","f","f","f","f","t","f"
"neg","f","f","f","f","f","f","f","f","f","f","f","f","f","f","f","f","f","f","t"
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nums3_1rel.arff
@relation 1-ary
@attribute rel-types

{"even","odd","prime"}
@attribute a

{"0","1","2","3","4","5","6","7","8",
"9","10","11","12","13","14","15","16
","17","18"}
@data
"even","0"
"even","2"
"even","4"
"even","6"
"even","8"
"even","10"
"even","12"
"even","14"
"even","16"

"even","18"
"odd","1"
"odd","3"
"odd","5"
"odd","7"
"odd","9"
"odd","11"
"odd","13"
"odd","15"
"odd","17"
"prime","2"
"prime","3"
"prime","5"
"prime","7"
"prime","11"
"prime","13"
"prime","17"

nums3_2rel.arff
@relation 2-ary
@attribute rel-types {"less_than"}
@attribute a

{"0","1","2","3","4","5","6","7","8",
"9","10","11","12","13","14","15","16
","17","18"}
@attribute b

{"0","1","2","3","4","5","6","7","8",
"9","10","11","12","13","14","15","16
","17","18"}
@data
"less_than","0","1"
"less_than","0","2"
"less_than","0","3"
"less_than","0","4"
"less_than","0","5"
"less_than","0","6"
"less_than","0","7"
"less_than","0","8"
"less_than","0","9"
"less_than","0","10"
"less_than","0","11"
"less_than","0","12"
"less_than","1","2"
"less_than","1","3"
"less_than","1","4"
"less_than","1","5"
"less_than","1","6"
"less_than","1","7"
"less_than","1","8"
"less_than","1","9"
"less_than","1","10"
"less_than","1","11"
"less_than","1","12"
"less_than","2","3"
"less_than","2","4"
"less_than","2","5"
"less_than","2","6"
"less_than","2","7"
"less_than","2","8"
"less_than","2","9"
"less_than","2","10"
"less_than","2","11"
"less_than","2","12"

"less_than","3","4"
"less_than","3","5"
"less_than","3","6"
"less_than","3","7"
"less_than","3","8"
"less_than","3","9"
"less_than","3","10"
"less_than","3","11"
"less_than","3","12"
"less_than","4","5"
"less_than","4","6"
"less_than","4","7"
"less_than","4","8"
"less_than","4","9"
"less_than","4","10"
"less_than","4","11"
"less_than","4","12"
"less_than","5","6"
"less_than","5","7"
"less_than","5","8"
"less_than","5","9"
"less_than","5","10"
"less_than","5","11"
"less_than","5","12"
"less_than","6","7"
"less_than","6","8"
"less_than","6","9"
"less_than","6","10"
"less_than","6","11"
"less_than","6","12"
"less_than","7","8"
"less_than","7","9"
"less_than","7","10"
"less_than","7","11"
"less_than","7","12"
"less_than","8","9"
"less_than","8","10"
"less_than","8","11"
"less_than","8","12"
"less_than","9","10"
"less_than","9","11"
"less_than","9","12"
"less_than","10","11"
"less_than","10","12"
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"less_than","11","12"
"less_than","0","13"
"less_than","1","13"
"less_than","2","13"
"less_than","3","13"
"less_than","4","13"
"less_than","5","13"
"less_than","6","13"
"less_than","7","13"
"less_than","8","13"
"less_than","9","13"
"less_than","10","13"
"less_than","11","13"
"less_than","12","13"
"less_than","0","14"
"less_than","1","14"
"less_than","2","14"
"less_than","3","14"
"less_than","4","14"
"less_than","5","14"
"less_than","6","14"
"less_than","7","14"
"less_than","8","14"
"less_than","9","14"
"less_than","10","14"
"less_than","11","14"
"less_than","12","14"
"less_than","13","14"
"less_than","0","15"
"less_than","1","15"
"less_than","2","15"
"less_than","3","15"
"less_than","4","15"
"less_than","5","15"
"less_than","6","15"
"less_than","7","15"
"less_than","8","15"
"less_than","9","15"
"less_than","10","15"
"less_than","11","15"
"less_than","12","15"
"less_than","13","15"
"less_than","14","15"
"less_than","0","16"
"less_than","1","16"
"less_than","2","16"
"less_than","3","16"

"less_than","4","16"
"less_than","5","16"
"less_than","6","16"
"less_than","7","16"
"less_than","8","16"
"less_than","9","16"
"less_than","10","16"
"less_than","11","16"
"less_than","12","16"
"less_than","13","16"
"less_than","14","16"
"less_than","15","16"
"less_than","0","17"
"less_than","1","17"
"less_than","2","17"
"less_than","3","17"
"less_than","4","17"
"less_than","5","17"
"less_than","6","17"
"less_than","7","17"
"less_than","8","17"
"less_than","9","17"
"less_than","10","17"
"less_than","11","17"
"less_than","12","17"
"less_than","13","17"
"less_than","14","17"
"less_than","15","17"
"less_than","16","17"
"less_than","0","18"
"less_than","1","18"
"less_than","2","18"
"less_than","3","18"
"less_than","4","18"
"less_than","5","18"
"less_than","6","18"
"less_than","7","18"
"less_than","8","18"
"less_than","9","18"
"less_than","10","18"
"less_than","11","18"
"less_than","12","18"
"less_than","13","18"
"less_than","14","18"
"less_than","15","18"
"less_than","16","18"
"less_than","17","18"
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