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Abstract

Algorithms for feature selection fall into two broad categories: wrappers use the

learning algorithm itself to evaluate the usefulness of features, while �lters evaluate

features according to heuristics based on general characteristics of the data. For ap-

plication to large databases, �lters have proven to be more practical than wrappers

because they are much faster. However, most existing �lter algorithms only work with

discrete classi�cation problems.

This paper describes a fast, correlation-based �lter algorithm that can be applied

to continuous and discrete problems. Experiments using the new method as a prepro-

cessing step for naive Bayes, instance-based learning, decision trees, locally weighted

regression, and model trees show it to be an e�ective feature selector|it reduces the

data in dimensionality by more than sixty percent in most cases without negatively

a�ecting accuracy. Also, decision and model trees built from the pre-processed data

are often signi�cantly smaller.
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1 Introduction

Many factors a�ect the success of machine learning on a given task. The quality of the
data is one such factor|if information is irrelevant or redundant, or the data is noisy
and unreliable, then knowledge discovery during training is more di�cult. Feature subset
selection is the process of identifying and removing as much of the irrelevant and redundant
information as possible. Machine learning algorithms di�er in the amount of emphasis
they place on feature selection. At one extreme are algorithms such as the simple nearest
neighbour learner, which classi�es novel examples by retrieving the nearest stored training
example, using all the available features in its distance computations. Towards the other
extreme lie algorithms that explicitly try to focus on relevant features and ignore irrelevant
ones. Decision tree inducers are examples of this approach. By testing the values of certain
features, decision tree algorithms attempt to divide training data into subsets containing
a strong majority of one class. This necessitates the selection of a small number of highly
predictive features in order to avoid over�tting the training data. Regardless of whether
a learner attempts to select features itself or ignores the issue, feature selection prior to
learning can be bene�cial. Reducing the dimensionality of the data reduces the size of the
hypothesis space and allows algorithms to operate faster and more e�ectively. In some cases
accuracy on future classi�cation can be improved; in others, the result is a more compact,
easily interpreted representation of the target concept.

Algorithms that perform feature selection as a preprocessing step prior to learning can
generally be placed into one of two broad categories. One approach, referred to as the
wrapper [9] employs|as a subroutine|a statistical re-sampling technique (such as cross
validation) using the actual target learning algorithm to estimate the accuracy of feature
subsets. This approach has proved useful but is very slow to execute because the learning
algorithm is called repeatedly. For this reason, wrappers do not scale well to large datasets
containing many features. Another approach, called the �lter [9], operates independently
of any learning algorithm|undesirable features are �ltered out of the data before induction
commences. Filters typically make use of all the available training data when selecting a
subset of features. Some look for consistency in the data|that is, they note when every
combination of values for a feature subset is associated with a single class label [1]. Another
method [13] eliminates features whose information content is subsumed by some number
of the remaining features. Still other methods attempt to rank features according to a
relevancy score [11][8]. Filters have proven to be much faster than wrappers and hence can
be applied to large data sets containing many features. Their general nature allow them to
be used with any learner, unlike the wrapper, which must be re-run when switching from
one learning algorithm to another. However, most �lter algorithms work only on discrete
class problems1, unlike the wrapper, which can be \wrapped" around any continuous or
discrete class learner.

This paper presents a new approach to feature selection, called CFS, (Correlation-based
Feature Selection) that uses a correlation based heuristic to evaluate the worth of features.
The algorithm is simple, fast to execute and extends easily to continuous class problems by

1A notable exception is RReliefF [22] which is an extension of Kira and Rendell's RELIEF [11] algorithm
capable of working with continuous class problems.
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applying suitable correlation measures. The next section describes the CFS algorithm. Sec-
tion 3 describes the application of CFS to discrete class problems and presents experimental
results of using CFS as a pre-processor for learning algorithms. Section 4 explains how the
algorithm is extended to cope with continuous class problems and presents experimental re-
sults of using CFS on continuous class datasets. The last section summarises and discusses
related work.

2 CFS: Correlation-based feature selection

2.1 Feature evaluation

At the heart of the CFS algorithm is a heuristic for evaluating the worth or merit of a
subset of features. This heuristic takes into account the usefulness of individual features
for predicting the class label along with the level of intercorrelation among them. The
hypothesis on which the heuristic is based is:

Good feature subsets contain features highly correlated with the class, yet uncorrelated with

each other.

In test theory [6], the same principle is used to design a composite test (the sum or average
of individual tests) for predicting an external variable of interest. In this situation, the
\features" are individual tests which measure traits related to the variable of interest (class).
For example, a more accurate prediction of a person's success in a mechanics training course
can be had from a composite of a number of tests measuring a wide variety of traits (ability
to learn, ability to comprehend written material, manual dexterity and so forth), rather
than from any one individual test which measures a restricted scope of traits.

Equation 1 [6] formalises the heuristic:

Merits =
krcfp

k + k(k � 1)rff
(1)

where MeritS is the heuristic \merit" of a feature subset S containing k features, rcf
the average feature-class correlation, and rff the average feature-feature intercorrelation.
Equation 1 is, in fact, Pearson's correlation, where all variables have been standardised. The
numerator can be thought of as giving an indication of how predictive a group of features
are; the denominator of how much redundancy there is among them. The heuristic handles
irrelevant features as they will be poor predictors of the class. Redundant attributes are
discriminated against as they will be highly correlated with one or more of the other features.

2.2 Searching the Feature Subset Space

The purpose of feature selection is to decide which of the initial (possibly large) number of
features to include in the �nal subset and which to ignore. If there are n possible features
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initially, then there are 2n possible subsets. The only way to �nd the best subset would be
to try them all|this is clearly prohibitive for all but a small number of initial features.

Various heuristic search strategies such as hill climbing and best �rst [21] are often applied to
search the feature subset space in reasonable time. CFS �rst calculates a matrix of feature-
class and feature-feature correlations from the training data and then searches the feature
subset space using a best �rst search. Best �rst search was used in the �nal experiments as
it gave slightly better results in some cases than hill climbing. Best �rst is also the preferred
search strategy to use with the wrapper feature selector [12]. The best �rst search starts
with an empty set of features and generates all possible single feature expansions. The
subset with the highest evaluation is chosen and expanded in the same manner by adding
single features. If expanding a subset results in no improvement, the search drops back to
the next best unexpanded subset and continues from there. Given enough time a best �rst
search will explore the entire feature subset space, so it is common to limit the number of
subsets expanded that result in no improvement. The best subset found is returned when
the search terminates. CFS uses a stopping criterion of �ve consecutive fully expanded
non-improving subsets. Table 1 shows the best �rst search algorithm.

1. Begin with the OPEN list containing the start state,

the CLOSED list empty, and BEST start state.

2. Let s = arg max e(x)(get the state from OPEN with

the highest evaluation).

3. Remove s from OPEN and add to CLOSED.

4. If e(s) � e(BEST); then BEST s.

5. For each child t of s that is not in the OPEN or

CLOSED list, evaluate and add to OPEN.

6. If BEST changed in the last set of expansions, goto 2.

7. Return BEST.

Table 1: Best �rst search algorithm

2.3 Locally Predictive Features

Because correlations are estimated globally (over all training instances), CFS tends to select
a \core" subset of features that has low redundancy and is strongly predictive of the class.
In some cases however, there may be subsidiary features that are locally predictive in a
small area of the instance space. Some machine learning algorithms are able to make use
of locally predictive features and in these situations CFS has been shown to degrade their
performance somewhat [7]. The version of CFS used in the experiments described in this
paper includes a heuristic to include locally predictive features and avoid the re-introduction
of redundancy. After the feature subset space has been searched, the remaining unselected
features are examined one by one to determine whether they are likely to be useful on a
local rather than global basis. A feature will be admitted to the subset if its correlation
with the class is higher than the highest correlation between it and any one of the already
selected features.
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3 Applying CFS to Discrete Class Data

In order to apply Equation 1 to estimate the merit of a feature subset, it is necessary
to compute the correlation (dependence) between attributes. Research on decision tree
induction has provided a number of methods for estimating the quality of an attribute|
that is, how predictive one attribute is of another [3][14][19][20]. For discrete class problems,
CFS �rst discretises numeric features using the technique of Fayyad and Irani [4] and then
uses a modi�ed information gain measure (symmetrical uncertainty[18]) to estimate the
degree of association between discrete features. If X and Y are discrete random variables,
Equations 2 and 3 give the entropy of Y before and after observing X .

H(Y ) = �
X
y2Y

p(y)log2p(y); (2)

H(Y jX) = �
X
x2X

p(x)
X
y2Y

p(yjx)log2p(yjx): (3)

The amount by which the entropy of Y decreases re
ects the additional information about
Y provided by X and is called the information gain [20]. Information gain is given by

gain = H(Y )�H(Y jX) (4)

= H(X)�H(X jY )
= H(Y ) +H(X)�H(X;Y ):

Information gain is a symmetrical measure|that is, the amount of information gained about
Y after observing X is equal to the amount of information gained about X after observing
Y . Unfortunately, information gain is biased in favour of features with more values, that
is, attributes with greater numbers of values will appear to gain more information than
those with fewer values even if they are actually no more informative. Furthermore, the
correlations in Equation 1 should be normalised to ensure they are comparable and have the
same e�ect. Symmetrical uncertainty [18] compensates for information gain's bias toward
attributes with more values and normalises its value to the range [0; 1]:

symmetrical uncertainty = 2:0�
�

gain

H(Y ) +H(X)

�
(5)

To handle unknown (missing) data values in an attribute, CFS distributes their counts
across the represented values in proportion to their relative frequencies.
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3.1 Experiments (discrete class)

In order to evaluate the e�ectiveness of CFS as a global feature selector for common machine
learning algorithms, experiments were performed using thirty-six standard datasets from
the UCI collection [15]. The data sets and their characteristics are listed in Table 2. Three
machine learning algorithms representing three diverse approaches to learning were used
in the experiments|a probabilistic learner (naive Bayes), a decision tree learner (C4.5
release 6) and an instance-based learner (kNN2). The percentage of correct classi�cations,
averaged over ten �ve-fold cross-validation runs, were calculated for each algorithm-dataset
combination before and after feature selection by CFS. For each train-test split, a discretised
copy of the training data was passed to CFS. The original, undiscretised train and test
datasets had their dimensionality reduced with respect to the features selected by CFS
before being passed to the learning algorithms. The same folds were used for each scheme.

Table 3 lists the results. A � or � indicates whether results for CFS are signi�cantly better
or worse than when no feature selection is performed for each learning algorithm. In the
C4.5 column, a

p
or � indicates whether feature selection by CFS has signi�cantly reduced

or increased the size of the trees produced by C4.5 respectively. Throughout we speak
of results being signi�cantly di�erent if the di�erence is statistically signi�cant at the 5%
level according to a paired two-sided t test, each pair of points consisting of the estimates
obtained in one 5-fold cross validation run for before and after feature selection. Figure 1
shows how CFS compares with no feature selection for each learning algorithm. For each
learner, the left bar shows the number of signi�cant improvements and the right bar the
number of signi�cant reductions in accuracy.
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Figure 1: Results of paired t-tests (p = 0:05): left bar for each learner indicates how many
times feature selection signi�cantly improves performance; the right bar indicates how many
times using the full feature set signi�cantly outperforms feature selection.

2The implementation of k-nearest neighbour used here sets k by cross-validation on the training data.
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Table 2: Discrete class datasets used in the experiments
Dataset Instances Missing

values (%)

Numeric

attributes

Nominal

attributes

Classes

1 anneal 898 0.0 6 32 5

2 audiology 226 2.0 0 69 24

3 australian 690 0.6 6 9 2

4 autos 205 1.1 15 10 6

5 balance-scale 625 0.0 4 0 3

6 breast-cancer 286 0.3 0 9 2

7 breast-w 699 0.3 9 0 2

8 dna-promoters 106 0.0 0 58 2

9 german 1000 0.0 7 13 2

10 glass (G2) 163 0.0 9 0 2

11 glass 214 0.0 9 0 6

12 heart-c 303 0.2 6 7 2

13 heart-h 294 20.4 6 7 2

14 heart-statlog 270 0.0 13 0 2

15 hepatitis 155 5.6 6 13 2

16 horse-colic 368 23.8 7 15 2

17 hypothyroid 3772 5.5 7 22 4

18 ionosphere 351 0.0 34 0 2

19 iris 150 0.0 4 0 3

20 kr-vs-kp 3196 0.0 0 36 2

21 labor 57 3.9 8 8 2

22 lymphography 148 0.0 3 15 4

23 mushroom 8124 1.4 9 22 2

24 pima-indians 768 0.0 8 0 2

25 primary-tumor 339 3.9 0 17 21

26 segment 2310 0.0 19 0 7

27 sick 3772 5.5 7 22 2

28 sonar 208 0.0 60 0 2

29 soybean 683 9.8 0 35 19

30 splice 3190 0.0 0 61 3

31 vehicle 846 0.0 18 0 4

32 vote 435 5.6 0 16 2

33 vote1 435 5.5 0 15 2

34 vowel 990 0.0 10 3 11

35 waveform-noise 5000 0.0 40 0 3

36 zoo 101 0.0 1 15 7
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Table 3: Experimental results: discrete class datasets
Dataset NB kNN C4.5

All CFS All CFS All CFS

anneal 86.80 85.86 � 98.72 96.60 � 98.78 97.49 �p

audiology 70.72 71.31 77.01 72.34 � 76.44 77.14
p

australian 77.02 74.61 � 85.79 85.61 84.61 84.16
p

autos 57.25 57.65 72.44 78.87 � 74.54 74.66

balance-scale 90.08 89.67 89.86 89.41 78.35 78.14

breast-cancer 73.12 72.53 73.05 73.26 72.16 70.82 �
breast-w 96.01 96.01 96.67 96.67 95.11 95.11

dna-promoters 90.72 93.46 � 79.27 87.41 � 77.61 78.87 �p

german 74.85 72.96 � 73.36 73.43 71.08 72.36 �p

glass (G2) 62.36 65.51 � 76.46 80.95 � 76.12 80.40 �p

glass 48.10 48.70 68.61 74.00 � 68.31 68.59
p

heart-c 83.24 83.10 82.12 81.98 75.32 77.29 �p

heart-h 84.39 83.59 � 81.81 82.94 79.06 79.40
p

heart-statlog 84.19 83.78 81.48 80.48 76.15 78.45 �p

hepatitis 83.61 83.72 82.64 81.28 79.70 80.61
p

horse-colic 81.24 87.37 � 83.83 86.12 � 84.79 85.64 �
hypothyroid 95.04 94.53 � 93.24 92.76 99.48 97.60 ��
ionosphere 88.16 90.79 � 89.36 89.99 90.69 90.94

p

iris 95.33 95.73 95.33 95.07 94.54 94.67
p

kr-vs-kp 87.60 92.35 � 95.99 94.14 � 99.27 94.06 �p

labor 85.66 85.08 89.42 80.39 � 84.43 83.50
p

lymphography 83.43 79.13 � 81.25 80.02 74.12 74.30
p

mushroom 95.63 98.52 � 100.0 99.02 � 100.0 99.02 �p

pima-indians 75.34 76.22 � 73.99 76.06 � 71.38 71.41
p

primary-tumor 49.37 48.15 � 45.85 45.56 41.78 41.52
p

segment 78.99 85.27 � 96.95 96.94 96.28 96.47

sick 92.03 96.12 � 96.04 96.63 � 98.76 97.43 �p

sonar 67.11 65.46 � 85.15 79.79 � 69.97 70.82

soybean 92.56 91.94 � 90.90 90.45 90.49 89.51 �
splice 95.38 95.70 � 86.05 85.04 � 93.77 93.94 �p

vehicle 45.43 47.53 � 68.65 62.25 � 70.85 67.15 ��
vote 90.06 94.36 � 92.52 94.85 � 95.98 95.43

p

vote1 87.20 89.90 � 89.25 90.72 � 89.74 89.65
p

vowel 62.68 62.13 98.83 95.25 � 78.10 76.10 �
waveform-noise 80.05 80.19 � 82.96 85.59 � 74.65 76.76 �
zoo 95.06 92.89 � 95.03 94.25 93.01 92.72

p

�,�(p ,�) statistically signi�cant improvement or degradation
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From Figure 1, it can be seen that feature selection improves the performance of naive
Bayes on fourteen datasets and degrades performance on ten. For IB1, feature selection
improves performance on ten datasets and degrades performance on nine. For C4.5, feature
selection improves performance on seven datasets and degrades performance on nine. For
all three algorithms feature selection safely removes features while not degrading the overall
performance. Figure 2 shows the average number of features selected by CFS across the
folds for each dataset. For seventy percent of the datasets CFS reduces the number features
by more than half. Such a reduction in the number of features can have a dramatic a�ect
on the training time of the learning algorithms.
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Figure 2: Average number of features selected by CFS with standard deviations. Dots show
the original number of features in each dataset.

For C4.5, the size of the trees produced is also important because it has an in
uence on
comprehensibility. From Table 3, it can be seen that feature selection by CFS signi�cantly
reduces the size of C4.5's trees for twenty four out of thirty six datasets and signi�cantly
increases the size of C4.5's trees on only three datasets.

4 Applying CFS to Continuous Class Data

For continuous class data, the obvious measure for estimating the correlation between at-
tributes in Equation 1 is standard linear (Pearson's) correlation. This is straightforward
when the two attributes involved are both continuous:

rXY =

P
xy

n�x�y
; (6)

where X and Y are two continuous variables expressed in terms of deviations.
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When one attribute is continuous and the other discrete, a weighted pearsons correlation is
calculated as shown in Equation 7. Speci�cally, for a discrete attribute X and a continuous
attribute Y; if X has k values, then k binary attributes are correlated with Y: Each of the
i = 1; :::; k binary attributes takes value 1 when the ith value of X occurs and 0 for all other
values. Each of the i = 1; :::; k correlations calculated is weighted by the prior probability
that X takes value i.

rXY =

kX
i=1

p(X = xi)rXbiY ; (7)

where Xbi is a binary attribute that takes value 1 when X has value xi and 0 otherwise.

When both attributes involved are discrete, binary attributes are created for both and all
weighted correlations are calculated for all combinations as shown in Equation 8.

rXY =

kX
i=1

lX
j=1

p(X = xi; Y = yj)rXbiYbj
(8)

In this approach to calculating correlations, CFS replaces any unknown (missing) values
with the mean for continuous attributes and the most common value for discrete attributes.

4.1 Experiments (continuous class)

Experiments on continuous class data follow a similar methodology to that described in
Section 3.1 for the discrete case. The only di�erence is that features do not need to be
discretised before being passed to CFS. Thirty �ve continuous class datasets [5] and their
properties are listed in Table 4. Twenty of these datasets were used by Killpatrick and
Cameron-Jones [10], seven are from the StatLib repository, and the remaining six were
collected by Simono� [23].

Three learning algorithms (close analogs of those used in the discrete class experiments)
capable of learning in continuous class problems were used in the experiments: naive Bayes
for regression [5] (NBR), M50 [24], and locally weighted regression [2] (LWR). Naive Bayes for
regression employes Gaussian kernal density functions to estimate conditional probabilities.
Model trees are the counterpart of decision trees for regression tasks. They have the same
structure as decision trees but employ linear functions at each leaf node in order to predict
continuous values. Locally weighted regression is a state of the art technique that combines
instance based learning and linear regression|a surface is �tted to neighbours of a target
point using a distance weighted regression.

Table 5 summarises the relative root mean squared error of using the three learners with
and without feature selection by CFS on the continuous class datasets. The relative root
mean squared error of a method is its root mean squared error normalised by the root mean
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Table 4: Continuous class datasets used in the experiments
Dataset Instances Missing

values (%)

Numeric

attributes

Nominal

attributes

1 auto93 93 0.7 16 6

2 autoHorse 205 1.1 17 8

3 autoMpg 398 0.2 4 3

4 autoPrice 159 0.0 15 0

5 baskball 96 0.0 4 0

6 bodyfat 252 0.0 14 0

7 bolts 40 0.0 7 0

8 breastTumor 286 0.3 1 8

9 cholesterol 303 0.1 6 7

10 cleveland 303 0.1 6 7

11 cloud 108 0.0 4 2

12 cpu 209 0.0 6 1

13 echoMonths 131 7.5 6 3

14 elusage 55 0.0 1 1

15 �shcatch 158 6.9 5 2

16 housing 506 0.0 12 1

17 hungarian 294 19.0 6 7

18 lowbwt 189 0.0 2 7

19 mbagrade 61 0.0 1 1

20 meta 528 4.3 19 2

21 pbc 418 15.6 10 8

22 pharynx 195 0.1 1 10

23 pollution 60 0.0 15 0

24 pwLinear 200 0.0 10 0

25 quake 2178 0.0 3 0

26 schlvote 38 0.4 4 1

27 sensory 576 0.0 0 11

28 servo 167 0.0 0 4

29 sleep 62 2.4 7 0

30 strike 625 0.0 5 1

31 veteran 137 0.0 3 4

32 vineyard 52 0.0 3 0
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squared error of the sample mean3. Thus, a method that performs worse than the mean
has a relative root mean squared error of more than 100. As before, a � or � indicates
whether results using CFS are signi�cantly better or worse than when no feature selection
is performed (all features are used) for each learning algorithm. For M50, the number
of linear models produced (there is one at each leaf) is also recorded. A

p
or � indicates

whether feature selection by CFS has signi�cantly reduced or increased the number of linear
models produced by M50. Figure 3 shows how CFS compares with no feature selection
for each learning algorithm. For each learner, the left bar shows the number of signi�cant
improvements (reductions of relative root mean squared error) and the right bar the number
of signi�cant degradations.

Table 5: Experimental results: continuous class datasets.
Dataset NBR LWR M50

All CFS All CFS All CFS

auto93 60.51 59.39 68.43 62.02 � 62.17 61.83
p

autoHorse 40.03 38.72 45.79 28.97 � 33.29 33.50
p

autoMpg 42.45 42.45 39.50 39.50 36.67 36.67

autoPrice 41.68 37.47 � 38.79 35.76 � 39.55 37.40 �p

baskball 86.48 83.80 � 80.94 83.40 � 81.16 84.40 �p

bodyfat 26.46 14.85 � 12.73 11.62 � 12.24 23.25

bolts 39.02 31.51 � 32.90 46.46 � 30.35 49.67 ��
breastTumor 101.57 99.93 � 124.24 116.76 � 98.71 99.16 �
cholesterol 104.02 104.33 120.89 103.44 � 100.46 98.67 �p

cleveland 76.13 72.97 � 84.84 76.82 � 74.54 73.39
p

cloud 52.45 47.58 � 39.66 39.25 38.87 38.11
p

cpu 37.05 32.90 � 19.43 11.54 � 20.21 20.10
p

echoMonths 78.56 71.69 � 76.33 70.10 � 67.90 68.16
p

elusage 53.58 47.53 � 55.56 48.14 � 46.54 44.52 �p

�shcatch 32.78 30.30 � 21.22 18.55 � 17.37 22.46 ��
housing 60.70 46.02 � 35.01 43.83 � 45.17 47.42

hungarian 72.54 68.11 � 76.72 75.21 � 77.38 75.20 �p

lowbwt 62.87 63.15 70.33 64.35 � 62.33 62.87
p

mbagrade 93.23 93.23 89.79 89.79 88.04 88.04

meta 136.14 110.54 � 195.66 174.83 147.51 155.92 �
pbc 86.43 88.50 � 107.68 89.77 � 85.85 87.16 �p

pharynx 82.32 75.37 � 104.47 77.87 � 72.32 72.16
p

pollution 84.77 77.91 � 73.62 65.13 � 71.08 68.52
p

pwLinear 52.19 49.21 � 38.72 35.33 � 32.54 32.47
p

quake 102.96 99.55 � 100.92 100.16 � 100.47 100.02 �p

schlvote 92.29 86.75 � 113.58 95.30 � 117.21 102.17 �p

sensory 92.59 91.09 � 117.03 98.84 � 87.10 87.13
p

servo 73.83 72.42 � 39.41 40.28 38.38 42.71 �p

sleep 77.26 79.41 � 76.19 78.84 96.57 81.15
p

strike 154.74 97.64 � 108.69 94.29 � 88.56 93.58 �p

veteran 89.11 88.68 � 100.73 91.82 � 94.07 93.35
p

vineyard 66.76 62.59 � 65.21 63.24 � 72.69 68.61 �p

�,�(p, �) statistically signi�cant improvement or degradation

From Figure 3 it can be seen that CFS improves the accuracy of naive Bayes the most
followed by LWR and then M50. For naive Bayes, feature selection improves performance

3The sample mean is computed from the test data.
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Figure 3: Results of paired t-tests (p = 0:05) for continuous class datasets: left bar for
each learner indicates how many times feature selection signi�cantly improves performance;
the right bar indicates how many times using the full feature set signi�cantly outperforms
feature selection.

on twenty-four datasets and degrades performance on two. For locally weighted regression,
feature selection improves performance on twenty-three datasets and degrades performance
on three. For M50, feature selection improves accuracy on seven datasets and degrades
accuracy on six. Figure 4 shows the average number of features selected by CFS across the
folds for each dataset. For sixty percent of the datasets CFS reduces the number of features
by more than half.

Like C4.5, M50 produces a structure that can be interpreted. The number of linear models
produced by M50 is related to the size of the tree as there is one model at each leaf of the
tree. From Table 5, it can be seen that feature selection by CFS signi�cantly reduces the
number of linear models produced by M50 for twenty four out of thirty two datasets and
signi�cantly increases the number of models produced on four datasets.

5 Related Work and Conclusions

While wrapper feature selection can be applied to regression problems with relative ease
[16][17], few �lter algorithms handle continuous class data. One notable exception is RRe-
liefF (Regressional Relief) [22], which is an extension of Kira and Rendel's Relief [11] algo-
rithm for classi�cation problems. The Relief algorithms are quite di�erent to CFS in that
they score (and hence rank) individual features rather than scoring (and hence ranking)
feature subsets. To use Relief for feature selection, those features with scores exceeding a
user-speci�ed threshold are retained to form the �nal subset. Alternatively, cross validating
the ranking can determine a cuto� point for a particular learner.
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Figure 4: Average number of features selected by CFS with standard deviations on contin-
uous class datasets. Dots show the original number of features in each dataset.

The instance-based nature of Relief makes it more computationally intensive than CFS.
Relief works by randomly sampling training instances and using their nearest hits (instances
of the same class) and nearest misses (instances of di�ering classes) to update the features'
scores4. The complexity of Relief for m training instances, n attributes and s randomly
sampled training instances is O(s � m � n). Note that the value of s is normally much
larger than the number of features. Increasing the value of s results in more reliable scores.
For CFS computing the initial correlation matrix is O(m((n2 � n)=2)) and the best �rst
search is approximately quadratic in the number of features. When doing a forward search,
the initial correlation matrix need not be pre-computed; correlations can be computed as
required during the search.

This paper has presented a new correlation-based approach to feature selection (CFS) and
demonstrated how it can be applied to both classi�cation and regression problems for ma-
chine learning. CFS uses the features' predictive performances and intercorrelations to
guide its search for a good subset of features. Experiments on discrete and continuous class
datasets show that CFS can drastically reduce the dimensionality of datasets while main-
taining or improving the performance of learning algorithms. Based on these results it can
be concluded that CFS shows promise as a practical feature selector for common machine
learning algorithms.
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