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Abstract

Despite its simplicity, the naive Bayes learning scheme performs well
on most classification tasks, and is often significantly more accurate than
more sophisticated methods. Although the probability estimates that it
produces can be inaccurate, it often assigns maximum probability to the
correct class. This suggests that its good performance might be restricted
to situations where the output is categorical. It is therefore interesting to
see how it performs in domains where the predicted value is numeric, be-
cause in this case, predictions are more sensitive to inaccurate probability
estimates.

This paper shows how to apply the naive Bayes methodology to nu-
meric prediction (i.e. regression) tasks, and compares it to linear re-
gression, instance-based learning, and a method that produces “model
trees”—decision trees with linear regression functions at the leaves. Al-
though we exhibit an artificial dataset for which naive Bayes is the method
of choice, on real-world datasets it is almost uniformly worse than model
trees. The comparison with linear regression depends on the error mea-
sure: for one measure naive Bayes performs similarly, for another it is
worse. Compared to instance-based learning, it performs similarly with
respect to both measures. These results indicate that the simplistic sta-
tistical assumption that naive Bayes makes is indeed more restrictive for
regression than for classification.

1 Introduction

Naive Bayes relies on an assumption that is rarely valid in practical learning
problems: that the attributes used for deriving a prediction are independent of
each other, given the predicted value. As an example where this assumption
is inappropriate, suppose that the name of a fish is to be predicted from its
length and weight. Given an individual fish of a particular species, its weight
obviously depends greatly on its length—and vice versa. However, it has been
shown that, for classification problems where the predicted value is categorical,
the independence assumption is less restrictive than might be expected. For



several practical classification tasks, naive Bayes produces lower error rates than
more sophisticated learning schemes, such as ones that learn decision trees.

Why does naive Bayes perform well even when the independence assumption
is seriously violated? Most likely it owes its good performance to the zero-one
loss function used in classification (Domingos & Pazzani, 1997). This function
defines the error as the number of incorrect predictions. Unlike other loss func-
tions, such as the squared error, it has the key property that it does not penalize
inaccurate probability estimates—so long as the greatest probability is assigned
to the correct class (Friedman, 1997). There is mounting evidence that this is
why naive Bayes’ classification performance remains high, despite the fact that
inter-attribute dependencies often cause it to produce incorrect probability es-
timates (Domingos & Pazzani, 1997). This raises the question of whether it can
be successfully applied to non-categorical prediction problems, where the zero-
one loss function is of no use. This paper investigates the application of naive
Bayes to problems where the predicted value is not categorical but numeric.

Naive Bayes assigns a probability to every possible value in the target range.
The resulting distribution is then condensed into a single prediction. In cate-
gorical problems, the optimal prediction under zero-one loss is the most likely
value—the mode of the underlying distribution. However, in numeric prob-
lems the optimal prediction is either the mean or the median, depending on
the loss function. These two statistics are far more sensitive to the underlying
distribution than the most likely value: they almost always change when the
underlying distribution changes, even by a small amount. Therefore, when used
for numeric prediction, naive Bayes is more sensitive to inaccurate probability
estimates than when it is used for classification. This paper explains how it
can be used for regression, and summarizes its performance on a set of practical
learning problems. It turns out that the remarkable accuracy of naive Bayes
for classification on standard benchmark datasets does not translate into the
context of regression. However, we demonstrate using an artificial dataset that
situations exist where it is a useful tool.

The use of naive Bayes for classification has been investigated extensively.
The algorithm itself originated in the field of pattern recognition (Duda &
Hart, 1973). Its surprisingly high accuracy—in comparison to more sophisti-
cated learning methods—has frequently been noted (Cestnik, 1990; Clark &
Niblett, 1989; Langley, Iba & Thompson, 1992). Domingos and Pazzani (1997)
performed a large-scale comparison of naive Bayes with state-of-the-art algo-
rithms for decision tree induction, instance-based learning, and rule induction
on standard benchmark datasets, and found it to be superior to each of the other
learning schemes even on datasets with substantial attribute dependencies. They
remark that “.. the reason for its good comparative performance is not that
there are no attribute dependences in the data.”

Despite this, several researchers have tried to improve naive Bayes by delet-
ing redundant attributes (Langley & Sage, 1994; John & Kohavi, 1997), or
by extending it to incorporate simple high-order dependencies (Kononenko,



1991; Langley, 1993; Pazzani, 1996; Sahami, 1996; Friedman, Geiger & Gold-
szmidt, 1997). Domingos and Pazzani (1997) review these approaches in some
detail, and conclude that “... attempts to build on [NaiveBayes’] success by
relaxing the independence assumption have had mixed results.”

This paper is organized as follows. In the next section we describe a method
for applying naive Bayes to regression problems. In Section 3, we compare the
accuracy of the resulting procedure to those of three established methods for
regression: linear regression, instance-based learning, and model trees. Section
4 discusses the results and draws some conclusions.

2 Naive Bayes for Regression

We address the problem of predicting a numeric target value Y, given an ex-
ample E. FE consists of m attributes X, X5, ..., X,,. Each attribute is either
numeric, in which case it is treated as a real number, or nominal, in which case
it is a set of unordered values.

If the probability density function p(Y'|E) of the target value were known for
all possible examples E, we could choose Y to minimize the expected prediction
error. However, p(Y|E) is usually not known, and has to be estimated from
data. Naive Bayes achieves this by applying Bayes’ theorem and assuming
independence of the attributes X1, Xo,. .., X,, given the target value Y. Bayes’
theorem states that

p(B,Y) _  p(EV)p(Y)
Jp(B,Y)dY — [p(E|Y)p(Y)dY’

where the likelihood p(E|Y") is the probability density function (pdf) of the
example E for a given target value Y, and the prior p(Y) is the pdf of the
target value before any examples have been seen. Naive Bayes makes the key
assumption that the attributes are independent given the target value, and so
Equation 1 can be written

p(Y|E) =

(1)
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JpX1Y)p(Xe|Y) - - p(Xn|V)p(Y)dY

Instead of estimating the pdf p(E|Y"), the individual pdfs p(X|Y) can now be
estimated separately. This dimensionality reduction makes the learning problem
much easier. Because the amount of data needed to obtain an accurate estimate
increases with the dimensionality of the problem, p(X|Y) can be estimated
more reliably than p(E|Y). However, a question remains: how harmful is the
independence assumption when it is not valid for the learning problem at hand?
The empirical results presented in Section 3 shed some light on this issue.

The following subsections discuss how p(X|Y) and p(Y) can be estimated
from a set of training examples. For p(X|Y) there are two cases to consider:
the case where attribute X is nominal, and the case where it is numeric.




2.1 Handling Numeric Attributes

We first discuss the estimation of p(X|Y) for numeric attributes X.! In this
case, p(X|Y) is a pdf involving two numeric variables. Since

p(X,Y)

P(X|Y) = W;

3)
the conditional probability p(X|Y’) can be estimated by computing an approx-
imation to the joint probability p(X,Y). In principle, any estimator for two-
dimensional pdfs can be used to model p(X,Y). We have chosen the kernel
density estimator

R 1 S T—T Y—Yi
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where z; is the attribute value, y; the target value of training example i, K (.) is
a given kernel function, and hx and hy are numeric “Bandwidths” for X and
Y.2 Tt can be shown that this estimate converges to the true pdf if the kernel
function obeys certain smoothness properties and the bandwidths are chosen
appropriately (Silverman, 1986). An alternative to the kernel density estimator
is the normal distribution. However, the normal distribution can only model
linear relationships between numeric variables, and in this case naive Bayes
appears to offer no advantages over ordinary linear regression.

A common choice for K(.) is the Gaussian kernel K(t) = (2r)~1/2e=t"/2,
and this is what we use in our experiments. Ideally, the bandwidths hx and
hy should be chosen so that the difference between the estimated pdf p(X,Y)
and the true pdf p(X,Y) is minimized. One way of measuring this difference is
the expected cross-entropy between the two pdfs, an unbiased estimate of which
can be obtained by leave-one-out cross-validation (Smyth et al., 1995):

I8N 1 - Tj — % Yi —Yi
= _= 1 - K({Z_ 4 ot

Then, hx and hy are set to hx = cx/+/n and hy = ¢y /+/n, where c¢x and cy
are chosen to minimize the estimated cross-entropy.® Since

[ = S (), ©

i=1

L All numeric attributes are normalized by their range, where the range is determined using
the training data.

21f either z; or y; is missing, the example is not included in the calculation.

3Tn our experiments, we use a grid search for (cx,cy) € [0.4,0.8] x [0.4,0.8] with a grid
width of 0.1. We have tried other parameter settings for the search and found little difference
in the result.



we have all the terms needed to compute an estimate p(X|Y) of p(X|Y) for a
numeric attribute X.

2.2 Handling Nominal Attributes

Now consider the case where p(X|Y’) has to be estimated for a nominal attribute
X with a set of unordered values vi,vs,...,v,. Estimating p(X|Y) directly
would involve calculating the distribution of a nominal variable conditioned on
a numeric one. However, the problem can be transformed into one of estimating
p(Y|X), the pdf of a numeric variable given a nominal one, and p(X), the prior
probability of a nominal attribute value. This transformation is effected by
applying Bayes’ theorem:

_ v p(X =up)p(Y = y|X =)
PE =0l =0) = S0 R ¥ = yIX = ) ™

Both p(Y|X) and p(X) can be estimated easily. For the former, we use the
one-dimensional counterpart of the kernel density estimator from above:*

i D Y—Yi
B =uiX =e) = B3k (VL) ®

where the sum is over all ny examples with attribute value X = vg. Again, the
cross-validation procedure can be used to choose hy = cx/+/n; for each vy so
that the estimated cross-entropy is minimized.® For the latter, an estimate of
p(X) is obtained simply by computing the proportion of examples with attribute

value vy:
ng

B 2?21 g

This gives all the terms necessary to compute an estimate p(X|Y) of p(X|Y)
for a nominal attribute X.

DX = vg) 9)

2.3 Estimating the Prior

The procedure for estimating the prior p(Y') is the same as for p(Y'|X). The only
difference is that, instead of including only examples with a particular attribute
value, all n examples are used. The bandwidth is chosen using the previously
described cross-validation procedure.

4This type of estimator was also used by John and Langley (1995) to estimate the density
of numeric attributes in naive Bayes for categorical prediction.
5Here we use a grid search for ¢z € [0.4,0.8] with a grid width of 0.1.



2.4 Prediction

The optimal prediction t(e) for an example e with respect to the posterior
probability p(Y|E = e) depends on the loss function. We consider two loss
functions: the squared error and the absolute error. In either case, the predicted
value should minimize the expected loss. It is easy to show that the expected
squared error

E[(t(e) —y)*)] = /p(Y =y|E = e)(t(e) — y)?dy (10)
is minimized if the expected value of y (that is, its mean) is predicted:
tsu(e) = [ p(Y =y|E = oydy. (1)

An estimate £5g(e) of this quantity can be obtained from p(Y =y, E = e). Let
G be a set of equally spaced grid points in the domain of 3.5 Then,

. YyeaPY =y, E=e)y

tsg(e) = — . 12
E( ) Eyegp(yzyaE:e) ( )
If, on the other hand, the expected absolute error
Ellt(e) —yll = /p(Y =y|E = e)lt(e) — yldy (13)
is to be minimized, this is achieved by setting tag(e) so that
tae(e)
/ p(Y =y|E = e)dy = 0.5. (14)

In this case, the optimum prediction t4g(e) is the median (Lehmann, 1983).
Again, an estimate tag(e) can be obtained using p(Y = y,E = e) by finding
the smallest y' for which
ZyeG,y<y’ ﬁ(Y =Y, E = e)
YyecPY =y, E=e)

and setting tap(e) = y'.7

> 0.5, (15)

8Suppose Ymin is the minimum and ymee the maximum value for y in the training data,
and let h = (Ymaz — Ymin)/(d — 1) for some number of grid points d. Then we use G =
{- -y Ymin = 2R, Ymin — Ry Ymin; Ymin T s - - - s Ymaz — By Ymaz, Ymaz + Ry Ymaz +2h, .. } Note
that one can stop evaluating points to the left of y,,in, and to the right of ymes as soon as
p(Y = y,E = e) becomes negligible. In our experiments, d is set to 50 and attributes X;
for which p(X;|Y = y) is negligible for all values in G are excluded from the computation of
ﬁ(Y =y, B = e)'

TFor estimating t 4 we use d = 100 grid points.



3 Experimental Results

As previously noted, naive Bayes can be an excellent alternative to more so-
phisticated methods for categorical learning. This section determines whether
this is also true for regression tasks. We compare naive Bayes empirically with
three established methods for regression: linear regression, instance-based learn-
ing, and model trees. Results are presented for both loss functions discussed
in the last section: the root mean squared error and the mean absolute error.
Thirty-two standard datasets are used.

3.1 Experimental conditions

The first established method, multiple linear regression (LR), is a widely-applied
prediction method. We use an implementation that eliminates redundant at-
tributes using backward elimination. At each step it deletes the attribute with
the smallest contribution to the prediction. To decide when to stop deleting
attributes, Akaike’s information criterion is employed (Akaike, 1973). Nominal
attributes with n values are converted into n — 1 binary attributes using the
algorithm described by Wang and Witten (1997).

The second established method is instance-based learning. To represent
the class of instance-based learning algorithms, we use a distance-weighted k-
nearest-neighbor method, which derives its prediction by weighting the target
values of the k nearest training instances according to the inverse of their dis-
tance to the test instance. The best k (k € {1,2,...,20}) is chosen using leave-
one-out cross-validation on the training data, minimizing either the estimated
root mean squared error (kNN-RMSE) or the mean absolute error (kNN-MAE).
The distance metric is the one employed by IB1 (Aha et al., 1991).

The third established method is the model-tree predictor. Model trees are
the counterpart of decision trees for regression tasks. They have the same
structure as decision trees, with one difference: they employ a linear regres-
sion function at each leaf node to make a prediction. For our experiments we
use the model tree inducer M5' (Wang & Witten, 1997), a re-implementation
of Quinlan’s M5 (Quinlan, 1992). An interesting fact is that M5’ in general
produces more accurate predictions than a state-of-the-art decision tree learner
when applied to categorical prediction tasks (Frank et al., 1998).

The datasets and their properties are listed in Table 1, sorted by increasing
size. Twenty of them were used by Kilpatrick and Cameron-Jones (1998), seven
are from the StatLib repository (StatLib, 1998), and the remaining five were
collected by Simonoff (1996).8 The pwLinear dataset is the only artificial dataset
in this set. Two of the datasets—hungarian and cleveland—are classification
problems disguised as regression problems: the class is treated as an integer
variable.

8Simonoff’s datasets can also be found at the StatLib repository.



Table 1: Datasets used for the experiments

Dataset Instances Missing Numeric Nominal
values (%) attributes attributes
schlvotel 38 0.4 4 1
bolts? 40 0.0 7 0
vineyard! 52 0.0 3 0
elusage! 55 0.0 1 1
pollution? 60 0.0 15 0
mbagrade! 61 0.0 1 1
sleep? 62 2.4 7 0
aut0932 93 0.7 16 6
baskball® 96 0.0 4 0
cloud? 108 0.0 4 2
fruitfly? 125 0.0 2 2
echoMonths? 131 7.5 6 3
veteran3 137 0.0 3 4
fishcatch? 158 6.9 5 2
autoPrice? 159 0.0 15 0
servo? 167 0.0 0 4
lowbwt?2 189 0.0 2 7
pharynx? 195 0.1 1 10
pwLinear? 200 0.0 10 0
autoHorse? 205 1.1 17 8
cpu? 209 0.0 6 1
bodyfat? 252 0.0 14 0
breastTumor? 286 0.3 1 8
hungarian? 294 19.0 6 7
cholesterol? 303 0.1 6 7
cleveland? 303 0.1 6 7
autoMpg? 398 0.2 4 3
pbc? 418 15.6 10 8
housing? 506 0.0 12 1
meta? 528 4.3 19 2
sensory? 576 0.0 0 11
strike3 625 0.0 5 1

1 (Simonoff, 1996)
2 (Kilpatrick & Cameron-Jones, 1998)
3 (StatLib, 1998)

3.2 Results for the relative root mean squared error

Table 2 summarizes the relative root mean squared error of all methods inves-
tigated. This measure is the root mean squared error normalized by the root
mean squared error of the sample mean of Y, and expressed as a percentage.’
Thus, a method that performs worse than the mean has a relative root mean
squared error of more than 100 percent. Because the root mean squared error
was to be minimized, the results for naive Bayes were generated by predicting
tsp according to Equation 12. For the same reason, the results for the k-nearest-

9The sample mean is computed from the test data.



Table 2: Experimental results: relative root mean squared error, and standard
deviation

Dataset Naive Bayes LR kNN-RMSE M5’
schlvote 263.70+£87.2  233.31£93.3 267.91+97.1 164.24470.8 o
bolts 57.61+10.7 53.371+10.6 77.95+10.9 e 32.28+7.6 o
vineyard 82.90+9.6 77.37+9.7 75.524+8.1 o 77.21+9.9
elusage 65.511+6.3 53.21+5.9 o 70.944£7.0 o 49.36+3.9 o
pollution 97.03£11.1 98.86+9.2 85.994+84 o 79.09£8.5 o
mbagrade 103.8446.8 85.63+4.0 o 118.54+8.3 e 85.63+4.0 o
sleep 95.01+10.5 82.08+7.6 o 90.88+8.5 92.484+25.8
auto93 66.621+6.4 67.2545.7 71.77+4.2 61.79+4.8
baskball 92.03+4.0 80.114+2.1 o 90.02+3.6 81.35+2.3 o
cloud 56.551+2.9 39.71+£2.2 o 75.461+2.8 o 40.07£2.0 o
fruitfly 123.541+4.6 100.164+0.5 o 120.30+4.2 o 100.38+£0.6 o
echoMonths 81.63+2.2 68.93+1.2 o 72.61+£2.2 o 68.50+1.4 o
veteran 93.66+5.7 97.39+7.0 e 106.15+8.5 e 93.70+6.0
fishcatch 32.144+2.2 30.76+2.3 34.8244.2 16.61+0.7 o
autoPrice 43.63+1.6 49.28+3.4 o 46.05+2.2 o 37.954+2.5 o
servo 75.07+1.8 62.71+9.6 o 57.21+7.0 o 38.354+2.2 o
lowbwt 64.324+1.3 62.771+2.0 70.02+1.8 e 62.27+1.1 o
pharynx 87.381+2.9 79.33+2.6 o 80.23+1.6 o 72.86+2.1 o
pwLinear 53.53+1.1 51.08£1.4 o 54.80+1.6 e 33.194+0.8 o
autoHorse 39.114+2.0 54.20£5.4 o 44.814+1.4 o 31.72£2.5 o
cpu 35.91+4.4 52.17+£8.4 o 38.57+5.9 18.99+2.6 o
bodyfat 26.731+0.6 12.504+0.7 o 36.72+0.9 e 10.49£0.9 o
breastTumor  103.04+1.5 97.23+1.2 o 105.98+1.2 e 97.03+£1.1 o
hungarian 73.044+2.3 74.1610.7 72.67£1.7 76.951+2.1 e
cholesterol 103.90+1.5 99.68+1.7 o 102.69+1.1 o 103.54%£1.9
cleveland 76.00+2.0 70.54+1.0 o 73.49+1.4 o 74.51+2.1
autoMpg 42.4440.7 38.43+0.9 o 42.62+1.1 36.37+0.6 o
pbc 87.33+1.1 80.48+0.7 o 87.73+1.2 86.22+1.4
housing 61.00+1.6 52.78+1.1 o 45.14+1.5 o 39.20+1.9 o
meta 238.24+71.7 281.85+51.1 240.99447.0 200.17£75.3 o
sensory 93.114+0.9 94.58+1.6 90.07+0.7 o 86.10+0.9 o
strike 162.37+12.9 84.55+1.7 o 86.59+2.3 o 84.47+1.2 o

neighbor method were obtained by optimizing the leave-one-out estimate of the
root mean squared error (kNN-RMSE). The figures in Table 2 are averages over
ten ten-fold cross-validation runs, and standard deviations of the ten are also
shown. The same folds were used for each scheme. Results are marked with a
“o0” if they show significant improvement over the corresponding result for naive
Bayes, and a “e” if they show significant degradation. Throughout, we speak of
results being “significantly different” if the difference is statistically significant
at the 1% level according to a paired two-sided t-test, each pair of data points
consisting of the estimates obtained in one ten-fold cross-validation run for the
two learning schemes being compared.

Table 3 summarizes how the different methods compare with each other.
Each entry indicates the number of datasets for which the method associated



Table 3: Results of paired #tests (p=0.01) on relative root mean squared error
results: number indicates how often method in column significantly outperforms
method in row

Naive Bayes LR kNN-RMSE M5

Naive Bayes - 18 11 24
LR 4 - 7 17
kNN-RMSE 11 17 - 24
M5’ 1 4 1 -

with its column is significantly more accurate than the method associated with
its row.

Observe from Table 3 that linear regression outperforms naive Bayes on
eighteen datasets (first row, second column), whereas naive Bayes outperforms
linear regression on only four (second row, first column). M5 dominates even
more strongly: it outperforms naive Bayes on twenty-four datasets, and is sig-
nificantly worse on only one. As mentioned earlier, this dataset (hungarian) is
actually a classification problem disguised as a regression problem. However,
compared to kNN-RMSE, naive Bayes performs relatively well: both methods
score eleven significant wins against each other. These results, and the re-
maining figures in Table 3, present strong evidence that M5’ is the method of
choice on datasets of this type, if it is the root mean squared error that is to be
minimized. Linear regression is the runner-up. Compared to naive Bayes and
kNN-RMSE, linear regression and M5’ have the further advantage that they
produce comprehensible output and are less expensive computationally.

3.3 Results for the mean absolute error

We now compare the methods with respect to their mean absolute error. As
discussed in Section 2, using naive Bayes to predict the median 45 according
to Equation 15 should perform better than using it to predict the mean tgg, at
least if the estimated pdf p(Y, E) is sufficiently close to the true pdf. In our ex-
periments we observed that this is not the case: the mean performs significantly
better than the median on fifteen datasets, and significantly worse on only eight.
This indicates that the mean is more tolerant to inaccurate estimates that oc-
cur because of inter-attribute dependencies. For the results presented here, we
therefore use the mean instead of the median.

Table 4 summarizes the relative mean absolute error of the four methods.
This is their mean absolute error divided by the mean absolute error of the
sample mean. The results for the k-nearest-neighbor method were obtained by
optimizing the leave-one-out estimate of the mean absolute error (kNN-MAE).
Again, Table 5 summarizes the results of the significance tests.

Compared to the relative root mean squared error results, Table 5 shows a
slightly different picture. Here, naive Bayes performs as well as linear regression:
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Table 4: Experimental results: relative mean absolute error, and standard de-
viation

Dataset Naive Bayes LR kNN-MAE M5
schlvote 249.71+88.6 347.09+130.1 ¢  225.524+83.4 223.48+100.3
bolts 53.63+9.0 67.27+£16.7 e 67.80£9.4 e 36.19+10.0 o
vineyard 80.87+8.7 89.15+10.2 o 74.09+7.4 o 86.47+11.6
elusage 63.57+5.6 58.61+6.6 o 66.00+£6.0 o 53.67+3.4 o
pollution 98.861+14.0 110.73%£13.0 e 85.76+£13.6 o 85.40£12.4 o
mbagrade 101.90+£7.9 93.51+8.3 o 112.104+10.6 e 93.51+8.3 o
sleep 96.65+12.3 92.83+11.1 95.17+14.1 104.61424.1
auto93 61.15+4.5 70.66+5.8 o 65.08+4.1 59.98+4.2
baskball 89.96+3.3 83.27+2.5 o 88.83+2.5 84.50+2.4 o
cloud 49.60+2.5 39.18+24 o 68.10+2.7 o 38.84+2.2 o
fruitfly 122.10+4.4 105.39+3.4 o 122.67+4.1 105.904+3.2 o
echoMonths 75.04+2.7 72.27+2.1 o 68.97+2.5 o 66.54+2.3 o
veteran 82.56+3.7 99.02+6.4 e 101.56+6.5 e 93.13+6.1 e
fishcatch 23.28+1.2 30.05+2.6 e 21.31+1.6 o 15.31+0.6 o
autoPrice 40.50+2.4 46.04£3.2 o 38.56+2.2 o 34.30£2.5 o
servo 55.77+1.6 66.42+8.2 o 53.40+4.7 30.23+1.6 o
lowbwt 63.40+1.4 65.31+2.3 65.61+1.7 e 63.88+1.4
pharynx 80.05+2.2 78.20+2.6 74.76+1.6 o 71.88+2.2 o
pwLinear 52.351+0.9 52.38+1.4 53.11+1.4 34.03£1.0 o
autoHorse 29.37+1.4 50.71+£6.2 e 29.53+1.3 26.87+1.6 o
cpu 31.2943.0 56.63+£7.4 e 27.22+2.5 o 17.34+1.7 o
bodyfat 21.9240.3 7.74+£0.1 o 34.95+1.0 o 5.51+0.1 o
breastTumor  104.88+1.2 99.61+1.8 o 106.57+1.6 e 100.13+1.8 o
hungarian 39.81+1.0 93.7243.2 o 49.2242.9 o 57.7243.2
cholesterol 101.91+1.6 101.83+2.2 102.37+1.4 105.57+2.3 e
cleveland 59.37+1.7 66.21+1.1 e 62.91+1.6 e 64.89+1.2 o
autoMpg 37.55+0.6 35.64+0.9 o 36.82+0.8 32.07+£0.7 o
pbc 81.55+1.4 80.88+1.1 o 86.22+1.5 e 83.66L£1.3 e
housing 56.74+0.7 51.76+0.5 o 40.76+£1.0 o 36.43+1.2 o
meta 134.284+23.0 236.82+35.2 e 163.12+21.4 e 119.84+20.4 o
sensory 94.02+1.0 96.25+1.5 e 91.214+0.8 o 88.24+1.1 o
strike 93.63+2.9 75.46+1.6 o 68.42+1.0 o 70.83+1.5 o

it is significantly more accurate on fifteen datasets, and significantly less accurate
on twelve. This is not as surprising as it might seem. Since the linear regression
function is derived by minimizing the root mean squared error on the training
data, it fits extreme values in the dataset as closely as possible. However,
the mean absolute error is relatively insensitive to extreme deviations of the
predicted value from the true one. This implies that naive Bayes does not fit
extreme values (and outliers) very well, but does a reasonable job on the rest of
the data.'®

The win-loss situation between naive Bayes and kNN-MAE is virtually un-
changed: naive Bayes scores twelve significant wins, and kNN-MAE ten. As in

10 A comparison of Tables 3 and 5 shows that the same can be said of the k-nearest-neighbor
method.
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Table 5: Results of paired ttests (p=0.01) on relative mean absolute error
results: number indicates how often method in column significantly outperforms
method in row

Naive Bayes LR kNN-MAE M5¥

Naive Bayes - 12 10 22
LR 15 - 17 25
kNN-MAE 12 9 - 24
M5’ 5 3 5 —

the previous results, M5’ outperforms naive Bayes by a wide margin: it performs
significantly better on twenty-two datasets and significantly worse on only five.
Two of those five are hungarian and cleveland, the two datasets that represent
classification problems disguised as regression problems. These results, and the
other figures in Table 5, show that M5'’s superior performance is not restricted
to the root mean squared error: it outperforms the other methods with respect
to the mean absolute error too.

3.4 Results for classification problems, using the same
methodology

There remains the possibility that the disappointing performance of naive Bayes
for regression on these standard datasets is due to a fundamental flaw in our
methodology for deriving naive Bayes models for numeric prediction problems.
To test this hypothesis we applied it to a set of benchmark classification prob-
lems.

We used a standard technique for transforming a classification problem with
n classes into n regression problems. Each of the n new datasets contains
the same number of instances as the original, with the class value set to 1 or
0 depending on whether that instance has the appropriate class or not. In
the next step, a naive Bayes model is trained on each of these new regression
datasets. For a specific instance, the output of one of these models constitutes
an approximation to the probability that this instance belongs to the associated
class.!! In the testing process, an instance of unknown class is processed by each
of the naive Bayes models, the result being an approximation to the probability
that it belongs to that class. The class whose naive Bayes model gives the
highest value is chosen as the predicted class.

Table 6 shows error rates for twenty-three UCI datasets that represent clas-
sification problems.'? As before, these error rates were estimated using ten

11Because the model is to minimize the squared error of the probability estimates, we let it
predict the mean according to Equation 12.

12The glass dataset has classes 1 and 3 combined and classes 4 to 7 deleted, and the horse-
colic dataset has attributes 3, 25, 26, 27, 28 deleted with attribute 24 being used as the class.
We also deleted all identifier attributes from the datasets.
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Table 6: Experimental results: percentage of correct classifications, and stan-
dard deviation

Dataset Instances  Classes C4.5 Naive Bayes Naive Bayes
for regression  for classification
anneal 898 5 98.7+0.3 98.1+0.2 o 95.6+£0.3 o
audiology 226 24 76.3+1.4 71.84+1.4 e 70.7£1.4 e
australian 690 2 85.5+0.7 85.2+0.3 85.940.5
autos 205 6 80.0+2.5 71.9£1.5 64.5+2.1 o
balance-scale 625 3 77.6+0.9 91.3+£0.3 o 71.8+0.5 o
breast-cancer 286 2 73.2+1.7 72.5+0.6 72.6+0.5
breast-w 699 2 94.9+0.4 96.7+0.1 o 97.1£0.1 o
glass 163 2 78.1£1.8 78.3£1.0 80.4+1.5
heart-c 303 2 76.7£1.7 83.1+0.8 o 83.240.6 o
heart-h 294 2 79.8+0.8 83.94+0.9 o 84.240.3 o
heart-statlog 270 2 78.3+1.9 82.1+0.4 o 82.8+0.7 o
hepatitis 155 2 79.7+1.2 85.0+0.4 o 83.7+0.5 o
horse-colic 368 2 85.4+0.3 78.7+£0.6 o 79.7+£0.6 o
ionosphere 351 2 89.4+1.3 90.7£0.4 89.2+0.6
iris 150 3 94.440.6 96.01+0.3 o 92.941.0 o
labor 57 2 77.244.1 92.3+2.2 o 89.0+1.7 o
lymphography 148 4 75.8+2.9 80.3£0.8 o 84.6£1.3 o
pima-indians 768 2 74.5+1.4 75.3£0.5 75.1£0.6
primary-tumor 339 21 41.8+1.0 47.8+£0.9 o 48.7£1.3 o
sonar 208 2 75.0£3.0 76.5+0.8 76.5+£1.3
soybean 683 19 91.540.6 92.54+0.6 o 92.7+0.2 o
vote 435 2 96.310.6 90.240.2 o 90.240.1 o
Z00 101 7 91.1+1.2 91.5+1.4 92.9+1.6

ten-fold cross-validation runs. As well as naive Bayes for regression, we also
ran the state-of-the-art decision tree learner C4.5 Revision 8 (1993) and the
standard naive Bayes procedure for classification on these datasets. Our imple-
mentation of naive Bayes for classficiation discretizes numeric attributes using
Fayyad and Irani’s (1993) method, ignores missing values, and employs the
Laplace estimator to avoid zero counts (Domingos & Pazzani, 1997).

The results in Table 6 show that C4.5 performs significantly better than
naive Bayes for regression on five datasets, and significantly worse on eleven.
Compared to naive Bayes for classification it performs significantly better on
seven datasets, and worse on nine. These results suggest that there is no fun-
damental flaw in our methodology. They support our claim that it is indeed
impossible to apply naive Bayes as successfully to standard regression problems
as to classification tasks.

3.5 Experiments with an Artificial Dataset

Naive Bayes assumes that the attribute values are statistically independent given
aparticular target value. In terms of a regression problem this can be interpreted
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Figure 1: Spiral dataset

as each attribute being a function of the target value plus some noise:

1= fi(y) +€ 22 = fo(y) +e, ... (16)

How does naive Bayes fare if a dataset satisfies the independence assump-
tion? We investigated this question using artificial data. More specifically, we
constructed a dataset describing a diminishing spiral in three dimensions. This
spiral (using 1000 randomly generated data points) is depicted in Figure 1. The
features =1 and xo were generated from the target value y according to the
following equations:

1 =yxsin(y) + N(0,1) 1z =y=xcos(y) + N(0,1), (17)

where N (0,1) denotes normally distributed noise with zero mean and unit vari-
ance. Note, that y is not a function of either of the two attributes z; and z2
alone. However, it is—modulo noise—a function of (z1,z3).

We evaluated how well naive Bayes predicts y for different training set sizes.
Figure 2 shows the resulting learning curve, and, for comparison, the learning
curve using unsmoothed M5’ model trees.!® Each point on the curve was gen-
erated by choosing 20 random training datasets and evaluating the resulting
models on the 1000 independently generated examples shown in Figure 1. The
error bars are 99% confidence intervals.

Figure 2 shows that naive Bayes performs significantly better than M5' on
the spiral dataset. This demonstrates that naive Bayes can be preferable to
M5’ if the independence assumption is satisfied—a situation that might occur
in practice, if, for example, the attributes are readings from sensors that all
measure the same target quantity, but do so in different ways. Measuring the

13Unsmoothed model trees perform better in this domain than smoothed ones.
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Figure 2: Learning curves for spiral dataset

distance of an object using ultrasonic waves on the one hand, and infrared
radiation on the other hand is an example of this situation: the measurements
of the two corresponding sensors are almost independent given a particular
distance.

4 Conclusion

This paper has shown how naive Bayes can be applied to regression. As dis-
cussed in the introduction, previous work suggests that its remarkable perfor-
mance for standard classification problems may not translate into the numeric
context. Our experimental results confirm this hypothesis. On a set of standard
datasets, naive Bayes performs comparably to linear regression with respect to
the absolute error of the predictions, and to the k-nearest-neighbor method with
respect to both the absolute and squared error. However, it performs worse than
linear regression with respect to the squared error, and almost uniformly worse
than the model tree algorithm M5'. Of the four methods for regression that we
included in our experimental comparison, the model tree inducer M5' emerged
as the clear winner. It outperforms the other methods with respect to both
error measures by a large margin on the standard datasets we used. However,
results on artificial data show that naive Bayes can perform significantly better
than M5’ if the independence assumption is satisfied. As we argued, there are
practical applications where this is the case.
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