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Abstract

Before applying learning algorithms to
datasets, practitioners often globally dis-
cretize any numeric attributes. If the algo-
rithm cannot handle numeric attributes di-
rectly, prior discretization is essential. Even
if it can, prior discretization often acceler-
ates induction, and may produce simpler and
more accurate classifiers.

As it is generally done, global discretization
denies the learning algorithm any chance of
taking advantage of the ordering information
implicit in numeric attributes. However, a
simple transformation of discretized data pre-
serves this information in a form that learn-
ers can use. We show that, compared to us-
ing the discretized data directly, this trans-
formation significantly increases the accuracy
of decision trees built by C4.5, decision lists
built by PART, and decision tables built us-
ing the wrapper method, on several bench-
mark datasets. Moreover, it can significantly
reduce the size of the resulting classifiers.

This simple technique makes global dis-
cretization an even more useful tool for data
preprocessing.

1 Introduction

Algorithms that transform numeric attributes into dis-
crete ones are useful for several reasons. Most impor-
tantly, they enable learning schemes that can only han-
dle nominal attributes to process numeric data. But
this is not the only situation where they are useful. Of-
ten, it is worthwhile to discretize even if the learning

scheme is able to process numeric data directly—as can
most schemes that learn decision trees or lists. There
are two reasons for this. First, discretization acceler-
ates learning because nominal attributes are generally
processed faster than numeric ones (Catlett, 1991)—
assuming, of course, that the discretization itself is
accomplished quickly. Second, it reduces the likeli-
hood of overfitting by narrowing the space of possible
hypotheses that the learning scheme can investigate,
thereby lowering the chance of finding a complex hy-
pothesis that fits the training data particularly well
just by chance. The resulting classifiers are often sig-
nificantly less complex and sometimes more accurate
than classifiers learned from the raw numeric data.

Catlett (1991) presents a supervised method for global
discretization and discusses the speed-up that can be
achieved by applying it before building a decision
tree.1 His method is improved by Fayyad and Irani
(1993), who show how to prevent the discretization
from becoming too fine-grained by using the minimum
description length principle to determine the appropri-
ate granularity. Dougherty, Kohavi and Sahami (1995)
compare several supervised and unsupervised methods
and conclude that Fayyad and Irani’s method pro-
duces the most accurate classifiers. Kohavi and Sa-
hami (1996) extend the comparison to include three
new methods, and corroborate this result.2

The trouble with global discretization, as it is normally
used, is that the learning algorithm cannot take advan-
tage of the ordering information implicit in numeric at-
tributes because it treats the different discretized val-

1Note, however, that he sorts the data for each attribute
at each node of the decision tree. This can be avoided by
careful book-keeping: it is only actually necessary to sort
the data once for each attribute.

2Neither of these two comparisons include ChiMerge, a
theoretically well-founded discretization method based on
the chi-squared test (Kerber, 1992).



ues as though they were completely independent. For
example, if the decision-tree inducer C4.5 (Quinlan,
1992) decides to split on a pre-discretized attribute,
it generates a multiway branch. In contrast, internal
discretization implicitly takes advantage of ordering
information by using successive binary splits instead.

However, there is a very simple transformation of dis-
cretized data that preserves the ordering information
in a form that learners can use. This paper investigates
the effect of this transformation on common classifica-
tion models. Using a set of benchmark datasets from
the UCI repository, we show that it often leads to more
accurate decision trees, decision lists, and decision ta-
bles. In addition, it significantly reduces the size of
these classifiers in several domains.

Section 2 describes the transformation and gives ex-
amples of its application. Section 3 applies decision-
tree, decision-list, and decision-table inducers to the
datasets with numeric attributes globally discretized,
both with and without the transformation, and com-
pares the results. The decision-tree and decision-list
inducers are also applied to the raw datasets, using in-
ternal discretization. Section 4 discusses related work,
and Section 5 gives some concluding remarks.

2 Using Ordering Information in

Discretized Attributes

Global discretization transforms a numeric attribute
A into an attribute A∗ with values {V1, V2, . . . , Vn},
where each value Vi of the new attribute represents
a range of numeric values of the original attribute.
Virtually all supervised learning schemes treat dis-
cretized attributes in the same way as nominal ones.
This means that potentially useful information is
discarded—in other words, the learning algorithm is
being deprived of valuable domain knowledge—for
the fact is that discretized attribute values should be
treated as ordered entities. In most learning schemes
this loss is completely unnecessary: the ordering in-
formation can be exploited in decision trees, lists and
tables without any change to the learning algorithm
itself.

2.1 Decision Trees

Consider a decision tree learner that constructs trees
with univariate tests. During learning, it has to se-
lect tests for each node of the tree structure, given the
data present at that node. Exploiting the ordering in-
formation implicit in a discretized attribute A∗ simply
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Figure 1: Transformation of a discretized attribute
with four values into three binary attributes

amounts to investigating tests of the form A∗ ≤ Vi in-
stead of A∗ = Vi. Although this seems to imply that
the inner workings of the learning scheme have to be
changed to enable it to deal with ordered attributes of
this type, the problem can be avoided by transforming
the attributes before applying the learning scheme.

For each discretized attribute with n values, n − 1
boolean ones are introduced, one for each of the at-
tribute’s first n−1 values, and the original discretized
attribute is discarded. The ith boolean attribute rep-
resents the test A∗ ≤ Vi (Figure 1). Figure 2b shows
the effect of applying Fayyad and Irani’s (1993) dis-
cretization method in conjunction with this transfor-
mation on a pruned decision tree produced by C4.5
(Quinlan, 1992) for the ionosphere dataset. The tree
produced by C4.5 on the raw dataset, using its stan-
dard method of internal discretization, is shown in Fig-
ure 2a for comparison. As we will see in Section 3, the
tree in Figure 2b is significantly more accurate than
that of Figure 2a; it is also significantly smaller and
more accurate than the tree built from the discretized
data without applying the transformation.

Another way of interpreting this strategy is that it pro-
vides a way of combining global and local information
during learning. The discretization method preselects
candidate cutpoints based on global information, while
the learner decides which of these cut-points is most
appropriate in the current local context.
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Figure 2: Decision tree for (a) raw, and (b) discretized
and transformed ionosphere dataset

2.2 Decision Lists

Decision lists (Rivest, 1987) can also take advantage
of ordering information. A decision list is an ordered
set of rules. During classification, a test instance is as-
signed to the class of the first rule whose premise it sat-
isfies. The premise of each rule consists of a conjunc-
tion of attribute-value tests. For nominal attributes,
these tests have the form A = Vi. The ordering in-
formation implicit in discretized attributes can easily
be exploited by applying tests of the form A∗ ≤ Vi.
Again, the learning algorithm does not have to be
changed to allow this type of test to be included: the
attribute transformation of Section 2.1 can be used
instead.

2.3 Decision Tables

Decision tables, like decision lists, are sets of rules. A
decision table enumerates all possible combinations of
attribute-value tests for a selected set of attributes, to-
gether with a class assignment for each combination.
The size of the table increases exponentially with the
number of attributes included: more specifically, if nj

is the number of values for attribute j, the table con-
tains

∏
j nj rows. This means that the instance space

becomes very fragmented when many attributes, with
many possible values, are included in the table. The
learning problem is to find a small subset of attributes,
each with a small number of possible values, while
maintaining high accuracy on the training data.

Decision tables can be constructed for numeric data if
it is discretized a priori.3 However, a discretized at-
tribute may be only partially informative when used
in conjunction with other attributes. In that case,
if the discretization is too fine-grained, the instance
space can become overly fragmented, resulting in sub-
optimal performance. The problem is easily solved by
applying the transformation discussed in Section 2.1.
If an attribute is partially informative, only those bi-
nary attributes derived from the original discretized
attribute that are relevant in the current context will
be included in the decision table, thereby minimizing
fragmentation.

3 Experimental Evaluation

In this section, we will see that significantly more
accurate decision trees, lists, and tables can be pro-
duced by exploiting the ordering information implicit

3Kohavi’s (1995) method does handle numeric at-
tributes, but only in a very limited way.



Table 1: Datasets used for the experiments

Dataset Size Numeric Nominal Classes

anneal 898 6 32 5
australian 690 6 9 2
autos 205 15 10 6
balance-scale 625 4 0 3
breast-w 699 9 0 2
german 1000 7 13 2
glass (G2) 163 9 0 2
glass 214 9 0 6
heart-c 303 6 7 2
heart-h 294 6 7 2
heart-statlog 270 13 0 2
hepatitis 155 6 13 2
horse-colic 368 7 15 2
hypothyroid 3772 7 22 4
ionosphere 351 34 0 2
iris 150 4 0 3
labor 57 8 8 2
lymph 148 3 15 4
pima-indians 768 8 0 2
segment 2310 19 0 7
sick 3772 7 22 2
sonar 208 60 0 2
vehicle 846 18 0 4
vowel 990 10 3 11
waveform 5000 40 0 3
zoo 101 1 15 7

in discretized numeric attributes. All results are based
on the 26 UCI benchmark datasets listed in Table 1,
each of which contains at least one numeric attribute.
Fayyad and Irani’s (Fayyad & Irani, 1993) discretiza-
tion method was employed throughout.

3.1 Decision Trees

We begin with decision trees, and compare pruned
trees generated by C4.54 in three different ways. First,
trees are built from the discretized data transformed
using the procedure described in Section 2.1 (ord).
Second, they are built directly from the discretized
data (disc). Third, they are built by C4.5 from the
raw data (raw).

The results are listed in Table 2. This shows the per-
centage of correct classifications, averaged over ten
ten-fold cross-validation runs, along with the standard
deviation of the ten. Also shown is the average tree size
measured by the number of nodes in it. The same folds
were used for each scheme. In all experiments with

4In all our experiments we used C4.5 Revision 8 (Quin-
lan, 1996).

discretization, the training data was discretized sep-
arately for each fold—otherwise the cross-validation
estimates would be optimistically biased (Kohavi &
Sahami, 1996).

Results for disc and raw are marked with ◦ if they
show significant improvement over the corresponding
results for ord, and with • if they show significant
degradation. Throughout, we speak of results being
“significantly different” if the difference is statistically
significant at the 1% level according to a paired two-
sided t-test, each pair of data points consisting of the
estimates obtained in one ten-fold cross-validation run
for the two learning schemes being compared.

Table 3 shows how the different methods compare
with each other. Each entry indicates the number of
datasets for which the method associated with its col-
umn is significantly more accurate than the method
associated with its row.

As Table 3 shows, it is clearly advantageous to make
use of the ordering information in discretized at-
tributes. Ord is significantly more accurate than disc

on six datasets (second row, first column), whereas the
inverse is never true (first row, second column). It is
interesting to see that ord and raw are almost neck
and neck in terms of accuracy: ord is more accu-
rate on four datasets, raw on five. It is also apparent
that raw builds more accurate trees than disc in eight
cases, whereas the reverse is true in only two. This is
consistent with the results of Quinlan (Quinlan, 1996),
who found that raw has a strong advantage over disc

in terms of accuracy. As Table 2 and Table 3 show,
this advantage largely vanishes when the ordering in-
formation is exploited.

Table 3 also shows that the trees built by ord are
generally smaller than those built by disc: the former
builds significantly smaller trees for twelve datasets
and significantly larger ones for only three. The ad-
vantage of using ord is even more pronounced when
compared to raw. On sixteen datasets ord generates
smaller trees, and larger ones on only four.

3.2 Decision Lists

As explained in Section 2.2, decision lists can exploit
ordering information in the same way as decision trees.
The empirical results presented here were obtained
using the rule learner PART, which has been shown
to perform comparably to other state-of-the-art rule
learning methods (Frank & Witten, 1998).

Tables 4 and 5 summarize results obtained using the



Table 2: C4.5: Percentage of correct classifications and size of trees, with standard deviations, for ordered (ord),
discretized (disc), and raw data (raw)

Accuracy Size
Dataset ord disc raw ord disc raw

anneal 98.8±0.2 98.8±0.1 98.7±0.3 46.9±0.7 51.3±1.1 • 48.0±1.4
australian 86.5±0.3 86.0±0.5 85.5±0.7 • 21.1±1.7 22.6±2.2 32.5±3.2 •

autos 75.9±2.4 74.5±1.8 80.0±2.5 ◦ 76.2±2.9 101.5±4.6 • 62.4±2.2 ◦

balance-scale 75.7±0.9 75.5±0.9 77.6±0.9 ◦ 33.6±2.3 41.3±2.1 • 82.2±2.9 •

breast-w 95.4±0.4 95.0±0.5 94.9±0.4 18.1±1.3 20.5±1.2 • 24.6±1.3 •

german 72.2±0.8 71.8±0.7 71.1±1.1 90.6±4.9 89.1±7.2 124.4±6.0 •

glass (G2) 77.4±2.5 77.4±2.4 78.1±1.8 14.1±0.7 11.8±0.8 ◦ 23.7±1.6 •

glass 70.2±2.0 72.0±1.2 68.2±2.4 28.5±1.1 37.1±1.1 • 45.5±1.3 •

heart-c 77.3±1.8 77.8±1.3 76.7±1.7 33.2±2.1 31.4±2.0 ◦ 43.5±2.5 •

heart-h 79.3±1.0 79.3±1.0 79.8±0.8 9.0±1.8 9.1±1.9 10.8±0.9
heart-statlog 81.4±1.3 81.5±1.4 78.3±1.9 • 24.1±2.1 23.9±2.0 34.9±2.6 •

hepatitis 78.5±1.3 79.3±2.3 79.7±1.2 10.7±1.8 10.7±1.7 17.8±1.2 •

horse-colic 85.3±0.3 85.3±0.3 85.4±0.3 8.5±0.7 8.5±0.7 8.7±0.7
hypothyroid 99.5±0.0 99.2±0.1 • 99.5±0.0 23.2±0.4 46.6±1.3 • 27.9±0.3 •

ionosphere 93.0±0.4 89.8±1.2 • 89.4±1.3 • 17.4±0.5 25.1±2.1 • 27.1±0.9 •

iris 93.7±1.1 92.9±0.9 • 94.4±0.6 6.1±0.3 6.5±0.5 8.3±0.5 •

labor 78.0±3.4 77.5±3.3 77.2±4.1 6.5±0.5 6.4±0.5 7.0±0.8
lymph 74.9±2.0 75.8±2.0 75.8±2.9 25.5±1.3 25.6±1.3 27.7±1.2 •

pima-indians 73.9±0.8 73.8±1.0 74.5±1.4 25.3±2.1 23.6±2.1 42.3±4.1 •

segment 96.0±0.3 94.1±0.3 • 96.7±0.3 ◦ 88.0±1.7 336.7±9.4 • 82.0±2.6 ◦

sick 97.8±0.1 97.8±0.1 98.7±0.2 ◦ 29.1±0.7 32.2±0.9 • 48.7±2.1 •

sonar 76.0±2.2 76.0±2.2 75.0±3.0 28.5±1.6 28.5±1.6 28.0±0.8
vehicle 70.3±1.0 69.7±1.2 72.8±1.1 ◦ 122.2±2.0 200.7±5.4 • 139.4±5.0 •

vowel 78.5±0.9 76.2±0.7 • 79.6±1.3 298.4±14.4 370.4±10.4 • 216.2±7.1 ◦

waveform 77.0±0.6 74.7±0.4 • 75.3±0.7 • 651.2±12.2 628.2±15.7 ◦ 590.1±9.9 ◦

zoo 91.1±1.2 90.8±1.5 91.1±1.2 15.1±0.3 16.6±0.5 • 15.2±0.4

Table 3: Results of paired t-tests (p=0.01) for C4.5: number indicates how often method in column significantly
outperforms method in row

Accuracy Size
ord disc raw ord disc raw

ord – 0 5 – 3 4

disc 6 – 8 12 – 8
raw 4 2 – 16 13 –

same experimental procedure as in Section 3.1. Ord

denotes results obtained by running PART on the dis-
cretized and transformed data—thereby incorporat-
ing ordering information in the learning process—and
disc stands for PART run on the discretized data di-
rectly. Results for PART using the raw numeric data
are included as raw.

Table 5 shows that, just as with decision trees, deci-
sion lists built from the discretized and transformed
data are preferable to those generated from the dis-
cretized data directly. ord is significantly more accu-
rate than disc on five datasets, whereas disc is never
significantly better than ord. ord is also generally
the better choice when the number of rules is a critical

factor. It produces significantly fewer rules than disc

on ten datasets, and significantly more on only two.

The situation is less clear-cut when ord is compared
to raw. In four cases, PART builds significantly more
accurate classifiers from the raw data than from the
discretized and transformed data. In only one case
is the decision list significantly more accurate for the
latter type of data. Size is also not necessarily an argu-
ment for applying pre-processing. In several cases—for
example waveform, vowel, vehicle, and segment—raw

generates significantly fewer rules than ord.



Table 4: PART: Percentage of correct classifications and size, with standard deviations, for ordered (ord),
discretized (disc), and raw data (raw)

Accuracy Size
Dataset ord disc raw ord disc raw

anneal 98.6±0.2 98.7±0.4 98.4±0.3 15.4±0.5 16.8±0.4 • 14.6±0.5
australian 84.8±0.5 84.6±0.6 84.3±1.2 21.6±1.3 21.3±1.2 30.5±1.5 •

autos 73.5±3.0 71.8±2.3 74.5±1.1 20.2±0.4 23.6±0.8 • 20.5±1.0
balance-scale 77.0±0.8 77.5±0.7 82.3±1.2 ◦ 13.4±0.7 14.4±1.0 38.7±1.2 •

breast-w 95.4±0.5 95.3±0.7 94.9±0.4 11.2±0.6 9.7±0.7 ◦ 10.0±0.7 ◦

german 71.0±1.3 71.3±0.9 70.0±1.4 57.6±1.7 58.7±1.8 69.6±1.3 •

glass (G2) 77.7±2.5 79.5±2.2 80.0±4.0 5.0±0.0 5.6±0.5 • 6.8±0.4 •

glass 70.6±2.1 70.9±1.8 69.8±2.3 11.5±0.5 12.6±0.5 • 15.2±0.8 •

heart-c 79.6±1.5 80.5±1.7 78.1±1.6 15.9±0.7 15.8±0.8 19.3±0.8 •

heart-h 79.8±1.5 79.8±1.5 80.4±1.6 7.7±0.5 7.8±0.6 8.9±0.9 •

heart-statlog 82.1±0.9 82.1±0.9 78.9±1.3 • 13.9±0.9 14.0±0.7 17.7±1.1 •

hepatitis 80.0±2.8 79.8±3.6 80.2±1.9 7.4±0.8 7.3±0.8 8.3±0.7
horse-colic 83.9±1.0 83.9±1.0 84.4±0.8 7.4±0.7 7.4±0.7 9.7±0.8 •

hypothyroid 99.4±0.1 99.4±0.1 99.5±0.1 8.2±0.4 14.2±0.4 • 10.4±0.5 •

ionosphere 91.4±1.3 89.9±0.7 • 90.6±1.3 7.7±0.5 10.0±0.5 • 7.6±0.5
iris 93.7±1.0 92.7±0.8 • 93.7±1.6 3.6±0.5 4.5±0.5 • 4.0±0.5
labor 76.0±4.0 75.8±4.1 77.3±3.9 3.7±0.5 3.7±0.5 3.6±0.5
lymph 76.9±2.1 77.7±3.1 76.5±2.7 10.8±0.6 10.8±0.6 11.7±0.7
pima-indians 73.5±0.8 73.4±1.3 73.6±0.5 22.2±2.7 22.4±1.7 7.3±0.5 ◦

segment 96.1±0.3 93.6±0.4 • 96.6±0.3 ◦ 31.0±0.8 59.3±2.5 • 27.5±0.7 ◦

sick 97.8±0.1 97.9±0.0 98.6±0.1 ◦ 15.1±0.7 14.9±0.9 19.1±0.9 •

sonar 77.1±3.7 77.2±3.5 76.5±2.3 12.5±0.5 12.5±0.5 7.5±0.7 ◦

vehicle 71.1±0.9 68.2±1.7 • 72.4±0.8 ◦ 60.7±1.6 65.3±1.8 • 33.2±1.2 ◦

vowel 77.7±1.0 75.3±0.9 • 78.1±1.1 93.5±2.1 116.4±0.8 • 66.0±1.4 ◦

waveform 77.3±0.5 76.6±0.6 78.0±0.5 283.0±4.3 263.9±4.4 ◦ 87.9±2.4 ◦

zoo 92.2±1.2 92.0±1.1 92.2±1.2 8.0±0.0 8.0±0.0 8.0±0.0

Table 5: Results of paired t-tests (p=0.01) for PART: number indicates how often method in column significantly
outperforms method in row

Accuracy Size
ord disc raw ord disc raw

ord – 0 4 – 2 7

disc 5 – 8 10 – 10
raw 1 2 – 11 9 –

3.3 Decision Tables

For our experiments on decision tables, we employed
a learning algorithm that uses the wrapper method
in conjunction with a best first search for selecting
the attributes in the table (Kohavi, 1995). Our im-
plementation of the wrapper employs leave-one-out
cross-validation and a stopping criterion of five con-
secutive fully expanded non-improving nodes in the
search space.

Table 6 and Table 7 show the results. The size of a
decision table is measured by the number of entries
in it. Only combinations of attribute-value tests that
cover at least one instance of the training data are
counted as entries.

Table 7 shows that ord produces more accurate tables
than disc on seven datasets. Unlike decision trees and
lists, however, for decision tables there is a dataset
(glass) for which ord is significantly less accurate—
although the relative difference in accuracy is rather
small. Table 7 also shows that ord generates signifi-
cantly smaller tables than disc for eight datasets, and
significantly larger ones for only two. Moreover, on
one of these two datasets (waveform) it is also signif-
icantly more accurate, indicating that there are some
discretized attributes in this dataset that are only par-
tially informative, and therefore omitted from the ta-
ble built by disc. As discussed in Section 2.3, ord

successfully reduces the fragmentation of the instance
space, sometimes with a positive effect on accuracy



Table 6: Decision tables: Percentage of correct classifications and size, with standard deviations, for ordered
(ord) and discretized (disc) data

Accuracy Size
Dataset ord disc ord disc

anneal 99.3±0.2 98.6±0.1 • 46.8±2.1 119.8±4.6 •

australian 85.1±0.9 85.2±0.8 43.7±7.8 45.9±7.5
autos 77.4±1.1 77.5±1.8 77.6±1.7 77.6±3.9
balance-scale 78.1±0.5 74.5±0.9 • 41.6±5.5 42.7±5.6
breast-w 95.3±0.5 94.7±0.7 32.7±3.3 46.1±6.4 •

german 71.6±0.9 71.6±0.8 122.7±21.6 120.4±21.4
glass (G2) 78.2±2.0 77.9±1.8 11.7±1.0 11.9±0.7
glass 68.1±1.2 69.6±0.7 ◦ 23.5±3.4 36.8±2.1 •

heart-c 78.5±2.0 78.6±1.7 37.3±4.2 42.8±6.5 •

heart-h 79.6±1.0 79.6±1.1 14.6±1.6 15.0±1.8
heart-statlog 82.6±1.4 82.5±1.3 21.5±4.7 21.6±4.8
hepatitis 80.4±2.9 80.2±2.3 39.1±5.2 36.8±4.7
horse-colic 82.7±0.8 82.7±0.8 62.0±8.1 62.0±8.1
hypothyroid 99.6±0.1 99.4±0.0 • 72.7±2.7 69.2±5.5
ionosphere 89.5±1.3 89.6±1.2 22.9±1.4 28.4±1.4 •

iris 93.2±0.8 92.7±0.5 • 4.9±0.5 5.5±0.5 •

labor 83.3±3.6 83.8±3.6 10.7±1.1 10.7±1.0
lymph 74.3±2.4 74.9±1.8 27.1±3.0 25.7±3.1
pima-indians 73.5±0.8 74.0±1.3 44.9±7.0 41.4±8.6
segment 94.3±0.4 92.1±0.5 • 143.0±11.2 302.0±11.6 •

sick 97.6±0.1 97.6±0.1 92.8±7.0 71.6±9.1 ◦

sonar 73.7±2.3 73.5±2.5 35.4±2.5 35.0±2.5
vehicle 68.2±1.4 65.1±0.7 • 89.1±7.0 100.2±9.5
vowel 70.2±1.1 70.7±1.6 354.6±14.6 355.3±7.3
waveform 76.7±0.4 73.7±0.6 • 423.3±18.4 270.3±56.0 ◦

zoo 91.4±1.5 90.0±1.4 12.7±0.4 15.7±0.4 •

Table 7: Results of paired t-tests (p=0.01) for Decision tables: number indicates how often method in column
significantly outperforms method in row

Accuracy Size
ord disc ord disc

ord – 1 – 2

disc 7 – 8 –

(anneal, iris, segment).

Note that the time complexity of learning decision ta-
bles with best first search is not linear in the number
of attributes.5 Hence ord can be significantly slower
than disc, depending on the number of attributes gen-
erated by the transformation. For C4.5 and PART the
time complexity is linear, and the difference between
ord and disc is roughly proportional to the average
number of values in the discretized attributes. This
difference is usually negligible compared to the time
needed for the discretization, which involves sorting
the training instances once for each numeric attribute.

5However, there are fast algorithms for learning decision
tables that are linear in the number of attributes (Kohavi
& Sommerfield, 1998).

4 Related Work

Work on methods for global discretization has already
been discussed in Section 1. However, there is another
line of research, concerned with the combination of
global and local information in the learning process,
that is closely related to the work presented in this
paper.

Pazzani (1998) introduces the notion of globally pre-
dictive tests for rule learning systems. In order to in-
corporate them into rules, he introduces a bias that
forces the learning scheme to choose only those tests
that are globally predictive. A test is defined to be
globally predictive of a certain class if the probabil-
ity of observing this class after the test has been per-



formed is greater than the prior probability of the
class. On some datasets this restriction significantly
increases accuracy; however, on others the effect is
detrimental. Therefore the afore-mentioned bias is
weakened by allowing locally predictive rules, but only
if they are significantly more accurate than the globally
predictive alternatives. This combination significantly
increases accuracy on three out of fifteen datasets, and
never significantly decreases it. It is also claimed that
this procedure improves the comprehensibility of the
resulting rule sets, although this claim is not validated
by experiments.

Vilalta et al. (1997) argue that C4.5rules (Quinlan,
1992) uses a kind of global data analysis to combat the
fragmentation problem in C4.5’s decision trees. Each
of the rules derived from a decision tree is pruned indi-
vidually using all the available training data—in other
words, tests are deleted from a rule if this makes the
rule more globally predictive.

5 Conclusions

This paper introduces a simple transformation of dis-
cretized attributes that allows learning schemes for de-
cision trees, lists, and tables to make full use of the
ordering information present in those attributes. Im-
plemented as a pre-processing step that takes place
after discretization but before applying the learning
scheme, it can be used in conjunction with existing
learning algorithms without any modifications being
necessary.

The empirical results we have presented show that the
transformation is indeed useful when used in conjunc-
tion with decision trees produced by C4.5, decision
lists produced by PART, and decision tables produced
using the wrapper method. Compared to using the
discretized data directly, it significantly increases the
accuracy of the classifiers in several cases, rarely de-
creasing it. (In our experiments, a significant decrease
occurred only once.) Moreover, classifiers are generally
significantly smaller if the transformation is applied.

In decision trees and lists, the same effect can be
achieved by coding discretized attributes as integers.
In this case, if the generated classifier is to be compre-
hensible for the user, it should be post-processed by
replacing the artificial integer-valued tests with tests
on values of the original numeric attribute. The same
kind of integer coding can also be used to exploit
ordering information in instance-based learning algo-
rithms. Of course, if a learning scheme supports or-
dered attributes directly, any transformation is super-

fluous: the effect is achieved by declaring discretized
attributes to be of type “ordered”. Whichever way it
is done, our experiments show that it pays to give the
learning scheme the opportunity to exploit the order-
ing information in discretized attributes.
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