
Machine Learning in Programming by Demonstration:
Lessons learned from CIMA

David Maulsby1 and Ian H. Witten2

1 Media Laboratory
Massachusetts Institute of Technology

Room E15–311
Cambridge MA 02139–4307 USA

tel. +01 (617) 253–9832
maulsby@media.mit.edu

2 Department of Computer Science
University of Waikato

Private Bag 3105
Hamilton, New Zealand

tel. +64 (7) 838–4246
ihw@cs.waikato.ac.nz

1. INTRODUCTION

Programming-by-demonstration (PBD) systems learn tasks by watching the user perform them. CIMA1

is an interactive learning system for modeling the data selected and modified by a user as he or she
undertakes a task. Part of a PBD system, CIMA is invoked when user actions are matched to find a
common description of their “operands.” Although the system’s interfaces to users and applications are
still too rough-hewn to permit field trials, its performance on recorded dialogs between users and a
simulated agent meets the design goals established prior to its implementation.

The contributions of this work lie in three areas:

• a design methodology for PBD systems;
• a framework for user actions in PBD;
• novel methods of interaction with the user.

These are discussed in separate sections below. First, however, it is necessary to convey the flavor of
what it is like to use the CIMA system, and this is done in the following section.

2. WORKING WITH C IMA

In its present embodiment, CIMA is connected to a text editor within the Macintosh Common Lisp
environment. It can learn to search for textual patterns based on the user’s selections. The system prints
rules and feature descriptions in a listener window; the user can select them to classify them. The user
can also type verbal hints into the listener. The learning system communicates with the text editor
through an application interface.

Suppose that the user has a text file of addresses and is creating an agent to retrieve and dial phone
numbers. She wants to teach the agent to identify the phone numbers that have the local area code
(617), and strip it off. Sample data appears in part i of Figure 1, and the positive examples are listed in
part ii. The scenarios that follow illustrate teaching the concept “local phone number” by examples and
by using hints along with some domain knowledge. We assume that CIMA has not yet been taught the
more general concept of phone number.

Learning from examples

To give the first example, the user selects 243–6166 with the mouse and picks I want this from a popup
menu. The example and its surrounding text are recorded, and the rule (a) in Figure 2.i is proposed.
When the user gives a second example, 220–7299, the rule is generalized to (b). CIMA predicts the third
example, 284–4707. When it predicts 255–6191, which is preceded by a nonlocal area code, the user

1pronounced “Chee-ma”

Maulsby & Witten page 2

rejects it by selecting But not this from the menu. CIMA now attempts to specialize the description to
exclude this negative example. At present it is focusing only on features of the selected text: since no
generalization covers all three positive examples yet excludes the negative, it forms three special-case
rules, shown in (c). When forced to create new special-case rules, CIMA surmises that its current
attribute language may be inadequate, and therefore widens its the focus of attention. In this case, it
checks the surrounding text for distinguishing features. The positive examples follow “617) ”; the
negative example does not. Using this information, it forms the single general rule shown in (d). The
reason why the string “617) ” is proposed rather than merely “7) ”, which would discriminate equally
well, is that by default, text is matched at the word level. However, characters within words can be
matched if CIMA’s focus of attention is directed toward them.

The new rule predicts the remaining positive examples, except for an anomalous one, 339–8184, which
lacks an area code. When the user says I want this, the set of rules (e) is formed. To maximize the
similarity between rules, a generalized pattern is adopted for this final phone number—even though it
is the only example of the new rule.

Suggestions from the user

Now consider the same task taught by examples and hints. Realizing that the distinguishing feature of
a local phone number is its area code, the user selects “(617)” and chooses Look at this from a popup
menu when giving the first example. This directs CIMA to examine the text immediately preceding the
example, focusing in particular on the string suggested by the user. Using this feature, CIMA forms the
rule shown in line (a) of Figure 2.ii. After the second positive example, the phone number is generalized
as shown in (b). This rule predicts the remaining examples other than the final, anomalous one, which
is treated as before.

Rather than point at “(617)” while selecting the first example, the user could have given a verbal hint,
such as it follows my area code. The phrase it follows suggests text either before or after the example,
with preference to the former; the phrase area code is not recognized. Using built-in knowledge that
text delimiters such as punctuation and parentheses are salient, the system focuses on the parenthesis
before the example. The learning algorithm settles on text FOLLOWS)◊ as the relevant feature, since
no other evidence counts against it. A second verbal hint, any numbers OK, which the user gives while
selecting the phone number, causes CIMA to generalize the MATCHES feature, focusing on tokens of type
Number and ignoring other properties such as string value and length. Thus, after one example and two
hints, the rule shown in line (a) of Figure 2.iii is formed. But this rule predicts a negative example,
since the FOLLOWS pattern is too general. To eliminate the negative example, the text FOLLOWS
feature is specialized to “617) ” which is used in rule (b).

A programmer could partially specify the concept of “local phone number” by explicitly identifying the
following features as being relevant to the learning process:

• MATCHES (Target, [Number–Number])
• FOLLOWS (Target, “(617)”)

This specification is incomplete, because it ignores the direction of search. However, the system will
add an appropriate Search direction qualifier when it forms rules from examples. Thus, after the first
positive example the rule shown in entry (a) of Figure 2.iv is obtained. To cover the anomalous positive
example, 339–8148, which has no area code, a second rule, shown in (b), is formed later, using the
MATCHES feature value suggested by the programmer and an alternative value of the suggested
FOLLOWS feature.

The application interface

In our experience, the most difficult aspect of implementing a PBD system is not the learning algorithm
but rather the interface between it and the application program. The PBD system must be able to access
relevant features of data, and compute other features that the application does not represent directly
(in particular, relations among example feature values). More problematic is the recording of user

Maulsby & Witten page 3

actions. As Kosbie (1993) points out, the development of PBD tools has been hampered because most
operating systems enable the recording of only low-level events such as mouse clicks and key presses. He
suggests that representing events in hierarchies will enable PBD systems to analyze actions at an
appropriate level of abstraction. We have recently implemented the CIMACONNECTION, an
application interface that defines protocols for recording actions and data.

Still more problematic is controlling the application to execute predicted actions. Operating-system
level support for this is still only rudimentary: on the Apple Macintosh, for instance, most applications
support only the minimal AppleEvents required to execute commands from AppleScript. But even if
systems support full scripting, it is all too easy to generalize actions in such a way that they could not
be executed by a given application. For instance, CIMA could form a syntactic pattern that a word
processor’s search and replace facility cannot recognize. Since the ability of an agent to generalize data
adds considerable value to an application, it should be preserved and therefore the PBD system must
provide the extra functionality, in the form of pattern matchers and constraint solvers. The
CIMACONNECTION defines a callback protocol so that applications can ask the PBD system to compute
action parameters. Another problem, brought up by Cypher (1993b), is forming “operational”
descriptions. A generalization that is valid for recognizing examples of an action is not necessarily
valid for executing them. For instance, drag graphic such that its x location = previous x + 10 expresses
the generalization that objects are being moved to the right by 10 pixels, but it cannot be executed by the
application unless a y location is also specified. Section 4 of this paper explains how CIMA addresses
this problem.

The user interface

In other research (see Maulsby, 1992, and Section 3 below), we have built and experimented with the
individual components of the user interface for an instructible task agent. The CIMA learning algorithm
was designed to work with such interfaces, since it can process examples, verbal and graphical hints,
and partial specifications given via menus or a formal language. Although the exact form of the user
interface depends on the application, there is a small common set of commands to classify examples,
features and rules (see Section 5), and to direct the agent to execute its predictions.

At present, CIMA has two application and user interfaces. One is a generic recorder of actions described
in an English-like dialect of Lisp. The other, illustrated in Section 2, is a generalized search and
replace facility in an emacs-like text editor. To classify examples and features of items that the user
wants to find, the user pops up the menu shown in Figure 3.i. The first two menu choices classify an
example as positive or negative, the latter two classify a feature as relevant or irrelevant. The user can
select a range of text and classify it either as a whole example or as a feature (a part of an example). In
the figure, the user is classifying the feature “(617)” as relevant to an example phone number. To
communicate verbally, the user types the hint or speaks it into a microphone; examples are shown in
Figure 3.ii. The input is free text. No attempt is made to formally parse it: instead, keywords are
identified and processed as described in section 5. Finally, formal concept specifications are
communicated by typing them in the form of predicates to the listener window, as illustrated in
Figure 3.iii. These two examples show features (MATCHES and FOLLOWS features, respectively)
being classified as relevant to a concept called “local phone number.”

3. DESIGN METHODOLOGY

The first contribution of the CIMA project concerns the way in which the system was conceived. The
feasibility of the interaction protocol was established in a “Wizard of Oz” user study in which a
researcher simulated an instructible agent called TURVY (Maulsby et al ., 1993). This exercise
established the feasibility of the general approach and the necessity of utilizing ambiguous hints. The
data gathered influenced the choice and weighting of heuristics. This methodology also affords an
opportunity to assess CIMA’s performance on real user interactions even before it is ready for field
testing.

Maulsby & Witten page 4

The TURVY study

TURVY is an instructible agent that behaves in some ways like a human apprentice, yet has primitive
background knowledge and limited language understanding. In fact, TURVY was a researcher hidden
behind a screen. Our users rapidly found simple effective ways of teaching through demonstration and
verbal hints, while TURVY found ways to elicit them.

Figure 4 shows an sample task: given a bibliography file, make a heading with the author’s name and
date. This task is one of the most difficult, since it involves parsing lists of people’s names, which may
include initials, baronial prefixes like “van”, and special annotations like “(ed.)”. TURVY must learn to
find the primary author’s surname—the word before the first comma or colon. It may include a lower
case word (like “van”). The date is the last two digits before the period at the end of the paragraph. In
some cases the final period is missing.

TURVY extends the notion of programming by demonstration. It watches demonstrations, but also invites
the user to point at relevant objects and give verbal hints. TURVY also adopts a more general-purpose
learning method than other systems, using domain knowledge to learn from one example, but finding
similarities and differences over multiple examples and matching the user’s hints with observed
features to zero in on a generalization. Although we did not work on all the details of the learning
system before testing TURVY, most of its components had already appeared in the machine learning
literature, so we were confident that it could be implemented.

Evaluating C IMA

Since CIMA is intended to learn through interaction with users, the most appropriate form of
evaluation is a user study. But this cannot yet be undertaken, because the procedure learning system is
still under development. Instead, we tested CIMA’s ability to learn search patterns for the classes of
data (author surnames, publication dates, etc.) that occurred in the TURVY tasks, using traces of user
interaction recorded in the TURVY study. Users’ verbal and gestural hints were included in the traces;
the former coded as text strings, the latter as selections of text combined with a Look at this command.
Some manual intervention was required to ensure comparable results. For example, CIMA sometimes
predicted a different negative example than TURVY, in which case the researcher would classify it
correctly because TURVY’s users correctly classified all examples. Preparing verbal input for CIMA
required two manual steps—transcribing users’ speech to text and translating utterances into
recognizable key phrases—but this gave CIMA no special advantage since TURVY made no errors when
interpreting speech. For instance, the hint take the first word after the first full stop in each
paragraph , which one user gave prior to teaching the primary author’s surname concept, was
translated to four key phrases, first in paragraph, target matches word, target follows period and a l l
examples (from the user’s each).

Figure 5 shows some data descriptions that CIMA learned, based on the bibliographic data shown in
Figure 4, for the tasks of selecting (a) the start and (b) the end of paper titles, (c) the primary author’s
surname, and (d) all surnames. CIMA achieved 95% of TURVY’s predictive performance overall, but its
performance on some tasks varied widely due to its interpretation of hints. In particular, users gave
some hints prior to selecting any examples, and CIMA by default applied these hints to all examples,
even when they were inappropriate. Hence it formed some overly specialized descriptions that
lowered predictive performance. It was concluded that CIMA performed well enough to warrant further
development, and that user interfaces should be designed to ensure that hints are associated with
appropriate examples.

4. FRAMEWORK FOR USER ACTIONS

The second contribution relates to the conceptual level at which machine learning is applied. The
standard “classification” paradigm used in machine learning is too low a level for PBD, not so much
because classifications are inappropriate—there are indeed many positive and many negative
examples generated during the course of a typical interaction with a PBD system—but because viewing

Maulsby & Witten page 5

input as a stream of examples to be classified is a very low-level way of looking at the learning
problem. CIMA’s learning algorithm, shown in Figure 6, extends a greedy DNF concept learner, PRISM
(Cendrowska 1987), by requiring that the learned description not only classify correctly but also specify
all features of data required for a given type of action, and include all features suggested by the user. 2

To model tasks, an agent needs to learn about data, actions, and when to act. Data descriptions
(Halbert, 1993) specify criteria for selecting objects, and the results of actions. Conventional machine
learning algorithms learn to classify examples. But agents do things with data, and to be useful, data
descriptions may require features in addition to those needed for classification. This is one reason why
rule-learning algorithms are rarely found in interface agents.

We propose a set of utility criteria that parameterize a concept learner according to the types of action
and data presented to it. Figure 7 illustrates four types of action: classify data; find data; generate new
data; and modify properties. Utility criteria ensure that a data description determines the necessary
action parameters. The learner should also prefer features with high utility. Together, utility criteria
and preferences comprise general domain knowledge that can greatly improve learning efficiency.

Classify actions have a single utility criterion: to discriminate between positive and negative
examples. Features with the most discriminating power are therefore strongly preferred. This is the
criterion tested by CIMA’s ancestor PRISM and nearly all other concept learning algorithms. For
instance, suppose the user wants an agent to store email messages from someone in the folder “Mail from
pattie,” as shown at the top of Figure 7. The data description sender’s id begins “pattie” tells it which
messages to select — those from Pattie, regardless of her current workstation. The data description
folder named “Mail from <first word of sender’s id>” tells it where to put them. These two data
descriptions will be learnable from the user’s “classify” actions on the sender’s id and folder name
respectively.

Find adds a second criterion: the description must delimit objects, and in some domains state the
direction of search. Thus a text search pattern specifies where the string begins and ends, and whether
to scan forward or backward. Features that describe more delimiters or constraints are preferred.
Although the rule FOLLOWS the string “fax ” might distinguish fax numbers from others, it only
partially specifies a search pattern, since it indicates where the fax number begins but not where it
ends; CIMA adds MATCHES [Number–Number] to complete the pattern.

Generate introduces a third criterion: the description should specify all features of a new object. If
generating a graphic, the description must specify size, shape, color, etc.; for text, it must specify the
actual string. Though user input is a valid feature value, the system strongly prefers value
“generators”—constants, such as “toDo”, or functions, such as Next(DayName) .

Modify stipulates two criteria: the description should discriminate between positive and negative
examples, and it should generate the property’s new value. Features that determine the new value are
preferred to those that merely constrain it. The graphics example in Figure 7 shows a conjunction of
features that together determine a property value: two relations, touch(Circle.center, Line1) and
touch(Circle.center, Line2), establish the circle’s new (x,y) location. By itself, each intersection leaves
one degree of freedom on the circle’s location. The utility criteria for setting an object’s location assume
that the goal is to remove all degrees of freedom if possible. Hence, features that remove both degrees
of freedom, e.g. touch(Circle.center, Line1.midpoint), are preferred over features that remove one
degree of freedom. CIMA continues adding touch(Circle.center, Line) features until zero degrees of
freedom remain. If the user rejects an example in which the circle touches two solid lines, CIMA adds a
third feature—that one of the lines be dashed—to meet the classification criterion. Note that while
the learner uses some knowledge about spatial relations—their number of degrees of freedom—it does
not explicitly reason about geometry to derive a minimal set of constraints.

2Dave—delete (or clarify) “The next two sections explain how the system makes use of these “utility” and
“instructional” criteria.”

Maulsby & Witten page 6

5. INTERACTION WITH THE USER

The third, and perhaps the major, contribution is in novel methods of interacting with users. CIMA
accepts demonstrations from the user and treats them as “examples” of what is to be done. Moreover, it
provides further means for the user to interact and control the learning process. A few learning systems,
such as CLINT-CIA (de Raedt 1992), can suggest features for the user to classify. CIMA allows the user to
suggest features. Our experience with TURVY demonstrated that such “hints” are bound to ambiguous,
incompletely specified, and sometimes even misleading. Therefore the system interprets them in light
of (a) any domain knowledge that is available, and (b) the examples. To combat misleading hints, the
system can compare descriptions formed from interpreting them more loosely or even ignoring them.

Users can give three types of instruction:

classifyExample (Example, Class, Concept)
classifyRule (Rule, Class, Concept)
classifyFeature (Feature, Class, Concept, Disjunct)

The first classifies an example as positive or negative with respect to some concept: this is the usual
instruction given to supervised concept learners. For example, in Figure 2.i, all instructions are of this
type. The I want this and But not this menu items in Figure 3.i communicate information of this kind.

The second type of instruction states whether a given rule is valid: it has been studied in systems that
learn from an informant (which may take the form of a human teacher). This was not illustrated in the
example scenario. When the user states that a rule is incorrect, CIMA asks the user which features are
irrelevant, and then creates a new rule. On the other hand, when the user states that a rule is correct,
CIMA retains it without modification as further examples arrive, though it does notify the user if the
rule covers negative examples or if it finds another more general rule that makes this one unnecessary.
The user may reclassify a rule at any time, or modify it by stating that features are relevant or
irrelevant to it.

The third instruction, classifyFeature, is known to speed learning (Haussler, 1988), but has received less
attention in machine learning research, perhaps because it sidesteps the fundamental learning problem,
which is to find relevant features of examples. Formally, the classifyFeature instruction states that an
attribute (e.g. text before target) or value (e.g. text before target = “(617) ”) is relevant or irrelevant to
some subset of examples. This kind of information is supplied by interaction (a) in Figure 2.ii and 2.iii.
In the first case it is provided by a deictic hint; in the second by a verbal hint.

The Class argument for all classifyFeature instructions is either relevant or irrelevant . The Concept
argument identifies the concept that is currently being taught (e.g. “local phone number”). In CIMA,
concepts are represented as sets of disjuncts, and the role of the fourth argument is to distinguish which
disjunct is involved. This information may be conveyed by identifying a rule, a set of examples, or a
particular example.

Hints may be input through menus, speech or pointing. A hint may map to several classifyFeature
instructions, and need not define all the arguments. For instance, suppose the user in the scenario in
Section 2 suggested look at what’s around this number. The keyword around suggests the text before and
after the target, without indicating a specific value. The keyword number suggests an attribute of the
currently selected text — in this case, the target. On examining the actual text, CIMA forms the
following interpretations:

classifyFeature (FOLLOWS(Target), relevant, currentTask, thisExample)
classifyFeature (PRECEDES(Target), relevant, currentTask, thisExample)
classifyFeature (MATCHES(Target, Number–Number), relevant, currentTask, thisExample)

The hint in which the user points at “(617)” suggests two specific, alternative feature values:

classifyFeature (FOLLOWS(Target, (617)◊), relevant, currentTask, thisExample)

classifyFeature (FOLLOWS(Target, (Number)◊), relevant, currentTask, thisExample)

Maulsby & Witten page 7

CIMA generates these interpretations by applying domain knowledge to the data involved in the user’s
action. For verbal hints, it extracts key phrases and searches a thesaurus for corresponding attributes
and values, generating one interpretation for each meaning (as in around). For pointing gestures, it finds
features relating the selected data to the target example, and generates both specific and generalized
values. CIMA relies on the learning algorithm to test these initial interpretations on other criteria,
such as statistical fit to examples, to choose the best one. Thus, given only a single example phone
number, CIMA prefers the more specific interpretation FOLLOWS(Target, (617)◊).

ClassifyFeature instructions can originate with other agents or modules of domain knowledge. CIMA
records the instruction’s source and uses credibility ratings to select among conflicting interpretations.
As a matter of courtesy, the user’s suggestions are given priority, and the system always tries to use
features that the user suggests and avoid ones that she rejects, though it advises the user when this
causes the description to become inconsistent. As noted above, it also tries to generate alternative
descriptions by discarding some information in a hint (the suggested value) and by ignoring it
altogether. If the resulting ruleset is simpler or more accurate, CIMA advises the user of this
alternative.

CONCLUSION

One of the key problems in transferring task knowledge from users to agents is capturing users’ intentions
from example actions. Often, the intent of an action resides in the choice of data on which to act, or in
the results. By learning rules for selecting and modifying data, CIMA partially models the intent of user
actions.

Developers of PBD systems have encountered two serious limitations in standard machine learning
algorithms; they do not generate operational descriptions, and they do not interact well with users.
CIMA addresses the first problem by enforcing operationality criteria. It supports interactive teaching
by incorporating the user’s hints as additional knowledge sources. CIMA does not solve the interaction
problem, however, because it does not specify the rules of discourse between an agent and its users.

Designers of intelligent agents have tended to focus on technology, assuming that any intelligent agent
will be easy for humans to deal with. This goes against common sense. Indeed, in some phases of the
TURVY study, we observed the distress that users experience when an agent gives too much feedback, or
too little, or violates rules of cooperative discourse. Perhaps the most important lesson we have learned
is the value of involving users in design. By testing and critiquing our design ideas, end-users keep us
focused on our objective: agents that learn how to help users so that computer-based work is more
productive and enjoyable.

REFERENCES

J. Cendrowska (1987) “PRISM: an algorithm for inducing modular rules.” International Journal of Man-
Machine Studies 27, pp. 349–370.

A. Cypher (ed.) (1993a) Watch what I do: programming by demonstration. MIT Press. Cambridge MA.

A. Cypher (1993b) “Eager: programming repetitive tasks by demonstration,” in Cypher (1993a), pp.
205–217. MIT Press. Cambridge MA.

L. de Raedt, M. Bruynooghe (1992) “Interactive concept-learning and constructive induction by
analogy.” Machine Learning (8) 2, pp. 107–150.

D. C. Halbert (1993) “SmallStar: programming by demonstration in the desktop metaphor,” in Cypher
(1993a), pp. 103–123.

D. Haussler (1988) “Quantifying inductive bias: AI learning algorithms and Valiant’s learning
framework.” Artificial Intelligence 36, pp. 177–221.

Maulsby & Witten page 8

D. S. Kosbie, B. A. Myers (1994) “Extending programming by demonstration with hierarchical event
histories,” in Proc. 1994 East-West International Conference on Human-Computer Interaction, pp.
St. Petersburg, Russia.

D. Maulsby (1992) “Prototyping an instructible interface: Moctec,” in Proc. ACM SIGCHI’92, pp. 153–
154. Monterey CA. May.

D. Maulsby, S. Greenberg, R. Mander (1993) “Prototyping an intelligent agent through Wizard of Oz,”
in Proc. InterCHI’93, pp. 277–285. Amsterdam. May.

F IGURES

Me (617) 243–6166 home; (617) 220–7299 work; (617) 284–4707 fax
Cheri (403) 255–6191 new address 3618 – 9 St SW
Steve C office (415) 457–9138; fax (415) 457–8099
Moses (617) 937–1064 home; 339–8184 work

i Sample data for teaching

243–6166, 220–7229, 284–4707, 937–1064, 339–8184

ii The positive examples

Figure 1 — The “local phone number” task

Maulsby & Witten page 9

a. Rule formed after first example:

Searching forward, Selected text MATCHES “243–6166”

b. Rule generalized after second example:

Searching forward, Selected text MATCHES Number(length 3)–Number(length 4)

c. Ruleset formed after negative example 255–6191:

Searching forward,
Selected text MATCHES “243–6166”

or Selected text MATCHES “220–7299”
or Selected text MATCHES “284–4707”

d. Rule formed after change of focus:

Searching forward,
Selected text FOLLOWS “617)◊” and MATCHES Number(length 3)–Number(length 4)

e. Ruleset after final positive example 339–8184:

Searching forward,
Selected text FOLLOWS “617)◊” and MATCHES Number(length 3)–Number(length 4)

or Selected text FOLLOWS “;◊” and MATCHES Number(length 3)–Number(length 4)

i Series of data descriptions induced from examples

a. Rule formed after first example and pointing at (617):

Searching forward, Selected text FOLLOWS “(617)◊” and MATCHES “243–6166”

b. Rule generalized after second example:

Searching forward,
Selected text FOLLOWS “(617)◊” and MATCHES Number(length 3)–Number(length 4)

ii Data descriptions induced from examples and pointing hint

a. Rule formed after first example and verbal hints:

Searching forward, Selected text FOLLOWS “)◊” and MATCHES Number–Number

b. Rule specialized after negative example:

Searching forward, Selected text FOLLOWS “617)◊” and MATCHES Number–Number

iii Data descriptions induced from examples and verbal hints

a. Rule formed after first example and partial specification:

Searching forward, Selected text FOLLOWS “(617)◊” and MATCHES Number–Number

b. Rule specialized after negative example:

Searching forward,
Selected text FOLLOWS “(617)” and MATCHES Number–Number

or Selected text FOLLOWS “;◊” and MATCHES Number–Number

iv Data descriptions induced from examples and partial specification

Figure 2 — Sample data and four scenarios for teaching “local phone number”

Maulsby & Witten page 10

i Popup menu for classifying examples and features

“it follows my area code”
“any numbers OK”

ii Verbal hints, typed or spoken

classifyFeature (MATCHES (Target, Number–Number),
relevant, “local phone number”, allExamples)

classifyFeature (FOLLOWS (Target, “(617)”),
relevant, “local phone number”, allExamples)

iii Formal (partial) specification of a concept

Figure 3 — Interaction techniques

i Original input ii Reformatted version

John H. Andreae, Bruce A. MacDonald:
Expert control for a robot body: Journal
IEEE Systems, Man & Cybernetics: July
1990.

Ray Bareiss: Exemplar-based
knowledge acquisition: Academic
Press: San Diego CA:1989

D. Angluin, C. H. Smith: Inductive
inference: theory and methods:
Computing Surveys 3 (15), pp. 237-269:
September 1983.

Michalski R. S., J. G. Carbonell, T. M.
Mitchell (eds): Machine Learning II:
Tioga. Palo Alto CA. 1986

Kurt van Lehn: “Discovering problem
solving strategies: Proc. Machine
Learning 7th Int’l Workshop, pp. 215–
217: 1989.

[Andreae 77]
John H. Andreae, Bruce A. MacDonald:
Expert control for a robot body: Journal
IEEE Systems, Man & Cybernetics: July
1990.

[Bareiss 89]
Ray Bareiss: Exemplar-based
knowledge acquisition: Academic
Press: San Diego CA:1989

[Angluin 83]
D. Angluin, C. H. Smith: Inductive
inference: theory and methods:
Computing Surveys 3 (15), pp. 237-269:
September 1983.

[Michalski 86]
Michalski R. S., J. G. Carbonell, T. M.
Mitchell (eds): Machine Learning II:
Tioga. Palo Alto CA. 1986

[van Lehn]
Kurt van Lehn: “Discovering problem
solving strategies: Proc. Machine
Learning 7th Int’l Workshop, pp. 215–
217: 1989.

 Figure 4 — A TURVY task: Make a heading with author’s name and date

Maulsby & Witten page 11

a. Start of journal paper title:

Searching forward from start of paragraph,
Insertion point FOLLOWS “:◊” and PRECEDES CapitalWord

b. End of journal paper title (actually, after colon at end of title):

Searching forward from previous example of a, Insertion point PRECEDES “◊%”

c. Primary author’s surname:

Searching forward from start of paragraph (Note: this feature used in all four rules),
Selected text MATCHES CapitalWord and PRECEDES “:”

or Selected text MATCHES CapitalWord and PRECEDES “,”
or Selected text MATCHES “Michalski”
or Selected text MATCHES LowercaseWord “◊” CapitalWord

d. Any surname:

Searching forward (Note: this feature used in all seven rules),
Selected text MATCHES CapitalWord and PRECEDES “:◊”[NonAlphanumericCharacter]

or Selected text MATCHES CapitalWord and FOLLOWS CapitalWord “.◊” and PRECEDES “,”
or Selected text MATCHES LowercaseWord “◊” CapitalWord and PRECEDES “:”
or Selected text MATCHES LowercaseWord “◊” CapitalWord and FOLLOWS CapitalWord “.◊”
or Selected text MATCHES CapitalWord(length 9) and FOLLOWS Linebreak
or Selected text MATCHES “Quinlan”
or Selected text MATCHES “Mitchell”

 Figure 5 — Data descriptions learned for some concepts from the user study

makeRules (Concept, Features, Examples, Criteria, Heuristics)
until all positive examples are covered:

add makeOneRule (Concept, Features, Examples, Criteria, Heuristics) to Concept’s definition
return new Concept definition

makeOneRule (Concept, Features, Examples, Criteria, Heuristics)
create new empty Rule
until Rule meets Utility Criteria and Instructional Criteria, or until all Features have been tried:

add featureWithHighestExpectedUtility (Features, Heuristics, Concept, Examples) to Rule
delete Examples no longer covered by Rule
remove Criteria already satisfied and re-order preferences

simplify (Rule, Concept, Features, Examples, Criteria, Heuristics)
return Rule

featureWithHighestExpectedUtility (Features, Heuristics, Concept, Examples)
set Candidates to Features
repeat for each SelectionHeuristic in Heuristics until only one Candidate remains:

set Candidates to FeaturesScoringHighest (SelectionHeuristic, Features, Concept, Examples)
return first feature in Candidates

Figure 6 — Algorithm for composing DNF data description rules

Maulsby & Witten page 12

Mon 21 toDo
Generate

Mon 21 toDo
Tue 22 toDo

Mail from pattie

tel 243–6166
fax 284–4707

 From pattie@media
 To maulsby@media
 Subject Tuesday meeting

Classify

Modify

Find tel 243–6166
fax 284–4707

If the message is from “pattie”,
then put it in the folder “Mail from pattie”.

Find the next telephone number
preceded by the word “fax”.

Insert a calendar template of the form:
[Next(DayName) Tab Next(DayNumber)
Tab toDo].

Move the circle to the point at which a
dashed line intersects a plain line.

 Figure 7 — General types of action on data

