
Bottom-Up Propositionalization

Stefan Kramer1 and Eibe Frank2

1 Institute for Computer Science, Machine Learning Lab
University Freiburg, Am Flughafen 17, D-79110 Freiburg/Br.

skramer@informatik.uni-freiburg.de
2 Department of Computer Science

University of Waikato Hamilton, New Zealand
eibe@cs.waikato.ac.nz

Keywords: Propositionalization, Feature Construction, Constructive Induction,
Relational Learning, Inductive Logic Programming, Support Vector Machines

Abstract. In this paper, we present a new method for propositionaliza-

tion that works in a bottom-up, data-driven manner. It is tailored for bio-

chemical databases, where the examples are 2-D descriptions of chemical

compounds. The method generates all frequent fragments (i.e., linearly

connected atoms) up to a user-specified length. A preliminary experi-

ment in the domain of carcinogenicity prediction showed that bottom-

up propositionalization is a promising approach to feature construction

from relational data.

1 Introduction

One approach to handle relational learning problems is to transform them
into propositional problems and subsequently apply propositional learning al-
gorithms. This transformation requires the construction of features that capture
relational properties of the learning examples. In this way, feature construction
and model construction are decoupled. Such a transformation of a relational
learning problem into a propositional one is called propositionalization. In this
paper, we present a new approach to propositionalization

This paper is organized as follows: In Section 2 we propose a new method
for propositionalization that proceeds in a data-driven manner. In Section 3, we
present promising, preliminary results obtained with bottom-up propositional-
ization and support vector machines. Section 4 concludes the paper.

procedure fragment generator top level

Input:

molecules: examples to be transformed

Global:

t: look-up table of local properties

examples for fragment : output ‘‘by side-effect’’

t← create look-up table of local properties for each molecule

for each molecule m do

for each heavy (non-hydrogen) atom a in m do

e← element(a)

examples← filter examples(molecules,’e’, t)

depth-first(1, [a],’e’, examples)

end procedure

Fig. 1. Pseudocode of the top-level of the fragment generator

2 Bottom-Up Propositionalization

In this section, we describe a new, bottom-up, data-driven method for propo-
sitionalization. The algorithm is particularly tailored for bio-chemical domains,
where learning examples are 2-D descriptions of chemical compounds. The pur-
pose of the algorithm is to discover fragments (i.e., linearly connected atoms)
that occur frequently in the dataset. An example of a fragment would be ’o-s-c’,
meaning “an oxygen atom with a single bond to a sulfur atom with a single bond
to a carbon atom”. In contrast to fragments, we define paths as lists of concrete
atom identifiers that match some fragment in a molecule. E.g., a path may be a
list of (concrete) atoms [a1, a2, a3] that “instantiates” the fragment ’o-s-c’.

We also distinguish between generation and evaluation of fragments. Gener-
ation is based on paths in individual molecules and computationally not very
expensive. Evaluation means determining the set of molecules in which a frag-
ment occurs. In contrast to generation, evaluation is computationally very ex-
pensive. So, our goal in algorithm design was to make excessive use of memory
and hashing in order to avoid unnecessary, redundant evaluations.

Fig. 1 shows the pseudo-code of the top level of the algorithm. Basically, the
top-level takes each heavy (non-hydrogen) atom in each molecule as a starting
point and invokes the search for fragments for this atom. Besides (and before
that), the top-level creates a look-up table of local properties of atoms and
bonds. For each molecule, we store the elements and bond types (or bond orders)
occurring in it. This is done for optimization purposes.

For each atom as a starting point, we invoke the depth-first search procedure
as shown in Fig. 2. The arguments are the depth of search so far d, the current
path in the molecule, the current fragment and the examples containing the
current fragment. If d exceeds the maximum depth of search, search terminates
and the algorithm backtracks. Otherwise, it loops through all refinements of
the current fragment. ref path denotes a path that is a refinement of path,
ref fragment denotes a refined fragment, and ref examples denotes the set of
examples that contain the refined fragment ref fragment. Refinement steps are
guided by concrete paths in molecules. E.g., path ’o-s-c’ may be refined yielding
fragment ’o-s-c-c’; this refined fragment is found by some extension of the path
[a1, a2, a3] by one atom a4, obtaining the new path [a1, a2, a3, a4].

Next, the algorithm checks whether the newly obtained fragment is known to
be infrequent. If this is the case, search terminates (in this branch) and the next
refinement is tried. If not, the algorithm checks whether the refined fragment has
already been evaluated. If it has already been evaluated, we retrieve the set of
examples for the fragment and recursively invoke depth-first. Search continues
in this case, since the fragment is not infrequent: Further refinements could lead
to fragments that have not been evaluated, but still are occurring frequently.

In case a new, refined fragment has not been evaluated before, it will be
evaluated then. After evaluation, the fragment is asserted as evaluated in the
hash table. If the frequency of the fragment is large enough, we assert the ex-
amples (the set of examples containing the fragment) of the fragment to the
hash table and the procedure is recursively invoked. If the frequency is below

the user-specified threshold, the fragment is marked as infrequent in the hash
table and search terminates in this branch.

The overall search strategy of the algorithm is depth-first, but this is really
a detail of the approach. Search could be implemented in different ways as well.
Actually, we chose depth-first just because this search strategy comes for free in
Prolog. Note that we need two recursive calls to depth-first just for simplicity
of presentation. Also note, that the algorithm primarily works by means of side
effects. During search, it outputs the examples containing frequent fragments.

Provisions have to taken that two equivalent fragments with atoms in reverse
order (e.g., ’o-s-c’ and ’c-s-o’) are recognized as such. The obvious solution is to
store and compare fragments only in a canonical order that has to be defined on
fragments.

To summarize, the essential features of the algorithm are:

– Frequency-based pruning in the spirit of association rule mining. In this re-
spect, our approach is related to Warmr [2]. One difference is that we make
heavy use of memory for pruning (see the next point). Frequency-based prun-
ing turned out to be very efficient for fragment generation. Further optimiza-
tions along the lines of the Apriori algorithm [1] are of course conceivable.

– Based on the observation that generation of fragments is relatively cheap,
but evaluation is expensive, we make heavy use of memory and hashing. This
is helpful for avoiding redundant computations as well as for pruning.

– We took a bottom-up approach to fragment generation. The idea is to gener-
ate only those fragments that really occur in examples. If a fragment occurs
in an example, it is checked whether it is already evaluated on all other
examples.
Our fragment generator shares this bottom-up flavor with systems like Golem
[6] and Progol [5]. Also, the underlying idea is similar to relational path-
finding [7].

– We used a look-up table of local properties for optimization purposes.

3 Results of the New Approach

We performed a preliminary experiment with the new approach in the domain
of predicting carcinogenicity. The dataset comprises 337 examples and 31126 tu-
ples. The default accuracy is 54%. Strong relational learners like S-CART [3][4]
achieve an accuracy of about 65%, but these results are due to non-structural
properties (mostly the so-called Ames test, a genotoxic test that is known to be
correlated with carcinogenicity). Removing these strong, non-structural descrip-
tors, S-CART produces a theory only four percent above the baseline accuracy
(58%).

In the experiment, the fragment generator was set to search for fragments
up to length 8. The frequency threshold (the minimum coverage parameter) was
set to 5. The runtime of the fragment generator was about 10 minutes on a

procedure depth-first

Input:

d: depth of recursion so far

path: path in some molecule

fragment: fragment associated with path

examples: examples containing fragment

Global:

t: look-up table of local properties

examples for fragment : output ‘‘by side-effect’’

max depth : parameter restricting depth of search

min coverage : required minimum frequency of fragments

min maj coverage : required min. frequency of majority class

if (d > max− depth) then return

else

new d← d + 1

for each (ref path, ref fragment) ∈ refinements(path, fragment) do

if ¬known to be infrequent(ref fragment)

then if evaluated(ref fragment)

then get examples for fragment(ref fragment, ref examples)

depth-first(new-d, ref path, ref fragment, ref examples)

else ref examples′ ← filter examples(examples,ref fragment, t)

ref examples← evaluate(ref fragment, ref examples′)

assert(evaluated(ref fragment))

coverage← |ref examples|

positive coverage← |positive(ref examples)|

negative coverage← |negative(ref examples)|

if coverage < min coverage or

max(positive coverage, negative coverage) < min maj coverage

then assert(known to be infrequent(ref fragment))

else assert(examples for fragment(ref fragment, ref examples))

depth-first(new d, ref path, ref fragment, ref examples)

end procedure

Fig. 2. Pseudocode of the search algorithm employed by the generator

Linux PC with a Pentium II processor. The fragment generator identified 656
fragments as frequent, generating 11944 Prolog ground facts for the occurrence
of these fragments in the examples. During search, 1813 fragments were marked
as infrequent and remembered for pruning in search.

After propositionalization, we applied an algorithm for support vector ma-
chines to the transformed problem. We conjecture that support vector machines
are particularly useful in the context of propositionalization, as they can deal
with a large number of moderately significant features.

We applied the implementation of support vector machines in the WEKA
workbench. Parameter E was set to 2 and C was set to 0.001. Since there is
(currently) no method to determine these parameter values in a principled way,
we determined the values of these parameters experimentally.

The model resulting from these settings included 297 support vectors. Most
importantly, the predictive accuracies obtained from 10-fold cross-validations
vary between 58% and 63%. Given that this has been achieved using only 2-D
information (not even considering partial charges, let alone genotoxic tests), the
result has to be regarded as very good. Although drawing general conclusions
from this experiment seems unwarranted, we believe that this method, or rather,
this combination of methods, is a promising alternative to existing approaches.

4 Conclusion

In this paper, we presented a new approach to propositionalization that works in
a bottom-up, data-driven manner. It is tailored for bio-chemical databases where
the examples are 2-D descriptions of chemical compounds. In an experiment, we
have shown that the generation of all frequent fragments up to length 8 can be
computed within a reasonable time, and that the predictive accuracy obtained
using these fragments is satisfactory. However, further experiments will have to
confirm that this is a viable approach to feature construction from relational
background knowledge.

Acknowledgments

We would like to thank Kristian Kersting and the anonymous reviewer for com-
menting on an earlier version of the paper.

References

1. R. Agrawal, H. Mannila, R. Srikant, H. Toivonen, and A.I. Verkamo. Fast discovery

of association rules. In U. Fayyad, G. Piatetsky-Shapiro, P. Smyth, and R. Uthu-

rusamy, editors, Advances in Knowledge Discovery and Data Mining, pages 307–328.

1996.

2. L. Dehaspe and H. Toivonen. Discovery of frequent datalog patterns. Data Mining

and Knowledge Discovery, 3(1):7–36, 1999.

3. S. Kramer. Structural regression trees. In Proceedings of the Thirteenth National

Conference on Artificial Intelligence (AAAI-96), Menlo Park, CA, 1996. AAAI

Press.

4. S. Kramer. Relational Learning vs. Propositionalization: Investigations in Induc-

tive Logic Programming and Propositional Machine Learning. PhD thesis, Vienna

University of Technology, Vienna, Austria, 1999.

5. S. Muggleton. Inverse Entailment and Progol. New Generation Computing, 13:245–

286, 1995.

6. S. Muggleton and C. Feng. Efficient induction of logic programs. In S. Muggleton,

editor, Inductive Logic Programming, pages 281–298. Academic Press, London, U.K.,

1992.

7. B.L. Richards and R.J. Mooney. Learning relations by pathfinding. In Proceedings of

the Tenth National Conference on Artificial Intelligence, pages 50–55, Menlo Park,

CA, 1992. AAAI Press.

