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The WEKA (Waikato Environment for Knowledge Analysis) system provides a
comprehensive suite of facilities for applying data mining techniques to large data sets.
This paper discusses a process model for analyzing data, and describes the support that
WEKA provides for this model.  The domain model ‘learned’ by the data mining algorithm
can then be readily incorporated into a software application. This WEKA-based analysis
and application construction process is illustrated through a case study in the agricultural
domain—mushroom grading.
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1. INTRODUCTION

Data mining is the process of discovering previously unknown and potentially interesting
patterns in large datasets (Piatetsky-Shapiro and Frawley, 1991). The ‘mined’ information
is typically represented as a model of the semantic structure of the dataset, where the
model may be used on new data for prediction or classification. Alternatively, human
domain experts may choose to manually examine the model, in search of portions that
explain previously misunderstood or unknown characteristics of the domain under study.

In our work, we concentrate on machine learning techniques for inducing domain models
or analyzing datasets (described further in Section 3).  Machine learning algorithms
provide models with a classification/prediction accuracy comparable to, for example,
artificial neural networks, but which are more intelligible to humans than a neural model.

The WEKA1 research team has two objectives: to mine information from existing
agricultural datasets produced by New Zealand scientists and research organizations; and
to perform basic research in data mining by developing new machine learning algorithms.
To support these goals, we have developed a data mining workbench, the WEKA system,
that incorporates the following tools:  a set of data pre-processing routines, supporting the
manipulation of raw data and its transformation into an appropriate form for data mining;
feature selection tools, useful for identifying irrelevant attributes to exclude from the
dataset; classifiers and other data mining algorithms, capable of handling categorical and
numeric learning tasks; metaclassifiers for enhancing the performance of classification
data mining algorithms (for example, boosting and bagging routines); experimental
support for verifying the comparative robustness of multiple induction models (for
example, routines measuring classification accuracy, entropy, root-squared mean error,
cost-sensitive classification, etc.); and benchmarking tools, for comparing the relative
performance of different learning algorithms over several datasets.

                                                
1 Pronounced to rhyme with Mecca, the weka is a flightless bird with an inquisitive nature found only on the



Extensive, automatically generated documentation of the WEKA source is available to
guide the user through interactions with the system. Earlier, Unix-based versions of the
WEKA system are further described in Holmes et al, 1994; Garner et al, 1995. The current
version of WEKA is implemented as a suite of Java class libraries. It is freely available on
the World-Wide Web (http://www.cs.waikato.ac.nz/~ml/weka). The software accompanies
a new text on data mining (Witten and Frank, 1999) which documents and fully explains
all the data mining algorithms incorporated in WEKA. Application programs written using
the WEKA class libraries can be run on any computer with a WWW browser.

The general process of data mining is described in Section 2. Section 3 describes the
specific machine learning algorithms represented in the current version of WEKA, and
Section 4 describes WEKA tools for supporting the data mining process model.  A case
study illustrating data mining using WEKA appears in Section 5, and Section 6 presents our
conclusions.

2. DATA MINING PROCESS MODEL

In the course of this project we have analyzed over 50 real-world data sets, primarily
agricultural data sets provided by research institutes and businesses in New Zealand. From
this experience we have developed a process model for applying data mining techniques to
data, with the goal of incorporating the induced domain information into a software
module (Figure 1). The key points of this model are (Garner et al, 1995):

• a two-way interaction between the provider of the data and the data mining expert.
Both work together to transform the raw data into the final data set(s) input to the
machine learning algorithms — with the domain expert providing information about
data semantics and ‘legal’ transformations that can be applied to the data, and the data
mining expert guiding the process so as to improve the intelligibility and accuracy of
the results.

• an iterative approach.  Machine learning is an exploratory process; it generally takes
several cycles through the process model to find a good “fit” between a representation
of the data and a data mining algorithm.  In addition, distinct attribute combinations
run through different schemes can produce wildly different data models, even though
the predictive accuracy of the results may be equivalent. These alternative views may
provide valuable insights into patterns covering different subsets of the data.

In the model presented in Figure 1, activity flows in a clockwise direction. In the pre-
processing stage, the raw data is firstly represented as a single table, as required by the data
mining algorithms included in WEKA. This table is translated into the ARFF format, an
attribute/value table representation that includes header information on the attributes’ data
types.  The data may also require considerable ‘cleansing’, to remove outliers, handle
missing values, detect erroneous values, and so forth.

At this point the data provider (domain expert) and the data mining expert collaborate to
transform the cleansed data into a form that will produce a readable, accurate data model
when processed by a data mining algorithm. These two analysts may, for example,
hypothesize that one or more attributes are irrelevant, and set aside these extraneous
columns. Attributes may be manipulated mathematically, for example to convert all
columns containing temperature measurements to a common scale, to normalize values in
a given column, or to combine two or more columns into a single derived attribute.



Figure 1.  Process model for a machine learning application (data flow diagram)

One or more versions of the cleansed data are then processed by the data mining schemes.
The domain expert determines which portions of the output are sufficiently novel or
interesting to warrant further exploration, and which portions represent common
knowledge for that field. The data mining expert interprets the algorithms’ output and
gives advice on further experiments that could be run with this data.

3. MACHINE LEARNING TECHNIQUES

The current version of WEKA contains implementations of twelve learning schemes:  ten
classifiers, a clustering algorithm, and an association rule learner. The software
architecture is flexible enough to permit other learning schemes, and other types of
learning schemes, to also be slotted into WEKA.  In this section, we describe the types of
learning that WEKA currently supports.

Classifiers

The output from this type of learning scheme is, literally, a classifier—usually in the form
of a decision tree or set of rules that can be used to predict the classification of a new data
instance.  One attribute in the input table is designated as the category or class for
prediction; the rest of the attributes may appear in the “if” portions of the rules (or the non-
leaf nodes of the decision tree).

The most primitive learning scheme in WEKA is ZeroR (Table 1). This scheme models the
dataset with a single rule.  Given a new data item for classification, ZeroR predicts the
most frequent category value in the training data for problems with a nominal class value,
or predicts the average class value for numeric prediction problems. ZeroR  is useful for
generating a baseline performance that other learning schemes are compared to. In some
datasets, it is possible for other learning schemes to induce models that perform worse on
new data than ZeroR—an indicator of substantial overfitting.
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weka.classifiers.ZeroR
weka.classifiers.OneR
weka.classifiers.NaiveBayes
weka.classifiers.DecisionTable
weka.classifiers.Ibk
weka.classifiers.j48.J48
weka.classifiers.j48.PART
weka.classifiers.SMO
weka.classifiers.LinearRegression
weka.classifiers.m5.M5Prime
weka.classifiers.LWR
weka.classifiers.DecisionStump

Table 1: The basic learning schemes in Weka

The next scheme, OneR, produces very simple rules based on a single attribute. OneR is
also useful in generating a baseline for classification performance—indeed, this algorithm
was found to perform as well as more sophisticated algorithms over many of the standard
machine learning test datasets (Holte, 1993)!  It appears that at least part of the reason for
this result is that many of the standard test databases embody very simple underlying
relationships in the data. Real world databases may also contain very simply structured
information about a domain as well, and these simple relationships can be parsimoniously
detected and represented by OneR.

NaiveBayes implements a Naïve Bayesian classifier, which produces probabilistic
rules—that is, when presented with a new data item, the NaiveBayes model indicates the
probability that this item belongs to each of the possible class categories (Langley et al,
1992). The Bayesian classifier is ‘naïve’ in the sense that attributes are treated as though
they are completely independent, and as if each attribute contributes equally to the model.
If extraneous attributes are included in the dataset, then those attributes will skew the
model. Despite its simplicity, NaiveBayes, like OneR, can give surprisingly good results on
many real world datasets.

DecisionTable summarizes the dataset with a ‘decision table’. In its simplest state, a
decision table contains the same number of attributes as the original dataset, and a new
data item is assigned a category by finding the line in the decision table that matches the
non-class values of the data item.  This implementation employs the wrapper method (John
and Kohavi, 1997) to find a good subset of attributes for inclusion in the table.  By
eliminating attributes that contribute little or nothing to a model of the dataset, the
algorithm reduces the likelihood of over-fitting and creates a smaller, more condensed
decision table.

Instance-based learning schemes create a model by simply storing the dataset. A new data
item is classified by comparing it with these ‘memorized’ data items, using a distance
metric. The new item is assigned the category of the closest original data item (its ‘nearest
neighbor’). Alternatively, the majority class of the k nearest data items may be selected, or
for numeric attributes the distance-weighted average of the k closest items may be
assigned.   IBk is an implementation of the k-nearest-neighbours classifier (Aha, 1992).
The number of nearest neighbors (k) can be set manually, or determined automatically
using cross-validation.



j48 is an implementation of C4.5 release 8 (Quinlan 1993), a standard algorithm that is
widely used for practical machine learning. This implementation produces decision tree
models. Part is a more recent scheme for producing sets of rules called “decision lists”,
which are ordered sets of rules. A new data item is compared to each rule in the list in turn,
and the item is assigned the category of the first matching rule (a default is applied if no
rule successfully matches).  This algorithm works by forming pruned partial decision trees
(built using C4.5’s heuristics), and immediately converting them into a corresponding rule.

SMO implements the “sequential minimal optimization” algorithm for support vector
machines (SVMs), which are an important new paradigm in machine learning (Burgess,
1998).  SVMs have seen significant application in learning models for text categorization
(see, for example, Dumais et al, 1998). While SMO is one of the fastest techniques for
learning SVMs, it is often slow to converge to a solution—particularly with noisy data.

WEKA contains three methods for numeric prediction. The simplest is Linear Regression.
LWR is an implementation of a more sophisticated learning scheme for numeric prediction,
using locally weighted regression (Atkeson et al, 1997).  M5Prime is a rational
reconstruction of Quinlan’s M5 model tree inducer (Wang and Witten, 1997). While
decision trees were designed for assigning nominal categories, this representation can be
extended to numeric prediction by modifying the leaf nodes of the tree to contain a
numeric value which is the average of all the dataset’s values that the leaf applies to.

Finally, DecisionStump builds simple binary decision "stumps" (1-level decision trees) for
both numeric and nominal classification problems. It copes with missing values by
extending a third branch from the stump—in other words, by treating “missing” as a
separate attribute value. DecisionStump is mainly used in conjunction with the LogitBoost
boosting method, discussed in the next section.

Meta-Classifiers

Recent developments in computational learning theory have led to methods that enhance
the performance or extend the capabilities of these basic learning schemes. We call these
performance enhancers “meta-learning schemes” or “meta-classifiers” because they
operate on the output of other learners. Instead of using a single classifier to make
predictions, why not arrange a committee of classifiers to vote on the classification an
instance? This is the basic idea behind combining multiple models to form an ensemble or
meta classifier.

Two of the most prominent methods for constructing ensemble classifiers are boosting and
bagging (Breiman, 1992). More often than not, these classifiers can increase predictive
performance over a single classifier. However, the price for this increase in performance is
that it is generally not possible to understand what is behind the improved decision
making.

Both bagging and boosting vote on classifications using a weighted vote—each model in
the ensemble predicts a class and assigns a confidence value to the prediction. These
values are summed and the class with the largest value (most confidence) is chosen.

The two methods derive their collections of models of the data in quite different ways.
Bagging works by building separate models of the training data using a sampling technique
that deletes some instances and replicates others. In this way individual models are built
separately with a fresh training set at each iteration (the number of iterations determines
the number of models constructed for the ensemble).



Algorithmically:

Let n be the number of instances in the training data
For each of t iterations do
  Randomly sample n instances (using deletion and replication)
  Apply a learning technique to build a model from the sample
  Store the model
End

Like bagging, boosting is iterative but instead of sampling fresh training data, each new
model is influenced by the performance of those built previously. Instances that are
incorrectly classified in previous iterations are promoted and those correctly classified are
relegated. The key idea is to weight the instances and to use a learning algorithm that can
take into account these weights when constructing its models. Initially, the weights are
even and a model is constructed. The instances correctly classified by this model are given
less weight so that the incorrectly classified instances will have more “importance” in the
next iteration.

Algorithmically:

Assign equal weight to all instances
For each of t iterations do
  Apply a learning technique to build a model from the weighted instances
  and store the resulting model
  Down-weight each instance correctly classified by the model
End

The AdaBoost.M1 (Freund and Schapire, 1996) boosting algorithm gives the user control
over the boosting iterations performed. Another boosting procedure is implemented by
LogitBoost (Friedman et al, 1998), which is suited to problems involving two-class
situations—for example, the SMO class from above. In order to apply these schemes to
multi-class datasets it is necessary to transform the multi-class problem into several two-
class ones, and combine the results. The MultiClassClassifier boosting technique does
exactly that.

Clustering

Clustering methods do not generate predictive rules for a particular class, but rather try to
find the natural groupings (or “clusters”) in the dataset.  This technique is most often used
in an exploratory fashion, to generate hypotheses about the relationships between data
instances. Clustering is often followed by a second learning stage, in which a classifier is
used to induce a rule set or decision tree that allocates each instance in the dataset to the
cluster assigned to it by the clustering algorithm. These classifier-generated ‘cluster
descriptions’ can then be examined to gain a semantic understanding of the clusters.

WEKA includes an implementation of the EM clustering algorithm. This algorithm makes
the assumption, common to other clustering algorithms, that the attributes in the dataset
represent independent random variables. Some clustering algorithms force each record to
belong to exactly one cluster; EM permits an instance to belong to more than one cluster, a
useful extension that, in practice, can support more flexible and more ‘fuzzy’ descriptions
of the implicit structure of the dataset.



Association rules

WEKA contains an implementation of the Apriori algorithm (Agrawal, et al, 1993) for
generating association rules, a type of learning scheme commonly used in “market basket
analysis” (MBA).  MBA algorithms have recently seen widespread use in analyzing
consumer purchasing patterns—specifically, in detecting products that are frequently
purchased together. These algorithms were developed in response to the vast flood of
transaction data produced by barcode-based purchasing/ordering systems. This data was
quickly recognized by the business world as having immense potential value in marketing,
but traditional data analysis techniques could not cope with the size of the hypothesis space
that these datasets engender.

For this type of analysis, data is logically organized into “baskets” (usually records in
which the items purchased by a given consumer at a given time are grouped together).
MBA algorithms such as Apriori discover “association rules” that identify patterns of
purchases, such that the presence of one item in a basket will imply the presence of one or
more additional items. A hypothetical example of such a rule might be that shoppers who
purchase toothpaste are also likely to buy bananas on the same trip to the grocery store.
This result can then be used to suggest combinations of products for special promotions or
sales, devise a more effective store layout, and give insight into brand loyalty and co-
branding.

4. WEKA TOOLS

In addition to the learning algorithms discussed above, WEKA also provides tools for pre-
processing data and for comparing the performance of different learning algorithms.

Dataset pre-processing

WEKA’s pre-processing capability is encapsulated in an extensive set of routines, called
filters, that enable data to be processed at the instance and attribute value levels. These
filters have a standard command-line interface with a set of common command-line
options.

Many of the filter algorithms provide facilities for general manipulation of attributes—for
example, to insert and delete attributes from the dataset. When experimenting with
learning schemes in the development of a data mining application (Section 2), one of the
most common activities involves building models with different subsets of the complete
attribute set. WEKA provides three feature selection systems to aid in choosing attributes
for inclusion in an experiment: a locally produced correlation based technique (Hall and
Smith, 1998); the wrapper method (John and Kohavi, 1997); and Relief (Kira and Rendell,
1992).

In some cases it can be beneficial to apply a transformation function to an entire column in
the dataset—for example, to normalize each value in an attribute. For nominal attributes, it
may be advantageous to represent a multi-class attribute as a two-class attribute (thereby
reducing the scale of the categorization problem to binary classification); alternatively, the
number of classes may be reduced by merging two values of a nominal attribute into a
single value. Filters are provided to support these transformations, which may be applied to
non-class attributes as well.  Since some learning schemes (eg, SMO) can only handle
binary attributes, a filter is available that transforms a multi-valued nominal attribute into a
binary valued attribute. Since many algorithms cannot handle real valued attributes, a



discretization filter is provided.  It can perform unsupervised discretization (with equal
width binning) or supervised discretization (using MDL; Fayyad and Irani, 1993).

Missing values occur frequently in real world datasets, and are difficult for many data
mining algorithms to handle.  Indeed, most algorithms simply omit lines of data containing
a missing value—which can, in extreme cases, reduce the amount of useable data in a
training set to the point that a reliable model cannot be formed. One technique for dealing
with missing values is to globally replace them with estimated values before a learning
scheme is applied; WEKA provides a filter that substitutes the mean (for numeric
attributes) or the mode (for nominal attributes) for each missing value.

The presence of outliers in a dataset may seriously skew a model; a filter can remove
outliers by deleting all instances that exhibit one of a particular set of nominal attribute
values, or a numeric value below a given threshold.

Benchmarking algorithm performance

One of the key aspects of the WKA suite is the facility it provides to evaluate learning
schemes consistently.  For example, a researcher can create a “league table” summarizing
the comparative performance of several schemes over a number of datasets. Table 2
illustrates the results of applying ten classifiers to 37 datasets from the UCI repository
(Blake and Merz, 1998), a large repository of benchmark datasets for the machine learning
research community.

W-L Wins Loss  Scheme

 208  254   46  LogitBoost  -I 100 Decision Stump
 155  230   75  LogitBoost  -I 10 Decision Stump
 132  214   82  AdaBoostM1  Decision Trees
 118  209   91  Naïve Bayes
  62  183  121  Decision Trees
  14  168  154  IBk  Instance-based learner
 -65  120  185  AdaBoostM1  Decision Stump
-140   90  230  OneR—Simple Rule learner
-166   77  243  Decision Stump
-195    9  204  ZeroR

Table 2: Ranking schemes

Column 2, Wins, is the number of datasets for which the scheme performed significantly
better (at the 95% confidence level) than another scheme. Loss is the number of datasets
for which a scheme performed significantly worse than another scheme. W-L is the
difference between wins and losses to give an overall score. It would appear, for these 37
test sets, that Logit boosting simple stumps for 10 or 100 iterations is the best overall
method among the schemes available in WEKA.

5. CASE STUDY: MUSHROOM GRADING

The data mining process model (Section 2) has been useful in focussing the analysis of real
world datasets, using the WEKA analysis tools (Section 4) and the WEKA learning schemes
(Section 3).  In this section we describe one such application: a classification system for
sorting mushrooms by grade (described in greater detail in Kusabs et al, 1998).



The goal of this project was to induce a classification system capable of sorting
mushrooms into quality grades and achieving an accuracy similar to that attained by
human inspectors. This research was carried out in collaboration with members of a local
agricultural research organization (Postharvest Group, Ruakura Research Centre), who
took the part of the data provider/domain expert in the process model (Section 2).

In this case, the data pre-processing stage involved not simply the cleansing of raw data,
but the construction of a test dataset in collaboration with the agricultural researchers.  This
dataset contains descriptions of 282 mushrooms. The attributes included both objective
measures (weight, firmness, percentage of cap opening) and subjective measures (Likert-
scale estimates of the degree of dirt, stalk damage bruising, shrivel, bacterial blotch and P.
gingeri). Three inspectors independently graded the mushrooms using the three broad
commercial grades (1st, 2nd, and 3rd grade).

In addition, digital images were captured for the 282 mushrooms. These images were
analyzed to provide an additional 60 image-based attributes: frequency bin values (0-4)
from the analysis of Red, Green and Blue (R,G,B) and Hue, Saturation and Value (H,S,V)
histograms for top (t) and bottom (b) images of the sample mushrooms.

The wrapper method, in conjunction with model-building using the J4.8 classifier, proved
useful in eliminating many of these 68 attributes (corresponding to the “attribute analysis”
and “experiments with machine learning schemes” cycle in the process model, Figure 1).
Using J4.8 and wrapper search, a separate model was developed for the three inspectors.
The models developed suggested that each inspector used different combinations of
attributes when assigning grades to mushrooms.  All the predictive models used attributes
from top and bottom images.  Only Inspector 2 used weight for the classification of
mushrooms into three grades. The subjective measurements (dirt, stalk damage, bruising,
shrivel, bacterial blotch and P. gingerii) did not increase the accuracy of any of the
prediction models, and so were eliminated by the wrapper technique. Finally, the models
each incorporated between four and seven attributes—a significant reduction from the
original 68! The average accuracy of the models was compared favorably with that of the
human inspectors and the level of agreement with the human experts was, on average,
acceptable.

These results indicate that visually-based attributes, which can be automatically extracted
from digitized images, are sufficient for good separation of mushrooms into three broad
quality bands (where ‘good’ is measured in comparison to human grading standards).  The
subjective attributes, commonly believed to play a crucial role in grading, are apparently
irrelevant to the task. This surprising bit of ‘mined’ information echoes the conclusions of
a classic machine learning paper (Michalski & Chilausky, 1980), which induced a set of
rules for diagnosing soybean diseases that were strikingly dissimilar to expert opinions on
the correct diagnosis procedure—but which were so accurate that one expert adopted the
discovered rules in place of his own!

A more accurate, but humanly unintelligible, model was created using boosting. As
discussed in Section 3, boosting is a “black box” approach for producing an ensemble of
models that collectively achieve higher accuracy. In one experiment, 50 models were
constructed and rated with AdaBoost. When making a prediction for new data, the
individual models each have a vote proportional to their accuracy on the training
data—hence the higher accuracy in grading mushrooms achieved by this model, but at the
expense of its readability.



6. CONCLUSION

As illustrated by the case study presented in Section 5, information ‘mined’ from data can
provide insights into the domain being studied that run counter to the received wisdom of a
field. Locating these surprising or unusual portions of the model can be the focus for a data
mining analysis, so that the results can be applied back in the domain from which the data
was drawn. In this case, the results indicate that the subjective attributes for mushroom
grading may not be useful in practice, and so perhaps they need not be measured or
recorded. Criteria based on the attributes found in the J4.8 models may prove useful in
developing more objective standards for quality classification and market pricing for
mushrooms.

In other data mining applications, the goal might be to use a model predictively, to provide
automated classification of new instances.  In these applications, the learning component
will likely be a small part of a much larger software system. Since WEKA learning
schemes are accessible from other programs, a learning module can be slotted into a larger
system with a minimum of additional programming.

Figure 2, for example, shows a WEKA applet based on a J4.8 mushroom grading model, as
described in Section 5. Image processing a picture of a mushroom cap (at left in Figure 2)
provides data for the model to differentiate between A, B and C grade mushrooms.
Different models, as generated from WEKA, can be easily substituted into the applet as
desired.

Figure 2: Mushroom grading applet

As the technology of machine learning continues to develop and mature, learning
algorithms need to be brought to the desktops of people who work with data and
understand the application domain from which it arises. It is necessary to get the
algorithms out of the laboratory and into the work environment of those who can use them.
WEKA is a significant step in the transfer of machine learning technology into the
workplace.
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