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Abstract

This thesis presents a new approach to fitting linear models, called “pace regres-

sion”, which also overcomes the dimensionality determination problem. Its opti-

mality in minimizing the expected prediction loss is theoretically established, when

the number of free parameters is infinitely large. In this sense, pace regression

outperforms existing procedures for fitting linear models. Dimensionality determi-

nation, a special case of fitting linear models, turns out to be a natural by-product. A

range of simulation studies are conducted; the results support the theoretical analy-

sis.

Through the thesis, a deeper understanding is gained of the problem of fitting linear

models. Many key issues are discussed. Existing procedures, namely OLS, AIC,

BIC, RIC, CIC, CV(d), BS(m), RIDGE, NN-GAROTTE and LASSO, are reviewed

and compared, both theoretically and empirically, with the new methods.

Estimating a mixing distribution is an indispensable part of pace regression. A

measure-based minimum distance approach, including probability measures and

nonnegative measures, is proposed, and strongly consistent estimators are produced.

Of all minimum distance methods for estimating a mixing distribution, only the

nonnegative-measure-based one solves the minority cluster problem, what is vital

for pace regression.

Pace regression has striking advantages over existing techniques for fitting linear

models. It also has more general implications for empirical modeling, which are

discussed in the thesis.
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Chapter 1

Introduction

1.1 Introduction

Empirical modeling builds models from data, as opposed to analytical modeling

which derives models from mathematical analysis on the basis of first principles,

background knowledge, reasonable assumptions, etc. One major difficulty in em-

pirical modeling is the handling of the noise embedded in the data. By noise here

we mean the uncertainty factors, which change from time to time and are usually

best described by probabilistic models. An empirical modeling procedure gener-

ally utilizes a model prototype with some adjustable, free parameters and employs

an optimization criterion to find the values of these parameters in an attempt to

minimize the effect of noise. In practice, “optimization” usually refers to the best

explanation of the data, where the explanation is quantified in some mathematical

measure; for example, least squares, least absolute deviation, maximum likelihood,

maximum entropy, minimum cost, etc.

The number of free parameters, more precisely, the degrees of freedom, plays an im-

portant role in empirical modeling. One well-known phenomenon concerning these

best data explanation criteria is that any given data can be increasingly explained as

the number of free parameters increases—in the extreme case when this number is

equal to the number of observations, the data is fully explained. This phenomenon
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is intuitive, for any effect can be explained given enough reasons. Nevertheless, the

model that fully explains the data in this way usually has little predictive power on

future observations, because it explains the noise so much that the underlying rela-

tionship is obscured. Instead, a model that includes fewer parameters may perform

significantly better in prediction.

While free parameters are inevitably required by the model prototype, it seems nat-

ural to ask the question: how many parameters should enter the final estimated

model? This is a classic issue, formally known as the dimensionality determina-

tion problem (or the dimensionality reduction, model selection, subset selection,

variable selection, etc. problem). It was first brought to wide awareness by H.

Akaike (1969) in the context of time series analysis. Since then, it has drawn re-

search attention from many scientific communities, in particular, statistics and com-

puter science (see Chapter 2).

Dimensionality determination is a key issue in empirical modeling. Although most

research interest in this problem focuses on fitting linear models, it is widely ac-

knowledged that the problem plagues almost all types of model structure in em-

pirical modeling.1 It is inevitably encountered when building various types of

model, such as generalized additive models (Hastie and Tibshirani, 1990), tree-

based models (Breiman et al., 1984; Quinlan, 1993), projection pursuit (Fried-

man and Stuetzle, 1981), multiple adaptive regression splines (Friedman, 1991),

local weighted models (Cleveland, 1979; Fan and Gijbels, 1996; Atkeson et al.,

1997; Loader, 1999), rule-based learning (Quinlan, 1993), and instance-based learn-

ing (Li, 1987; Aha et al., 1991), to name a few. There is a large literature devoted

to the issue of dimensionality determination. Many procedures have been proposed

to address the problem—most of them applicable to both linear and other types of

model structure (see Chapter 2). Monographs that address the general topics of di-

mensionality determination, in particular for linear regression, include Linhart and
1It does not seem to be a problem for the estimation of a mixing distribution (see Chapter 5),

since larger set of candidate support points does not jeopardize, if not improve, the estimation of the
mixing distribution. This observation, however, does not generalize to every kind of unsupervised
learning. For example, the loss function employed in a clustering application does take the number
of clusters into account for, say, computational reasons.
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Zucchini (1989), Rissanen (1989), Miller (1990), Burnham and Anderson (1998),

and McQuarrie and Tsai (1998).

So far this problem is often considered as an independent issue of modeling princi-

ples. Unfortunately, it turns out to be so fundamental in empirical modeling that it

casts a shadow over the general validity of many existing modeling principles, such

as the least squares principle, the (generalized) maximum likelihood principle, etc.

This is because it takes but one counter-example to refute the correctness of a gen-

eralization, and all these principles fail to solve the dimensionality determination

problem. We believe its solution relates closely to fundamental issues of modeling

principles, which have been the subject of controversy throughout the history of

theoretical statistics, without any consensus being reached.

R. A. Fisher (1922) identifies three problems that arise in data reduction: (1) model

specification, (2) parameter estimation in the specified model, and (3) the distri-

bution of the estimates. In much of the literature, dimensionality determination is

considered as belonging to the first type of problem, while modeling principles be-

long to the second. However, the considerations in the preceding paragraph imply

that dimensionality determination belongs to the second problem type. To make this

point more explicit, we modify Fisher’s first two problems slightly, into (1) speci-

fying the candidate model space, and (2) determining the optimal model from the

model space. This modification is consistent with modern statistical decision theory

(Wald, 1950; Berger, 1985), and will be taken as the starting point of our work.

This thesis proposes a new approach to solving the dimensionality determination

problem, which turns out to be a special case of general modeling, i.e., the determi-

nation of the values of free parameters. The key idea is to consider the uncertainty

of estimated models (introduced in Section 1.3), which results in a methodology

similar to empirical Bayes (briefly reviewed in Section 2.8). The issue of modeling

principles is briefly covered in Section 1.2. Two principles will be employed, which

naturally lead to a solution to the dimensionality determination problem, or more

generally, fitting linear models. We will theoretically establish optimality in the

sense of k-asymptotics (i.e., an infinite number of free parameters) for the proposed
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procedures. This implies the tendency of increasing performance as k increases and

justifies the appropriateness of our procedures being applied in high-dimensional

spaces. Like many other approaches, we focus for simplicity on fitting linear mod-

els with normally distributed noise, but the ideas can probably be generalized to

many other situations.

1.2 Modeling principles

In the preceding section, we discussed the optimization criterion used in empirical

modeling. This relates to the fundamental question of modeling: among the can-

didate models, which one is the best? This is a difficult and controversial issue,

and there is a large literature devoted to it; see, for example, Berger (1985) and

Brown (1990) and the references cited therein.

In our work, two separate but complementary principles are adopted for success-

ful modeling. The first one follows the utility theory in decision analysis (von

Neumann and Morgenstern, 1944; Wald, 1950; Berger, 1985), where utility is a

mathematical measure of the decision-maker’s satisfaction. The principle for best

decision-making, including model estimation, is to maximize the expected utility.

Since we are more concerned with loss—the negative utility—we rephrase this into

the fundamental principle for empirical modeling as follows.

The Minimum Expected Loss Principle. Choose the model from the candidate

model space with smallest expected loss in predicting future observations.

To minimize the expected loss over future observations, we often need to make

assumptions so that future observations can be related to the observations which

are used for model construction. By assumptions we mean statistical distribution,

background knowledge, loss information, etc. Of course, the performance of the

resulting model over future observations also depends on how far these assumptions

are from future reality.
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Further, we define that a better model implies smaller expected loss and equivalent

models have equal expected loss. This principle is then applied to find the best

model among all candidates.

It may seem that the principle does not address the issue of model complexity (e.g.,

the number of parameters), which is important in many practical applications. This

is in fact not true, because the definition of the loss could also include loss incurred

due to model complexity—for example, the loss for comprehension and computa-

tion. Thus model complexity can be naturally taken into account when minimizing

the expected loss. In practice, however, this kind of loss is often difficult to quantify

appropriately, and even more difficult to manipulate mathematically. When this is

the case, a second parsimony principle can become helpful.

The Simplicity Principle. Of the equivalent models, choose the simplest.

We will apply this principle to approximately equivalent models, i.e., when the dif-

ference between the expected losses of the models in consideration is tolerable. It is

worth pointing out that, though similar, this principle differs from the generally un-

derstood Occam’s razor, in that the former considers equal expected losses, while

the latter equal data explanation. We believe that it is inappropriate to compare

models based on data explanation, and return to this in the next section.

“Tolerable” here is meant only in the sense of statistical significance. In practice,

model complexity may be further reduced when other factors, such as data preci-

sion, prediction significance and cost of model construction, are considered. These

issues, however, are less technical and will not be used in our work.

Although the above principles may seem simple and clear, their application is com-

plicated in many situations by the fact that the distribution of the true model is usu-

ally unknown, and hence the expected loss is uncomputable. Partly due to this rea-

son, a number of modeling principles exist which are widely used and extensively

investigated. Some of the most important ones are the least squares principle (Leg-

endre, 1805; Gauss, 1809), the maximum likelihood principle (Fisher, 1922, 1925;

5



Barnard, 1949; Birnbaum, 1962), the maximum entropy principle (Shannon, 1948;

Kullback and Leibler, 1951; Kullback, 1968), the minimax principle (von Neuman,

1928; von Neumann and Morgenstern, 1944; Wald, 1939, 1950), the Bayes prin-

ciple (Bayes, 1763), the minimum description length (MDL) principle (Rissanen,

1978, 1983), Epicurus’s principle of multiple explanations, and Occam’s razor. In-

stead of discussing these principles here, we examine a few major ones retrospec-

tively in Section 4.5, after our work is presented.

In contrast to the above analytical approach, model evaluation can also be under-

taken empirically, i.e., by data. The data used for evaluation can be obtained from

another independent sample or from data resampling (for the latter, see Efron and

Tibshirani, 1993; Shao and Tu, 1995). While empirical evaluation has found wide

application in practice, it is more an important aid in evaluating models than a gen-

eral modeling principle. One significant limitation is that results obtained from

experimenting with data rely heavily on the experiment design and hence are incon-

clusive. Further, they are often computationally expensive and only apply to finite

candidates. Almost all major existing data resampling techniques are still under in-

tensive theoretic investigation—and some theoretic results in fitting linear models

have already revealed their limitations; see Section 2.6.

1.3 The uncertainty of estimated models

It is known that in empirical modeling, the noise embedded in data is propagated

into the estimated models, causing estimation uncertainty. Fisher’s third problem

concerns this kind of uncertainty. An example is the estimation of confidence inter-

val. The common approach to decreasing the uncertainty of an estimated model is

to increase the number of observations, as suggested by the Central Limit Theorem

and the Laws of Large Numbers.

Traditionally, as mentioned above, a modeling procedure outputs the model that

best explains the data among the candidate models. Since each estimated model is
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uncertain to some extent, the model that optimally explains the data is the winner

in a competition based on the combined effect of both the true predictive power and

the uncertainty effect. If there are many independent candidate models in the com-

petition, the “optimum” can be significantly influenced by the uncertainty effect and

hence the optimal data explanation may be good only by chance. An extreme situa-

tion is that when all candidates have no predictive power—i.e., only the uncertainty

effect is explained. Then, the more the candidate explains the data, the farther it is

away from the true model and hence the worse it performs over future observations.

In this extreme case, the expected loss of the winner increases without bound as the

number of candidates increases—a conclusion that can be easily established from

order statistics. The competition phenomenon is also investigated by Miller (1990),

where he defines the selection or competition bias of the selected model. This bias

generally increases with the number of candidate models.

This implies that a modeling procedure which is solely based on the maximization

of data explanation is not appropriate. To take an extreme case, it could always find

the existence of “patterns” in a completely random sequence, provided only that

enough number of candidate models are used. This kind of modeling practice is

known in unsavory terms as “data dredging”, “fishing expeditions”, “data mining”

(in the old sense2), and “torturing the data until they confess” (Miller, 1990, p.12).

An appropriate modeling procedure, therefore, should take the uncertainty effect

into consideration. It would be ideal if this effect could be separated from the

model’s data explanation, so that the comparison between models is based on their

predictive power only. Inevitably, without knowing the true model, it is impossible

to filter the uncertainty effect out of the observed performance completely. Never-

theless, since we know that capable participants tend to perform well and incapable

ones tend to perform badly, we should be able to gain some information about the

competition from the observed performance of all participants, use this information

to generate a better estimate of the predictive power of each model, and even update

the model estimate to a better one by stripping off the expected uncertainty effect.
2Data mining now denotes “the extraction of previously unknown information from databases

that may be large, noisy and have missing data” (Chatfield, 1995).
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Eventually, the model selection or, more generally, the modeling task can be based

on the estimated predictive power, not simply the data explanation. In short, the

modeling procedure relies on not only random data, but also random models.

This methodological consideration forms the basis of our new modeling approach.

The practical situation may be so difficult that no general mathematical tools are

available for providing solutions. For example, there may be many candidate mod-

els, generated by different types of modeling procedure, which are not statistically

independent at all. The competition can be very hard to analyze.

In this thesis, this idea is applied to solving the dimensionality determination prob-

lem in fitting linear models, which seems a less difficult problem than the above

general formulation. To be more precise, it is applied to fitting linear models in the

general sense, which in fact subsumes the dimensionality determination problem.

We shall transform the full model that contains all parameters into an orthogonal

space to make the dimensional models independent. The observed dimensional

models serve to provide an estimation of the overall distribution of the true dimen-

sional models, which in turn helps to update each observed dimensional model to a

better estimate, in expectation, of the true dimensional model. The output model is

re-generated by an inverse transformation.

Although started from a different viewpoint, i.e., that of competing models, our

approach turns out to be very similar to the empirical Bayes methodology pioneered

by Robbins (1951, 1955, 1964, 1983); see Section 2.8.

1.4 Contributions

Although the major ideas in this thesis could be generalized to other types of model

structure, we focus on fitting linear models, with a strong emphasis on the dimen-

sionality determination problem, which, as we will demonstrate, turns out to be a

special case of modeling in the general sense.
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As we have pointed out, the problem under investigation relates closely to the fun-

damental principles of modeling. Therefore, despite the fact that we would like to

focus simply on solving mathematical problems, arguments in some philosophical

sense seem inevitable. The danger is that they may sound too “philosophical” to be

sensible.

The main contributions of the work are as follows.

The competition viewpoint. Throughout the thesis, the competition viewpoint

is adopted systematically. This not only provides the key to fitting linear models

quantitatively, including a solution to the dimensionality determination problem, but

also helps to answer, at least qualitatively, some important questions in the general

case of empirical modeling.

The phenomenon of competing models for fitting linear models have been investi-

gated by other authors; for example, Miller (1990), Donoho and Johnstone (1994),

Foster and George (1994), and Tibshirani and Knight (1997). However, as shown

later, these existing methods can still fail in some particular cases. Furthermore,

none of them achieves k-asymptotic optimality generally, a property enjoyed by

our new procedures.

The competition phenomenon pervades in various contexts of empirical modeling;

for example, in orthogonalization selection (see Section 4.6).

Predictive objective of modeling. Throughout the work, we emphasize the per-

formance of constructed models over future observations, by explicitly incorporat-

ing it into the minimum expected loss principle (Section 1.2) and relating it analyt-

ically to our modeling procedures (see, e.g., Sections 2.2 and 3.6). Although this

goal is often used in simulation studies of modeling procedures in the literature,

it is rarely addressed analytically, which seems ironical. Many existing modeling

procedures do not directly examine this relationship, although it is acknowledged

that they are derived from different considerations.
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Employing the predictive objective emphasizes that it is reality that governs theory,

not vice versa. The determination of loss function according to specific applications

is another example.

In Section 5.6, we use this same objective for evaluating the accuracy of clustering

procedures.

Pace regression. A new approach to fitting linear models, pace regression, is

proposed, based on considering competing models, where “pace” stands for “Pro-

jection Adjustment by Contribution Estimation.” Six related procedures are devel-

oped, denoted PACE1 to PACE6, that share a common fundamental idea—estimating

the distribution of the effects of variables from the data and using this to improve

modeling. The optimality of these procedures, in the sense of k-asymptotics, is

theoretically established. The first four procedures utilize OLS subset selection,

and outperform existing OLS methods for subset selection, including OLS itself (by

which we mean the OLS fitted model that includes all parameters). By abandoning

the idea of selection, PACE5 achieves the highest prediction accuracy of all. It even

surpasses the OLS estimate when all variables have large effects on the outcome—in

some cases by a substantial margin. Unfortunately, the extensive numerical calcu-

lations that PACE5 requires may limit its application in practice. However, PACE6 is

a very good approximation to PACE5, and is computationally efficient.

For deriving pace regression procedures, some new terms, such as the “contribu-

tion” of a model and also the H- and h-functions, are introduced. They are able

to indicate whether or not a model, or a dimensional model, contributes, in expec-

tation, to a prediction of future observations, and are employed to obtain the pace

regression procedures.

We realize that this approach is similar to the empirical Bayes methodology (see

Section 2.8), which, according to the author’s knowledge, has not been such used

for fitting linear models (as well as other model structures), despite the fact that

empirical Bayes has long been recognized as a breakthrough in statistical infer-
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ence (see, e.g., Neyman, 1962; Maritz and Lwin, 1989; Kotz and Johnson, 1992;

Efron, 1998; Carlin and Louis, 2000).

Review and comparisons. The thesis also provides in Chapter 2 a general review

that covers a wide range of key issues in fitting linear models. Comparisons of the

new procedures with existing ones are placed appropriately throughout the thesis.

Throughout the review, comparisons and some theoretic work, we also attempt to

provide a unified view for most approaches to fitting linear models, such as OLS,

OLS subset selection, model selection based on data resampling, shrinkage estima-

tion, empirical Bayes, etc. Further, our work in fitting linear models seems to imply

that supervised learning requires unsupervised learning—more precisely, the esti-

mation of a mixing distribution—as a fundamental step for handling competition

phenomenon.

Simulation studies. Simulation studies are conducted in Chapter 6. The exper-

iments range from artificial to practical datasets, illustration to application, high to

low noise level, large to small number of variables, independent to correlated vari-

ables, etc. The procedures used in the experiments include OLS, AIC, BIC, RIC, CIC,

PACE2, PACE4, PACE6, LASSO and NN-GAROTTE .

Experimental results generally support our theoretic conclusions.

Efficient, reliable and consistent estimation of a mixing distribution. Pace

regression requires an estimator of the mixing distribution of arbitrary mixture dis-

tribution. In Chapter 5, a new minimum distance approach based on a nonnegative

measure is shown to provide efficient, reliable and consistent estimation of the mix-

ing distribution. The existing minimum distance methods are efficient and consis-

tent, yet not reliable, due to the minority cluster problem (see Section 5.5), while

the maximum likelihood methods are reliable and consistent, yet not efficient in

comparison with the minimum distance approach.
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Reliable estimation is a finite sample issue but is vital in pace regression, since

the misclustering of even a single isolated point could result in unbounded loss in

prediction. Efficiency may also be desired in practice, especially when it is nec-

essary to fit linear models repeatedly. Strong consistency of each new estimator is

established.

We note that the estimation of a mixing distribution is an independent topic with its

own value and has a large literature.

Implementation. Pace regression, together with some other ideas in the thesis,

are implemented in the programming languages of S-PLUS (tested with versions

3.4 and 5.1)—in a compatible way with R (version 1.1.1)—and FORTRAN 77.

The source code is given in the Appendix, and also serves to provide full details

of the ideas in the thesis. Help files in S format have been written for the most

important functions.

All the source code and help files are freely available from the author, and could

be redistributed and/or modified under the terms of version 2 of the GNU General

Public License as published by the Free Software Foundation.

1.5 Outline

The thesis consists of seven chapters and one appendix.

Chapter 1 briefly introduces the general idea of the whole work. It defines the

dimensionality determination problem, and points outs that a shadow is cast on

the validity of many empirical modeling principles by their failure to solve this

problem. Our approach to this problem adopts the viewpoint of competing models,

due to estimation uncertainty, and utilizes two complementary modeling principles:

minimum expected loss, and simplicity.

Some important issues in fitting linear models are reviewed in Chapter 2, in an at-
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tempt to provide a solid basis for the work presented later. They include linear

models and distances, OLS subset selection, asymptotics, shrinkage, data resam-

pling, RIC and CIC procedures, and empirical Bayes, etc. The basic method of

applying the general ideas of competing models to linear regression is embedded in

this chapter.

Chapter 3, the core of the thesis, formally proposes and theoretically evaluates pace

regression. New concepts, such as contribution, H- and h-functions, are defined in

Section 3.3 and their roles in modeling are illustrated in Section 3.4, respectively.

Six procedures of pace regression are formally defined in Section 3.5, while k-

asymptotic optimality is established in Section 3.6.

A few important issues are discussed in Chapter 4, some completing the defini-

tion of the pace regression procedures in special situations, others expanding their

implications into a broader arena, and still others raising open questions.

In Chapter 5, the minimum distance estimation of a mixing distribution is investi-

gated, along with a brief review of maximum likelihood estimation. It focuses on es-

tablishing consistency of the proposed probability-measure-based and nonnegative-

measure-based estimators. The minority cluster problem, vital for pace regression,

is discussed in Section 5.5. Section 5.6 further empirically investigates the accuracy

of these clustering estimators in situations of overlapping clusters.

Results of simulation studies of pace regression and other procedures for fitting

linear models are given in Chapter 6.

The final chapter briefly summarizes the whole work and provides some topics for

future work and open questions.

The source code in S and FORTRAN, and some help files, are listed in the Ap-

pendix.
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Chapter 2

Issues in fitting linear models

2.1 Introduction

The basic idea of regression analysis is to fit a linear model to a set of data. The clas-

sical ordinary least squares (OLS) estimator is simple, computationally cheap, and

has well-established theoretical justification. Nevertheless, the models it produces

are often less than satisfactory. For example, OLS does not detect redundancy in the

set of independent variables that are supplied, and when a large number of variables

are present, many of which are redundant, the model produced usually has worse

predictive performance on future data than simpler models that take fewer variables

into account.

Many researchers have investigated methods of subset selection in an attempt to

neutralize this effect. The most common approach is OLS subset selection: from a

set of OLS-fitted subset models, choose the one that optimizes some pre-determined

modeling criterion. Almost all these procedures are based on the idea of thresh-

olding variation reduction: calculating how much the variation of the model is in-

creased if each variable in turn is taken away, setting a threshold on this amount,

and discarding variables that contribute less than the threshold. The rationale is that

a noisy variable—i.e., one that has no predictive power—usually reduces the varia-

tion only marginally, whereas the variation accounted for by a meaningful variable

is larger and grows with the variable’s significance.
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Many well-known procedures, including FPE (Akaike, 1970), AIC (Akaike, 1973),

Cp (Mallows, 1973) and BIC (Schwarz, 1978) follow this approach. While these

certainly work well for some data sets, extensive practical experience and many

simulation studies have exposed shortcomings in them all. Often, for example, a

certain proportion of redundant variables are included in the final model (Derksen

and Keselman, 1992). Indeed, there are data sets for which a full regression model

outperforms the selected subset model unless most of the variables are redundant

(Hoerl et al., 1986; Roecker, 1991).

Shrinkage methods offer an alternative to OLS subset selection. Simulation studies

show that the technique of biased ridge regression can outperform OLS subset selec-

tion, although it generates a more complex model (Frank and Friedman, 1993; Hoerl

et al., 1986). The shrinkage idea was further explored by Breiman (1995) and Tib-

shirani (1996), who were able to generate models that are less complex than ridge

regression models yet still enjoy higher predictive accuracy than OLS subset models.

Empirical evidence presented in these papers suggests that shrinkage methods yield

greater predictive accuracy than OLS subset selection when a model has many noisy

variables, or at most a moderate number of variables with moderate-sized effects—

whereas they perform worse when there are a few variables that have a dramatic

effect on the outcome.

These problems are systematic: the performance of modeling procedures can be

related to the effects of variables and the extent of these effects. Researchers have

sought to understand these phenomena and use them to motivate new approaches.

For example, Miller (1990) investigated the selection bias that is introduced when

the same data is used both to estimate the coefficients and to choose the subsets.

New procedures, including the little bootstrap (Breiman, 1992), RIC (Donoho and

Johnstone, 1994; Foster and George, 1994), and CIC (Tibshirani and Knight, 1997)

have been proposed. While these undoubtedly produce good models for many data

sets, we will see later that there is no single approach that solves these systematic

problems in a general sense.

Our work in this thesis will show that these problems are the tip of an iceberg. They
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are manifestations of a much more general phenomenon that can be understood by

examining the expected contributions that individual variables make in an orthog-

onal decomposition of the estimated model. This analysis leads to a new approach

called “pace regression”; see Chapter 3.

We investigate model estimation in a general sense that subsumes subset selection.

We do not confine our efforts to finding the best of the subset models; instead we

address the whole space of linear models and regard subset models as a special case.

But it is an important special case, because simplifying the model structure has wide

applications in practice, and we will use it extensively to help sharpen our ideas.

In this chapter, we introduce and review some important issues in linear regres-

sion to provide a basis for the analysis that follows. We briefly review the major

approaches to model selection, focusing on their failure to solve the systematic

problems raised above. A common thread emerges: the key to solving the general

problem of model selection in linear regression lies in the distribution of the effects

of the variables that are involved.

2.2 Linear models and the distance measure

Given k explanatory variables, the response variable, and n independent observa-

tions, a linear model can be written in the following matrix form,

y = Xβ∗ + ε, (2.1)

where y is the n-dimensional response vector, X the n × k design matrix, β∗ the

k-dimensional parameter vector of the true, underlying, model, and each element

of the noise component ε is independent and identically distributed according to

N(0, σ2). We assume for the most part that the variance σ2 is known; if not, it can

be estimated using the OLS estimator σ̂2 of the full model.

With variables defined, a linear model is uniquely determined by a parameter vec-
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tor β. Therefore, we use M to denote any model, M(β) the model with parameter

vector β, and M∗ as shorthand for the underlying model M(β∗). The entire space

of linear models is Mk = {M(β) : β ∈ R
k}. Note that models considered (and

produced) by the OLS method, OLS subset selection methods, and shrinkage meth-

ods are all subclasses of Mk . Any zero entry in β∗ corresponds to a truly redundant

variable. In fact, variable selection is not a problem independent from parameter es-

timation, or more generally, modeling; it is just a special case in which the discarded

variables correspond to zero entries in the estimated parameter vector.

Further, we need a general distance measure between any two models in the space,

which supersedes the usually-used loss function in the sense that minimizing the

expected distance between the estimated and true models also minimizes (perhaps

approximately) the expected loss. We use a general distance measure rather than the

loss function only, because other distances are also of interest. Defining a distance

measure coincides too with the notion of a metric space—which is how we envisage

the model space.

Now we define the distance measure by relating it to the commonly-used quadratic

loss. Given a design matrix X , the prediction vector of the model M(β) is yM(β) =

Xβ. In particular, the true model M∗ predicts the output vector y∗ = yM∗ = Xβ∗.

The distance between two models is defined as

D(M(β1),M(β2)) = ||yM(β1) − yM(β2)||2/σ2, (2.2)

where || · || denotes the L2 norm. Note that our real interest, the quadratic loss

||yM − y∗||2 of the model M, is directly related to the distance D(M,M∗) by

a scaling factor σ2. Therefore, in the case that σ2 is unknown and σ̂2 is used in-

stead, any conclusion concerning the distance using σ2 remains true asymptotically

(Section 3.6).

Of course, ||yM − y∗||2 is only the loss under the x-fixed assumption—i.e., the de-

sign matrix X remains unchanged from future data. Another possible assumption

used in fitting linear models is x-random—i.e., each explanatory variable is a ran-
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dom variable in the sense that both training and future data are drawn independently

from the same distribution. The implications of x-fixed and x-random assump-

tions in subset selection are discussed by Thompson (1978); see also Miller (1990),

Breiman (1992) and Breiman and Spector (1992) for different treatment of two

cases, in particular when n is small. Although our work presented later will not di-

rectly investigate the x-random situation, it is well known that the two assumptions

converge as n→ ∞, and hence procedures optimal in one situation are also optimal

in the other, asymptotically.

The performance of models (produced by modeling procedures) is thus naturally

ordered in terms of their expected distances from the true model. The modeling

task is hence to find a model that is as close as possible, in expectation, to the true

one. Two equivalent models, say M(β1) and M(β2), denoted by M(β1) = M(β2),

have equal expected values of this distance.

2.3 OLS subset models and their ordering

An OLS subset model is one that uses a subset of the k candidate variables and

whose parameter vector is an OLS fit. When determining the best subset to use, it is

common practice to generate a sequence of k+1 nested models {Mj} with increas-

ing numbers j of variables. M0 is the null model with no variables and Mk is the

full model with all variables included. The OLS estimate of model Mj’s parameter

vector is β̂Mj
= (X ′

Mj
XMj

)−1X ′
Mj
y, where XMj

is the n × j design matrix for

model Mj. Let PMj
= XMj

(X ′
Mj
XMj

)−1X ′
Mj

be the orthogonal projection ma-

trix from the original k-dimensional space onto the reduced j-dimensional space.

Then ŷMj
= PMj

y is the OLS estimate of y∗Mj
= PMj

y∗.

One way of determining subset models is to include the variables in a pre-defined

order using prior knowledge about the modeling situation. For example, in time

series analysis it usually makes good sense to give preference to closer points when

selecting autoregressive terms, while when fitting polynomials, lower-degree terms
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are often included before higher-degree ones. When the variable sequence is pre-

defined, a total of k + 1 subset models are considered.

In the absence of prior ordering, a data-driven approach must be used to determine

appropriate subsets. The final model could involve any subset of the variables. Of

course, computing and evaluating all 2k models rapidly becomes computationally

infeasible as k increases. Techniques that are used in practice include forward,

backward, and stepwise ranking of variables based on partial-F ratios (Thompson,

1978).

The difference between the prior ordering and data-driven approaches affects the

subset selection procedure. If the ordering of variables is pre-defined, subsets are

determined independently of the data, which implies that the ratio between the

residual sum of squares and the estimated variance can be assumed to be F dis-

tributed. The subset selection criteria FPE, AIC, and Cp all make this assumption.

However, data-driven ordering complicates the situation. Candidate variables com-

pete to enter and leave the model, causing competition bias (Miller, 1990). It is

certainly possible to use FPE, AIC and Cp in this situation, but they lack theoret-

ical support, and in practice they perform worse than when the variable order is

correctly pre-defined. For example, suppose underfitting is negligible and the num-

ber of redundant variables increases without bound. Then the predictive accuracy

of the selected model and its expected number of redundant variables both tend to

constant values when the variable order is pre-defined (Shibata, 1976), whereas in

the data-driven scenario they both increase without bound.

Pre-defining the ordering makes use of prior knowledge of the underlying model.

As is only to be expected, this will improve modeling if the information is basically

correct, and hinder it otherwise. In practice, a combination of pre-defined and data-

driven ordering is often used. For example, when certain variables are known to be

relevant, they should definitely be kept in the model; also, it is common practice to

always retain the constant term.
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2.4 Asymptotics

We will be concerned with two asymptotic situations: n-asymptotics, where the

number of observations increases without bound, and k-asymptotics, where the

number of variables increases without bound. Usually k-asymptotics implies n-

asymptotics; for example, our k-asymptotic conclusion implies, as least, n−k → ∞
(see Section 3.6). In this section we review some n-asymptotic results. The remain-

der of the thesis is largely concerned with k-asymptotics, which justify the applica-

bility of the proposed procedures in situation of large data sets with many possible

variables—i.e., a situation when subset selection makes sense.

The model selection criteria FPE, AIC and Cp are n-asymptotically equivalent (Shi-

bata, 1981) in the sense that they depend on threshold values of F -statistic that

become the same—in this case, 2—as n approaches infinity. With reasonably large

sample sizes, the performance of different n-asymptotically equivalent criteria are

hardly distinguishable, both theoretically and experimentally. When discussing

asymptotic situations, we use AIC to represent all three criteria. Note that this def-

inition of equivalence is less general than ours, as defined in Sections 1.2 and 2.2;

ours will be used throughout the thesis.

Asymptotically speaking, the change in the residual sum of squares of a significant

variable is O(n), whereas that of a redundant variable has a upper bound O(1), in

probability, and a upper boundO(log logn), almost surely; see, e.g., Shibata (1986),

Zhao et al. (1986), and Rao & Wu (1989). The model estimator generated by a

threshold function bounded between O(1) and O(n) is weakly consistent in terms

of model dimensionality, whereas one whose threshold function is bounded between

O(log logn) and O(n) is strongly consistent.

Some model selection criteria are n-asymptotically strongly consistent. Examples

include BIC (Schwarz, 1978), φ (Hannan and Quinn, 1979), GIC (Zhao et al., 1986),

and Rao and Wu (1989). These all replace AIC’s threshold of 2 by an increasing

function of n bounded between O(log logn) and O(n). The function value usually
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exceeds 2 (unless n is very small), giving a threshold that is larger than AIC’s. How-

ever, employing the rate of convergence does not guarantee a satisfactory model in

practice. For any finite data set, a higher threshold runs a greater risk of discarding

a non-redundant variable that is only barely contributive. Criteria such as AIC that

are n-asymptotically inconsistent do not necessarily perform worse than consistent

ones in finite samples.

These OLS subset selection criteria all minimize a quantity that becomes, in the

sense of n-asymptotic equivalence,

||y − yMj
||2/σ2 + τj (2.3)

with respect to the dimensionality parameter j, where τ is the threshold value. De-

note the n-asymptotic equivalence of procedures or models by =n (and k-asymptotic

equivalence by =k). We write (2.3) in parameterized form as OLSC(τ), where

OLS =n OLSC(0), AIC =n OLSC(2) and BIC =n OLSC(logn). The model se-

lected by criterion (2.3) is denoted by MOLSC(τ). Since equivalent procedures imply

equivalent estimated models (and vice versa), we can also write MOLS =n MOLSC(0),

MAIC =n MOLSC(2) and MBIC =n MOLSC(log n).

2.5 Shrinkage methods

Shrinkage methods provide an alternative to OLS subset selection. Ridge regression

gives a biased estimate of the model’s parameter vector that depends on a ridge pa-

rameter. Increasing this quantity shrinks the OLS parameters toward zero. This may

give better predictions by reducing the variance of predicted values, though at the

cost of a slight increase in bias. It often improves the performance of the OLS esti-

mate when some of the variables are (approximately) collinear. Experiments show

that ridge regression can outperform OLS subset selection if most variables have

small to moderate effects (Tibshirani, 1996). Although standard ridge regression

does not reduce model dimensionality, its lesser known variants do (Miller, 1990).
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The nn-garrote (Breiman, 1995) and lasso (Tibshirani, 1996) procedures zero some

parameters and shrink others by defining linear inequality constraints on the pa-

rameters. Experiments show that these methods outperform ridge regression and

OLS subset selection when predictors have small to moderate numbers of moderate-

sized effects, whereas OLS subset selection based on Cp prevails over others for

small numbers of large effects (Tibshirani, 1996).

All shrinkage methods rely on a parameter: the ridge parameter for ridge regression,

the garrote parameter for the nn-garrote, and the tuning parameter for the lasso. In

each case the parameter value significantly influences the result. However, there is

no consensus on how to determine suitable values, which may partly explain the

unstable performance of these methods. In Section 3.4, we offer a new explanation

of shrinkage methods.

2.6 Data resampling

Standard techniques of data resampling, such as cross-validation and the bootstrap,

can be applied to the subset selection problem. Theoretical work has shown that,

despite their computational expense, these methods perform no better than the OLS

subset selection procedures. For example, under weak conditions, Shao (1993)

shows that the model selected by leave-d-out cross-validation, denoted CV(d), is n-

asymptotically consistent only if d/n→ 1 and n−d→ ∞ as n→ ∞. This suggests

that, perhaps surprisingly, the training set in each fold should be chosen to be as

small as possible, if consistency is desired. Zhang (1993) further establishes that

under similar conditions, CV(d) = OLSC((2n− d)/(n− d)) n-asymptotically. This

means that AIC = CV(1) and BIC = CV(n(logn−2)/(logn−1)) n-asymptotically.

The behavior of the bootstrap for subset selection is examined by Shao (1996),

who proves that if the bootstrap using sample size m, BS(m), satisfies m/n → 0,

it is n-asymptotically equivalent to CV(n − m); in particular, BS(n) = CV(1) n-

asymptotically. Therefore, BS(m) = OLSC((n+m)/m) n-asymptotically.
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One problem with these data resampling methods is the difficulty of choosing an

appropriate number of folds d for cross-validation, or an appropriate sample size m

for the bootstrap—both affect the corresponding procedures. More fundamentally,

their asymptotic equivalence to OLSC seems to imply that these data resampling

techniques fail to take the competition phenomenon into account and hence are

unable to solve the problems raised in Section 2.1.

2.7 The RIC and CIC

When there is no pre-defined ordering of variables, it is necessary to take account

of the process by which a suitable ordering is determined. The expected value of

the ith largest squared t-statistic of k noisy variables approaches 2 log(k/i) as k

increases indefinitely. This property can help with variable selection.

The soft thresholding procedure developed in the context of wavelets (Donoho and

Johnstone, 1994) and the RIC for subset selection (Foster and George, 1994) both

aim to eliminate all non-contributory variables, up to the largest, by replacing the

threshold 2 in AIC with 2 log k; that is, RIC = OLSC(2 log k). The more variables,

the higher the threshold. When the true hypothesis is the null hypothesis (that is,

there are no contributive variables), or the contributive variables all have large ef-

fects, RIC finds the correct model by eliminating all noisy variables up to the largest.

However, when there are significant variables with small to moderate effects, these

can be erroneously eliminated by the higher threshold value.

The CIC procedure (Tibshirani and Knight, 1997) adjusts the training error by tak-

ing into account the average covariance of the predictions and responses, based on

the permutation distribution of the dataset. In an orthogonally decomposed model
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space, the criterion simplifies to

CIC(j) = ||y − yMj
||2 + 2E0

[
j∑

i=1

t2(i:k)

]
σ̂2 (2.4)

≈ ||y − yMj
||2 + 4

j∑

i=1

log(k/i)σ̂2, (2.5)

where t2(i:k) is the ith largest squared t-statistic out of k, and E0 is the expectation

over the permutation distribution. As this equation shows, CIC uses a threshold

value that is twice the expected sum of the squared t statistics of the j largest noisy

variables out of k. Because limk→∞ P [t2(1:k) ≥ 2Et2(1:k)] = 0, this means that, for the

null hypothesis, even the largest noisy variable is almost always eliminated from

the model. Furthermore, this has the advantage over RIC that smaller contributive

variables are more likely to be recognized and retained, due to the uneven, stairwise

threshold of CIC for each individual variable.

Nevertheless, shortcomings exist. For example, if most variables have strong effects

and will certainly not be discarded, the remaining noisy variables are treated by CIC

as though they were the smallest out of k noisy variables—whereas in reality, the

number should be reduced to reflect the smaller number of noisy variables. An

overfitted model will likely result. Analogously, underfitting will occur when there

are just a few contributive variables (Chapter 6 gives an experimental illustration

of this effect). CIC is based on an expected ordering of the squared t-statistics for

noisy variables, and does not deal properly with situations where variables have

mixed effects.

2.8 Empirical Bayes

Although our work started from the viewpoint of competing models, the solution

discussed in the later chapters turns out to be very similar to the methodology of

empirical Bayes. In this section, we briefly review this paradigm, in an attempt to

provide a simple and solid basis for introducing the ideas in our approach. However,
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Sections 4.6 and 7.3 show that the competing models viewpoint seems to fall beyond

the scope of the existing empirical Bayes methods.

2.8.1 Empirical Bayes

The empirical Bayes methodology is due to Robbins (1951, 1955, 1964, 1983).

After its appearance, it was quickly considered to be a breakthrough in the theory of

statistical decision making (cf. Neyman, 1962). There is a large literature devoted to

it. Books that provide introductions and discussions include Berger (1985), Maritz

and Lwin (1989), Carlin and Louis (1996), and Lehmann and Casella (1998). Carlin

and Louis (2000) give a recent review.

The fundamental idea of empirical Bayes, encompassing the compound decision

problem (Robbins, 1951)1, is to use data to estimate the prior distribution (and/or

the posterior distribution) in Bayesian analysis, instead of resorting to a subjective

prior in the conventional way. Despite the term “empirical Bayes” it is a frequentist

approach, and Lindley notes in his discussion of Copas (1969) that “there is no one

less Bayesian than an empirical Bayesian.”

A typical empirical Bayes problem involves observations x1, . . . , xk, independently

sampled from distributions F (xi; θ
∗
i ), where θ∗i may be completely different for

each individual i. Denote x = (x1, . . . , xk)
t and θ

∗ = (θ∗1, . . . , θ
∗
k)

t. Let θ be an

estimator of θ
∗. Given a loss function, say,

L(θ, θ∗) = ||θ − θ
∗||2 =

k∑

i=1

(θi − θ∗i )
2, (2.6)

the problem is to find the optimal estimator that minimizes the expected loss.

As we know, the usual maximum likelihood estimator is θ
ML = x, which is also

the Bayes estimator with respect to the non-informative constant prior. The em-

pirical Bayes estimator, however, is different. Since x1, . . . , xk are independent,
1Throughout the thesis, we adopt the widely-used term empirical Bayes, although the term com-

pound decision probably makes more sense in our context of competing models.
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we can consider that θ∗1, . . . , θ
∗
k are i.i.d. from a common prior distribution G(θ∗).

Therefore, it is possible to estimateG(θ∗) from x1, . . . , xk based on the relationship

Fk(x) ≈
∫
F (x; θ∗) dG(θ∗). (2.7)

From this relationship, it is possible to find an estimator Ĝ(θ∗) of G(θ∗) from the

known Fk(x) and F (x; θ∗) (we will discuss how to do this in Chapter 5). Once

Ĝ(θ∗) has been found, the remaining steps are exactly like Bayesian analysis with

the subjective prior replaced by the estimated Ĝ(θ∗), resulting in the empirical

Bayes estimator

θEB
i (i,x) =

∫
Θ
θ∗f(xi; θ

∗) dĜ(θ∗)
∫
Θ
f(xi; θ∗) dĜ(θ∗)

. (2.8)

Note that the data are used twice: once for the estimation of G(θ∗) and again for

updating each individual θML
i (or xi).

The empirical Bayes estimator can be theoretically justified in the asymptotic sense.

The Bayes risk of the estimator converges to the true Bayes risk as k → ∞, i.e., as

if the true distribution G(θ∗) were known. Since no estimator can reduce the Bayes

risk below the true Bayes risk, it is asymptotically optimal (Robbins, 1951, 1955,

1964). Clearly θ
ML is inferior to θ

EB in this sense.

Empirical Bayes can be categorized in different ways. The best known division

is between parametric empirical Bayes and nonparametric empirical Bayes, de-

pending on whether or not the prior distribution assumes a parametric form—for

example, a normal distribution.

Applications of empirical Bayes are surveyed by Morris (1983) and Maritz and

Lwin (1989). The method is often used either to generate a prior distribution based

on past experience (see, e.g., Berger, 1985), or to solve compound decision prob-

lems when a loss function in the form of (2.6) can be assumed. In most cases, the

parametric empirical Bayes approach is adopted (see, e.g., Robbins, 1983; Maritz

and Lwin, 1989), where the mixing distribution has a parametric interpretation. To
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my knowledge, it is rarely used in the general setting of empirical modeling, which

is the main concern of the thesis. Further, the less frequently used nonparametric

empirical Bayes appears more appropriate in our approach.

2.8.2 Stein estimation

Shrinkage estimation or Stein estimation is another frequentist effort, and has close

ties to parametric empirical Bayes. It was originated by Stein (1955), who found,

surprisingly, that the usual maximum likelihood estimator for the mean of a multi-

variate normal distribution, i.e., θML = x, is inadmissible when k > 2. He proposed

a new estimator

θ
JS =

[
1 − (k − 2)σ2

||x||2
]
x, (2.9)

which was later shown by James and Stein (1961) to have smaller mean squared

error than the usual estimator for every θ
∗, when k > 2, although the new estima-

tor is itself inadmissible. This new estimator, known as the James-Stein estimator,

improves over the usual estimator by shrinking it toward zero. Subsequent develop-

ment of shrinkage estimation goes far beyond this case, for example, positive-part

James-Stein estimator, shrinking toward the common mean, toward a linear sub-

space, etc. (cf. Lehmann and Casella, 1998).

The connection of the James-Stein estimator to parametric empirical Bayes was

established in the seminal papers of Efron and Morris (1971, 1972a,b, 1973a,b,

1975, 1977). Among other things, they showed that the James-Stein estimator is

exactly the parametric empirical Bayes estimator ifG(θ∗) is assumed to be a normal

distribution and the unbiased estimator of the shrinkage factor is used.

Although our work does not adopt the Stein estimation approach and focuses only

on asymptotic results, it is interesting to note that while the general empirical Bayes

estimator achieves asymptotic optimality, the James-Stein estimator, and a few other

similar ones, uniformally outperform the usual ML estimator even for finite k (> 2).
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So far there does not seem to have been found an estimator which both dominates

the usual ML estimator for finite k and is k-asymptotically optimal for arbitrary

G(θ∗).

The James-Stein estimator is applied to linear regression by Sclove (1968) in the

form

β̃ = (1 − (k − 2)σ2

RSS
)β̂, (2.10)

where β̂ is the OLS estimate of the regression coefficients and RSS is the regression

sum of squares. Note that when RSS is large in comparison with the numerator

(k − 2)σ2, shrinkage has almost no effect. Alternative derivations of this estimator

are given by Copas (1983).

2.9 Summary

In this chapter, we reviewed the major issues in fitting linear models, as well as

procedures such as OLS, OLS subset selection, shrinkage, asymptotics, x-fixed vs. x-

random, data resampling, etc. From the discussion, a common thread has emerged:

each procedure’s performance is closely related to the distribution of the effects of

the variables it involves. This consideration is analogous to the idea underlying

empirical Bayes methodology, and will be exploited in later chapters.
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Chapter 3

Pace regression

3.1 Introduction

In Chapter 2, we reviewed major issues in fitting linear models and introduced the

empirical Bayes methodology. From this brief review, it becomes clear that the ma-

jor procedures for linear regression all fail to solve the systematic problems raised

in Section 2.1 in any general sense. It has also emerged that each procedure’s per-

formance relates closely to the proportions of the different effects of the individual

variables. It seems that the essential feature of any particular regression problem

is the distribution of the effects of the variables it involves. This raises three ques-

tions: how to define this distribution; how to estimate it from the data, if indeed this

is possible; and how to formulate satisfactory general regression procedures if the

distribution is known. This chapter answers these questions.

In Section 3.2, we introduce the orthogonal decomposition of models. In the re-

sulting model space, the effects of variables, which correspond to dimensions in the

space, are statistically independent. Once the effects of individual variables have

been teased out in this way, the distribution of these effects is easily defined.

The second question asks whether we can estimate this distribution from the data.

The answer is “yes.” Moreover, estimators exist which are strongly consistent, in

the sense of k-asymptotics (and also n-asymptotics). In fact, the estimation is sim-
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ply a clustering problem—to be more precise, it involves estimating the mixing

distribution of a mixture. Section 3.6 shows how to perform this.

We answer the third question by demonstrating three successively more powerful

techniques, and establish optimality in the sense of k-asymptotics. First, following

conventional ideas of model selection, the distribution of the effects of the variables

can be used to derive an optimal threshold for OLS subset model selection. The

resulting estimator is provably superior to all existing OLS subset selection tech-

niques that are based on a thresholding procedure. Second, by showing that there

are limitations to the use of thresholding variation reduction, we develop an im-

proved selection procedure that does not involve thresholding. Third, abandoning

the use of selection entirely results in a new adjustment technique that substantially

outperforms all other procedures—outperforming OLS even when all variables have

large effects. Section 3.5 formally introduces these procedures, which are all based

on analyzing the dimensional contributions of the estimated models introduced in

Section 3.3, and discusses their properties. Section 3.4 illustrates the procedures

through examples.

Two optimalities, corresponding to the minimum prior and posterior expected losses

respectively, are defined in Section 3.4. The optimality of each proposed estima-

tor is theoretically established in the sense of k-asymptotics, which further implies

n-asymptotics. When the noise variance is unknown and replaced by the OLS un-

biased estimator σ̂2, the realization of the optimality requires (n − k) → ∞; see

Corollary 3.12.1 in Section 3.6.

Some technical details are postponed to the appendix in Section 3.8.

3.2 Orthogonal decomposition of models

In this section, we discuss the orthogonal decomposition of linear models, and

define some special distances that are of particular interest in our modeling task.

We will also briefly discuss in Section 3.2.3 the advantages of using an orthogo-
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nal model space, the OLS subset models, and the choice of an orthonormal basis.

We assume that no variables are collinear—that is, a model with k variables has k

degrees of freedom. We return to the problem of collinear variables in Section 4.3.

Following the notation introduced in Section 2.2, given a model M(β) with param-

eter vector β, its prediction vector is yM = Xβ where X is the n×k design matrix.

This vector is located in the space spanned by the k separate n-vectors that repre-

sent the values of the individual variables. For any orthonormal basis of this space

b1, b2, . . . , bk (satisfying ||bj|| = 1), let P1, P2, . . . , Pk be the corresponding projec-

tion matrices from this space onto the axes. yM decomposes into k components

P1yM, P2yM, . . . , PkyM, each being a projection onto a different axis. Clearly the

whole is the sum of the parts: yM =
∑k

j=1 PjyM.

3.2.1 Decomposing distances

The distance D(M(β1),M(β2)) between models M(β1) and M(β2) has been de-

fined in (2.2). Although this measure involves the noise variance σ2 for convenience

of both analysis and computation, it is ||yM(β1) − yM(β2)||2 that is the center of in-

terest.

Given an orthogonal basis, the distance between two models can be decomposed as

follows:

D(M(β1),M(β2)) =

k∑

j=1

Dj(M(β1),M(β2)), (3.1)

where

Dj(M(β1),M(β2)) = ||PjyM(β1) − PjyM(β2)||2/σ2 (3.2)

is the jth dimensional distance between the models. The property of additivity

of distance in this orthogonal space will turn out to be crucial for our analysis:

the distance between the models is equal to the sum of the distances between the
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models’ projections.

Denote by M0 the null model M(0), whose every parameter is zero. The distance

between M and the null model is the absolute distance of M, denoted by A(M);

that is, A(M) = D(M,M0). Decomposing the absolute distance yields

A(M) =

k∑

j=1

Aj(M), (3.3)

where Aj(M) = ||PjyM||2/σ2 is the jth dimensional absolute distance of M.

3.2.2 Decomposing the estimation task

Two models are of central interest in the process of estimation: the true model M∗

and the estimated model M. In Section 2.2, we defined the distance between them

as the loss of the estimated model, denoted by L(M); that is, L(M) = D(M,M∗).

We also related this loss function to the quadratic loss incurred when predicting

future observations, as required by the minimum expected loss principle.

Being a distance, the loss can be decomposed into dimensional components

L(M) =

k∑

j=1

Lj(M), (3.4)

where Lj(M) = Dj(M,M∗) = ||PjyM−PjyM∗||2/σ2 is the jth dimensional loss

of model M.

Orthogonal decomposition breaks the estimation task down into individual estima-

tion tasks for each of the k dimensions. Aj(M∗) is the underlying absolute distance

in the jth dimension, and Aj(M) is an estimate of it. The loss incurred by this es-

timate is Lj(M). The sum of the losses in each dimension is the total loss L(M)

of the model M. This reduces the modeling task to estimating Aj(M∗) for all j.

Once these estimated distances have been found for each dimension j = 1, . . . , k,

the estimated model can be reconstructed from them.
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Our estimation process has two steps: an initial estimate of Aj(M∗) followed by

a further refinement stage. This implies that there is some information not used in

the initial estimate that can be exploited to improve it; we use the loss function to

guide refinement. The first step is to find a relationship between the initial estimate

Aj(M) and Aj(M∗). The classic OLS estimate M̂, which has parameter vector

β̂ = (X ′X)−1X ′y, provides a basis for such a relationship, because it is well known

that for all j, Aj(M̂) are independently, noncentrally χ2 distributed with one degree

of freedom and noncentrality parameter Aj(M∗)/2 (Schott, 1997, p.390). We write

this as

Aj(M̂) ∼ χ2
1(Aj(M∗)/2) independently for all j. (3.5)

When σ2 is unknown and therefore replaced by the unbiased OLS estimate σ̂2, the χ2

distribution in (3.5) becomes an F distribution: Aj(M̂) ∼ F (1, n− k,Aj(M∗)/2)

(asymptotically) independently for all j. The F -distribution can be accurately ap-

proximated by (3.5) when n− k � 0.

This relationship forms a cornerstone of our work. In Section 3.8.1 we discuss how

to re-generate the model from the updated absolute distances.

Updating signed projections. An alternative approach to updating absolute dis-

tances is to update signed projections, where the signs of the projections can be

determined by the directions of the axis in an orthogonal space. Both approaches

share the same methodology, and use a very similar analysis and derivation to obtain

corresponding modeling procedures.

Our work throughout the thesis focuses on updating absolute distances. It seems to

us that updating absolute distances is generally more appropriate than the alterna-

tive, although we do not exclude the possibility of using the latter in practice. Our

arguments for this preference are given in Section 4.7.
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3.2.3 Remarks

Advantages of an orthogonal model space. There are at least two advantages

to using orthogonally decomposed models for estimation. The first is additivity: the

distance between two models is the sum of their distances in each dimension. This

convenient property is inherited by two special distances: the absolute distance of

the model itself and the loss function of the estimated model. Of course, any quan-

tity that involves addition and subtraction of distances between models is additive

too.

The second advantage is the independence of the model’s components in the differ-

ent dimensions. This makes the dimensional distances between models independent

too. In particular, the absolute distances in each dimension, and the losses incurred

by an estimated model in each dimension—as well as any measure derived from

these by additive operators—are independent between one dimension and another.

These two features allow the process of estimating the overall underlying model

to be broken down into estimating its components in each dimension separately.

Furthermore, the distribution of the effects of variables—precisely dimensions—

can be accurately defined.

A special case: OLS subset models. It is well known that OLS subset models

are a special case of orthogonally decomposed models in which each variable is

associated with an orthogonal dimension. This makes it easy to simplify the model

structure: discarding variables in a certain order is the same as deleting dimensions

in the same order. If the discarded variables are actually redundant, deleting them

makes the model more accurate.

Denote the nested subset models of M, from the null model up to the full one,

by M0,M1, . . . ,Mk respectively. Denote by yMj
the prediction vector of the

j-dimensional model Mj, and by PMj
= XMj

(X ′
Mj
XMj

)−1X ′
Mj

the orthogo-

nal projection matrix from the space of k dimensions to the j-dimensional sub-
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space corresponding to Mj . Then yMj
= PMj

yM and Pj = PMj
− PMj−1

.

Furthermore, the jth orthonormal base can be written as bj = Pjy/||Pjy|| =

(yMj
− yMj−1

)/||(yMj
− yMj−1

)||.

Choice of an orthonormal basis. The choice of an orthonormal basis depends

on the particular application. In some cases, there may exist an obvious, reasonable

orthonormal basis—for example, orthogonal polynomials in polynomial regression,

or eigenvectors in principal component analysis. In other situations where no ob-

vious basis exists, it is always possible to construct one from the given data using,

say, a partial-F test (Section 2.3). The latter, more general, data-driven approach

is employed in our implementation and simulation studies (Chapter 6). However,

we note that the partial-F test needs to observe y-values before model construction,

and hence can cause a problem of orthogonalization selection (Section 4.6), which

is an analogous phenomenon to model selection.

3.3 Contributions and expected contributions

We next explore a new measure for a model: its contribution. An estimated model’s

contribution is zero for the null model and reaches a maximum when the model is

the same as the underlying one. It can be decomposed into k independent, additive

components in k-dimensional orthogonal space—the “dimensional contributions.”

In practice, these quantities are random variables, and we can define both a cumu-

lative expected contribution function and its derivative of of the estimated model.

These two functions can be estimated for any particular regression problem, and

will turn out to play key roles in understanding the modeling process and in build-

ing actual models in practice.
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3.3.1 C(A) and EC(A)

Definition 3.1 The contribution of an estimate M of the underlying model M∗ is

defined to be

C(M) = L(M0) − L(M). (3.6)

The contribution is actually the difference between the losses of two models: the

null and the estimated. Therefore, its sign and value indicate the merits of the esti-

mated model against the null one: a positive contribution means that the estimated

model is better than the null one in terms of predictive accuracy; a negative value

means it is worse; and zero means they are equivalent.

Since A(M∗) is a constant, maximizing the (expected) contribution C(M) is equiv-

alent to minimizing the (expected) loss L(M), where the latter is our goal of mod-

eling. Therefore, we now convert this goal into maximizing the (expected) contribu-

tion. Using the contribution, rather than dealing directly with losses, is particularly

useful in understanding the task of model selection, as will soon become clear.

Given a k-dimensional orthogonal basis, the contribution function decomposes into

k components that retain the properties of additivity and dimensional independence:

C(M) =
k∑

j=1

Cj(M) (3.7)

where

Cj(M) = Lj(M0) − Lj(M) (3.8)

is the jth dimensional contribution of the model M.

In the subset selection task, each dimension is either retained or discarded. It is clear

that this decision should be based on the sign of the corresponding dimensional

contribution. If a dimension’s contribution is positive, retaining it will give better
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predictive accuracy than discarding it, and conversely, if the contribution is negative

then discarding it will improve accuracy. If the dimensional contribution is zero, it

makes no difference to predictive accuracy whether that dimension is retained or

not.

In following we focus on a single dimension, the jth. The results of individual

dimensions can easily be combined because dimensions are independent and the

contribution measure is additive. Focusing on the contribution in this dimension,

we write aj
2 = Aj(M) and a∗j

2 = Aj(M∗). Without loss of generality, assume

that a∗j ≥ 0. If the projection of yM in the jth dimension is in the same direction

as that of yM∗ , then aj is the positive square root of Aj(M); otherwise it is the

negative square root. In either case, the contribution can be written

Cj(M) = a∗j
2 − (aj − a∗j)

2. (3.9)

Clearly, Cj(M) is zero when aj is 0 or 2a∗j . When aj lies between these values, the

contribution is positive. For any other values of aj , it is negative. The maximum

contribution is achieved when aj = a∗j , and has value a∗j
2, which occurs when—in

this dimension—the estimated model is the true model. This is obviously the best

that the estimated model can do in this dimension.

In practice, however, only aj
2 is available. Neither the value of a∗j

2 nor the di-

rectional relationship between the two projections are known. Denote Cj(M) by

C(aj
2), altering the notion of the contribution of M in this dimension to the con-

tribution of aj
2. C(aj

2) is used below as shorthand for C(aj
2; a∗j

2, sj) = Cj(M),

where sj is the sign of aj . In the following we drop the subscript j when only one

dimension is under consideration, giving a2 and a∗2 for aj
2 and a∗j

2 respectively.

We also use A for a2 since it is this, rather than a, that is available; likewise we use

A∗ for a∗2.

We have argued that the performance of an estimated model can be analyzed in

terms of the value of its contribution in each dimension. Unfortunately, this value

is unavailable in practice. What can be computed, as we will show, is the condi-
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tional expected value EA[C(A;A∗, s)|A, ·] where the expectation is taken over all

the uncertainties concerning A∗ and s. The “·” here represents the prior knowledge

that is available about A∗ and s (if any). In our work presented later, the “·” is re-

placed by three quantities: A∗, G(A∗) (distribution of A∗), and Â plus G(A∗). The

k-asymptotic “availability” of G(A∗) (i.e., strongly consistent estimators) ensures

our k-asymptotic conclusions.

Note that the expectation is always conditional on A. The value of A is available

in practice, for example, the dimensional absolute distance of the OLS full model.

Therefore, the expected contribution is a function of A, and we simply denote it by

EC(A) (equivalently, EAC(A)) as a general representation for all possible situa-

tions.

3.3.2 H(A) and h(A)

In practice, the estimate A is a random variable. For example, according to (3.5),

the OLS estimate is Â ∼ χ2
1(A

∗/2). Analogously to the definitions of CDF and pdf

of a random variable, we define the cumulative expected contribution function and

its derivative of A, denoted by H(A) and h(A) respectively. For convenience, we

call H(A) and h(A) the H- and h-functions of A.

Definition 3.2 The cumulative expected contribution function of A is defined as

H(A) =

∫ A

0

EC(t)f(t) dt, (3.10)

where f(A) is the pdf of A.

Further,

h(A) =
dH(A)

dA
. (3.11)
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Immediately, we have

EC(A) =
h(A)

f(A)
. (3.12)

Note that the definitions of H(A) and h(A), as well as the relationship (3.12), en-

capsulate conditional situations. For example, with knownA∗, we haveEC(A;A∗) =

h(A;A∗)/f(A;A∗), with known G(A∗), EC(A;G) = h(A;G)/f(A;G), and with

known Â plus G(A∗), EC(A; Â, G) = h(A; Â, G)/f(A; Â, G). Further, H and h

are mutually derivable under the same condition.

3.3.3 h(Â;A∗)

Now we derive an expression for h(Â) givenA∗, where Â is the OLS estimate of the

dimensional absolute distance. Let Â = â2 and a∗ = +
√
A∗, where â is a signed

random variable distributed on the real line according to the pdf p(â; a∗). Note that

from the property (3.5), we have a special situation that â ∼ N(a∗, 1), and thus

Â = â2 ∼ χ2
1(a

∗2/2), where

p(â; a∗) =
1√
2π
e−

(â−a∗)2

2 . (3.13)

It is this special case that motivates the utilization of the pdf of â, instead of that of

Â directly. This is because the pdf of the noncentral chi-squared distribution has an

infinite series form, which is inconvenient for both analysis and computation.

Throughout the thesis, we only use p(â; a∗) in the form (3.13), although the follow-

ing derivation works generally once p(â; a∗) is known.

With known p(â; a∗), the CDF of Â given A∗ is

F (Â;A∗) =

∫ √
bA

−
√

bA
p(t;

√
A∗) dt, (3.14)
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hence

f(Â;A∗) =
dF (Â;A∗)

dÂ
=
p(

√
Â;

√
A∗) + p(−

√
Â;

√
A∗)

2
√
Â

. (3.15)

Using (3.9), rewrite the contribution of Â given A∗ by a two-argument function

c(â; a∗)

C(Â) = c(â; a∗) = a∗2 − (â− a∗)2. (3.16)

Only the sign of â can affect the value of the contribution, and so the expected

contribution of Â given A∗ is

EC(Â;A∗) =
c(

√
Â;

√
A∗)p(

√
Â;

√
A∗) + c(−

√
Â;

√
A∗)p(−

√
Â;

√
A∗)

p(
√
Â;

√
A∗) + p(−

√
Â;

√
A∗)

.

(3.17)

Using (3.12),

h(Â;A∗) =
c(

√
Â;

√
A∗)p(

√
Â;

√
A∗) + c(−

√
Â;

√
A∗)p(−

√
Â;

√
A∗)

2
√
Â

. (3.18)

In particular, h(0;A∗) = 0 for every A∗ (see Appendix 3.8.2). This gives the fol-

lowing theorem.

Theorem 3.3 The h(Â;A∗) of the OLS estimate Â givenA∗ is determined by (3.18),

while the pdf f(Â;A∗) is determined by (3.15).

Because EC(A) = h(A)/f(A) by (3.12), and f(A) is always positive, the value

of h(A) has the same sign as EC(A). Therefore the sign of h can be used as a

criterion to determine whether a dimension should be discarded or not. Within a

positive interval, where h(A) > 0, A is expected to contribute positively to the

predictive accuracy, whereas within a negative one, where h(A) < 0, it will do the

opposite. At a zero of h(A) the expected contribution is zero.
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Figure 3.1: h(Â;A∗) and EC(Â;A∗), for A∗ = 0, .5, 1, 2, 5.

Figure 3.1(a) shows examples of h(Â;A∗) where A∗ is 0, 0.5, 1, 2 and 5. All the

curves start from the origin. When A∗ = 0, the curve first decreases as Â increases,

and then gradually increases, approaching the horizontal axis asymptotically and

never rising above it. As the value of A∗ grows, the h(Â;A∗) curve generally rises.

However, it always lies below the horizontal axis until A∗ becomes 0.5. When

A∗ > 0.5, there is one positive interval. A maximum is reached not far from A∗ (the

maximum approaches A∗ as the latter increases), and thereafter each curve slowly

descends to meet the axis at around 4A∗ (the ordinate approaches this value asA∗ in-

creases). Thereafter the interval remains negative; within it, each h-function reaches

a minimum and then ascends to approach the axis asymptotically from below.

Most observations in the last paragraph are included in the following theorem. For

convenience, denote the zeros of h byZ1, Z2, Z3 in increasing order along the

horizontal axis, and assume that h is properly defined at ∞. Since A∗ in practice is

always finite, we only consider the situation A∗ <∞.

Theorem 3.4 Properties of h(Â;A∗).

1. Every h(Â;A∗) has three zeros (two of which may coincide).

2. When A∗ ≤ 0.5, Z1 = Z2 = 0, Z3 = ∞; when A∗ > 0.5, Z1 = 0,

0 < Z2 <∞, Z3 = ∞.
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3. limA∗→∞(Z2 − 4A∗) = 0.

4. h(Â;A∗) > 0 for Â ∈ (0,Z2) and h(Â;A∗) < 0 for Â ∈ (Z2,∞).

5. When A∗ > 0.5, h(Â;A∗) has a unique maximum, at Amax, say. Then

limA∗→∞(Amax − A∗) = 0.

6. h(Â;A∗) is continuous for every Â and A∗.

The proof can be easily established using formulae (3.13)–(3.18). Almost all these

properties are evident in Figure 3.1(a). The critical value 0.5—the largest value of

A∗ for which h(Â;A∗) has no positive interval—can be obtained by setting to zero

the first derivative of h(Â;A∗) with respect to Â at point Â = 0. The derivatives

around Â = 0 can be obtained using the Taylor expansion of h(Â;A∗) with respect

to
√
Â (see Appendix 3.8.2).

As noted earlier, the sign of h can be used as a criterion for subset selection. In

Section 3.4, Figure 3.1(a) is interpreted from a subset selection perspective.

Figure 3.1(b) shows the expected contribution curves EC(Â;A∗). The location of

the maximum converges to A∗ as A∗ → ∞, and it converges very quickly—when

A∗ = 2, the difference is almost unobservable.

3.3.4 h(A;G)

When deriving theH- and h-functions, we have assumed that the underlying dimen-

sional absolute distance A∗ is given. However, A∗, is, in practice, unknown—only

the value of A is known. To allow the functions to be calculated, we consider A∗

to be a random variable with a distributionG(A∗), a distribution which is estimable

from a sample of A. This is exactly the problem of estimating a mixing distribution.

In our situation, the pdf of the corresponding mixture distribution has the general

form

f(A;G) =

∫

R+

f(A;A∗) dG(A∗), (3.19)
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where A∗ ∈ R
+ , the nonnegative half real line. G(A∗) is the mixing distribution

function, f(A;A∗) the pdf of the component distribution, and f(A;G) the pdf of the

mixture distribution. Section 3.6 discusses how to estimate the mixing distribution

from a sample of A.

If the mixing distribution G(A∗) is given, the h-function of A can be obtained from

the following theorem.

Theorem 3.5 Let A∗ be distributed according to G(A∗) and A be a random vari-

able sampled from the mixture distribution defined in (3.19). Then

h(A;G) =

∫

R+

h(A;A∗) dG(A∗), (3.20)

where h(A;A∗) is the h-function determined by f(A;A∗).

The proof follows easily from the definition of h.

No matter whether the underlying mixing distribution G(A∗) is discrete or con-

tinuous, it can always be estimated by a discrete one while reaching the same k-

asymptotic conclusions. Further, in practice, a discrete estimate of an arbitrary

G(A∗) is often easier to obtain without sacrificing prediction accuracy, and easier

to manipulate for further computation. Suppose the corresponding pdf g(A∗) of a

discrete G(A∗) is defined as

g(α∗
i ) = wi, where

m∑

i=1

wi = 1. (3.21)

Then (3.19) can be re-written as

f(A;G) =
m∑

i=1

wif(A;α∗
i ), (3.22)
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and (3.20) as

h(A;G) =

m∑

i=1

wih(A;α∗
i ). (3.23)

Although the general forms (3.19) and (3.20) are adopted in the following analysis,

it is (3.22) and (3.23) that are used in practical computations. Note that if h(A;G)

and f(A;G) are known, the expected contribution of A given G(A∗) is given by

(3.12) as h(A;G)/f(A;G).

Since all Âj’s of an OLS estimated model which is decomposed in an orthogonal

space are statistically independent (see (3.5)), they form a sample from the mix-

ture distribution with a discrete mixing distribution G(A∗). The pdf of the mixture

distribution takes the form (3.22), while the pdf of the component distribution is

provided by (3.15). Likewise the h-function of the mixture has the form (3.23),

while the component h-function is given by (3.18).

From now on, the mixing distributionG(A∗) becomes our major concern. If the two

functions f(A;A∗) and h(A;A∗) are well defined (as they are in OLS estimation),

G(A∗) uniquely determines f(A;G) and h(A;G) by (3.19) and (3.20) respectively.

The following sections analyze the modeling process with known G(A∗), show

how to build the best model with known G(A∗), and finally tackle the question of

estimating G(A∗).

3.4 The role of H(A) and h(A) in modeling

The H- and h-functions illuminate our understanding of the modeling process, and

help with building models too. Here we use them to illustrate issues associated with

the OLS subset selection procedures described in Section 2.1, and to elucidate new,

hitherto unreported, phenomena. While we concentrate on OLS subset selection

criteria, we touch on shrinkage methods too.

We also illustrate with examples the basis for the new procedures that are formally

46



defined in the next section. Not only does subset selection by thresholding variation

reduction severely restrict the modeling space, but the very idea of subset selection

is a limited one—when a wider modeling space is considered, better estimators

emerge. Consequently we expand our horizon from subset selection to the general

modeling problem, producing a final model that is not a least-squares fit at all.

This improves on OLS modeling even when the projections on all dimensions are

significant.

The methodology we adopt is suggested by contrasting the model-based selection

problem that we have studied so far with the “dimension-based selection” that is

used in principal component analysis. Dimension-based selection tests each or-

thogonal dimension independently for elimination, whereas model-based selection

analyzes a set of orthogonal nested models in sequence (as discussed in Section 2.3,

the sequence may be defined a priori or computed from the data). In dimension-

based selection, deleting a dimension removes the transformed variable associated

with it, and although this reduces the number of dimensions, it does not necessarily

reduce the number of original variables.

Chapter 2 showed that all the OLS subset selection criteria share the idea of thresh-

olding the amount by which the variation is reduced in each dimension. CIC sets

different threshold values for each individual dimension depending on its rank in the

ordering of all dimensions in the model, whereas other methods use fixed thresh-

olds. While straightforward for dimension-based selection, this needs some adjust-

ment in model-based selection because the variation reductions of the nested models

may not be in the desired decreasing order. The necessary adjustment, if a few vari-

ables are tested, is to compare the reductions of the variation by these variables with

the sum of their corresponding threshold values. The central idea remains the same.

Therefore, the key issue in OLS subset selection is the choice of threshold. We de-

note these schemes by OLSC(τ), where τ is the threshold (see (2.3)). The optimum

value of τ is denoted by τ ∗. We now consider how τ ∗ can be determined using the

H-function, assuming that all dimensions have the same known H . We begin with

dimension-based selection and tackle the nested model situation later.

47



As discussed earlier, our modeling goal is to minimize the expected loss. Here we

consider two expected losses, the prior expected loss EMEM[L(M)] and the pos-

terior expected loss EM[L(M)]—or equivalently in our context EAEA[L(M)] and

EA[L(M)] respectively—which correspond to the situations before and after see-

ing the data. Note that by A here we mean all A’s of the model M. We call the

corresponding optimalities prior optimality and posterior optimality. In practice,

posterior optimality is usually more appropriate to use after the data is observed.

However, prior optimality, without taking specific observations into account, pro-

vides a general picture about the modeling problem under investigation. More im-

portantly, both optimalities converge to each other as the number of observations

approaches infinity, i.e., k-asymptotically here. In the following theorem, we relate

τ ∗ to prior optimality, while in the next section we see how the estimators of two

optimalities converge to each other.

Theorem 3.6 Given an orthogonal decomposition of a model space Mk , let M∗ ∈
Mk be any underlying model and M ∈ Mk be its estimate. Assume that all dimen-

sional absolute distances of M have the same distribution function F (A) and thus

the same H-function. Rank the Aj(M)’s in decreasing order as j increases. Then

the estimator MOLSC(τ∗) of M∗ possesses prior optimality among all MOLSC(τ) if

and only if

τ ∗ = arg min
A≥0

H(A). (3.24)

Proof. For dimension j, we know from (3.8) that

Lj(M) = Lj(M0) − Cj(M).

OLSC(τ) discards dimension j if Aj(M) ≤ τ , so

Cj(MOLSC(τ)) =





0 if Aj(M) ≤ τ

Cj(M) if Aj(M) > τ ,
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where A = Aj(M) is a random variable which is distributed according to the CDF

F (A). Thus

∫

R+

EA[Lj(MOLSC(τ))] dF (A)

=

∫

R+

EA[Lj(M0)] dF (A) −
∫ ∞

τ

EA[Cj(M)] dF (A)

= Lj(M0) −H(∞) +H(τ).

Taking advantage of additivity and dimensional independence, sum the above equa-

tion over all k dimensions:

EAEA[L(MOLSC(τ))] = L(M0) − kH(∞) + kH(τ). (3.25)

H(τ) is the only term on the right-hand side of (3.25) that varies with τ . Thus min-

imizing the prior expected loss is equivalent to minimizing H(τ), and vice versa.

This completes the proof. �

Theorem 3.6 requires the dimensional absolute distances of the initially estimated

model—e.g., the OLS full model—to be sorted into decreasing order. This is easily

accomplished in the dimension-based situation, but not in the model-based situ-

ation. However, the nested models are usually invariably generated in a way that

attempts to establish such an order. If so, this condition is approximately satisfied in

practice and thus MOLSC(τ∗) is a good approximation to the minimum prior expected

loss estimator even in the model-based situation.

From Theorem 3.6, we have

Corollary 3.6.1 Properties of τ ∗.

1. τ ∗ = arg minZ∈{Zi}H(Z), where {Zi} is the set of zeros of h.

2. If τ ∗ > 0, h(τ ∗−) > 0; if τ ∗ <∞, h(τ ∗+) < 0.

3. H(τ ∗) ≤ 0 and H(∞) −H(τ ∗) ≥ 0.

49



4. If there exists A such that H(∞) −H(A) > 0, then τ ∗ <∞.

Properties 1 and 2 show that the optimum τ ∗ must be a zero of h—moreover, one

that separates a negative interval to the left from a positive interval to the right

(unless τ ∗ = 0 or ∞). Properties 3 and 4 narrow the set of zeros that includes the

optimal value τ ∗, and thus help to establish which one is the optimum.

Four examples follow. The first two illustrate Theorem 3.6 in a dimension-based

situation in which each dimension is processed individually. In the first example,

each dimension’s underlying A∗ is known—equivalently, its h(A;A∗) is known. In

the second, the underlying value of each dimensional absolute distance is chosen

from two possibilities, and only the mixing distribution of these two values and the

corresponding h-functions are known.

The last two examples introduce the ideas for building models that we will explore

in the next section.

Throughout these examples, notice that the dimensional contributions are only ever

used in expected-value form, and the component h-function is the OLS h(Â;A∗).

Further, we always take the k-asymptotic viewpoint, implying that the distribution

G(A∗) can be assumed known.

Example 3.1 Subset selection from a single mixture. Consider the function

h(Â;A∗) illustrated in Figure 3.1(a). We suppose that all dimensions have the same

h(Â;A∗).

Noisy dimensions, and ones whose effects are undetectable. A noisy dimension, for

which h(Â; 0) is always negative, will be eliminated from the model no matter how

large its absolute distance Â. Since limA∗→0 h(Â;A∗) = h(Â; 0), non-redundant

dimensions behave more like noisy ones as their underlying effect decreases—in

other words, their contribution eventually becomes undetectable. When A∗ ≤ 0.5,

any contribution is completely overwhelmed by the noise, and no subset selection

procedure can detect it.
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Dimensions with small vs. large effects. When the estimate resides in a negative

interval of h, its contribution is negative. All hs, no matter how large their A∗,

have at least one negative interval (4A∗,∞). This invalidates all subset selection

schemes that eliminate dimensions based on thresholding their variation reductions

with a fixed threshold, because a large estimate Â does not necessarily mean that

the corresponding variable is contributive—its contribution also depends on A∗.

The reason that threshold-type selection works at all is that the estimate Â in a

dimension whose effect is large is less likely to fall into a negative interval than one

whose effect is small.

The OLSC(τ) criterion. The OLS subset selection criterion OLSC(τ) eliminates

dimensions whose OLS estimate falls below the threshold τ , where τ = 2 for AIC,

logn for BIC, 2 log k for RIC, and the optimal value is τ ∗ as defined in (3.24). Since

dimensions should be discarded based on the sign of their expected contribution, we

consider three cases: dimensions with zero and small effects, those with moderate

effects, and those with large effects.

When a dimension is redundant, i.e. A∗ = 0, it should always be discarded no

matter how large the estimate Â. This can only be done by OLSC(τ ∗), with τ ∗ = ∞
in this case. Whenever τ < ∞, dimensions whose Â exceeds τ are kept inside

the model: thus a certain proportion of redundant variables are included in the fi-

nal model. Dimensions with small effects behave similarly to noisy ones, and the

threshold value τ ∗ = ∞ is still best—which results in the null model.

Suppose that dimensions have moderate effects. As the value of A∗ increases from

zero, the value of the cumulative expected contribution H(τ) will at some point

change sign. At this point, the model found by OLSC(τ), which heretofore has been

better than the full model, becomes worse than it. Hence there is a value of A∗

for which the predictive ability of MOLSC(τ) is the same as that of the full model.

Furthermore, there exists a value of A∗ at which the predictive ability of the null

model is the same as that of the full model. In these cases, model MOLSC(τ∗) is

either the null model or the full one, since τ ∗ is either 0 or ∞ depending on the
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value of A∗.

When each dimension has a large effect—large enough that the position of the sec-

ond zero of h(Â;A∗) is at least τ—any OLSC(τ) with fixed τ > 0 will inevitably

eliminate contributive dimensions. This means that the full model is a better one

than MOLSC(τ). Furthermore, OLSC(τ ∗) with τ ∗ = 0 will always choose the full

model, which is the optimal model for every MOLSC(τ).

Shrinkage methods in orthogonal space. In orthogonal regression, when X ′X is a

diagonal matrix, contribution functions help explain why shrinkage methods work.

These methods shrink the parameter values of OLS models and use smaller values

than the OLS estimates. This may or may not change the signs of the OLS estimated

parameters; however, for orthogonal regressions, the signs of the parameters are

left unchanged. In this situation, therefore, shrinking parameters is tantamount to

shrinking the Â’s. Ridge regression shrinks all the parameters while NN-GAROTTE

and LASSO shrink the larger parameters and zero the smaller ones.

When A∗ is small, it is possible to choose a shrinkage parameter that will shrink

Â’s that lie between A∗ and 4A∗ to around A∗, and shrink the negative contribu-

tions outside 4A∗ to become positively contributive—despite the fact that Â around

the maximum point A∗ are shrunk to smaller values. This may give the result-

ing model lower predictive error than any model selected by OLSC(τ), including

τ = τ ∗. Zeroing the smaller Â’s by NN-GAROTTE and LASSO does not guaran-

tee better predictive accuracy than ridge regression, for these dimensions might be

contributive. When A∗ is large, shrinkage methods perform badly because the dis-

tribution of Â tends to be sharper aroundA∗. This is why OLS subset selection often

does better in this situation.

Example 3.2 Subset selection from a double mixture. Suppose

h(Â) =
k1

k
h(Â;α∗

1) +
k2

k
h(Â;α∗

2), (3.26)

where k = k1 + k2. For k1 dimensions the underlying A∗ is α∗
1, while for the
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Figure 3.2: h(Â) = k1

k
h(Â;α∗

1) + k2

k
h(Â;α∗

2). (a). α∗
1 = 0, α∗

2 = 3, k1 : k2 =
80 : 20. (b). α∗

1 = 0, α∗
2 = 3, k1 : k2 = 75 : 25. (c). α∗

1 = 0, α∗
2 = 20, k1 : k2

are respectively 5 : 95, 50 : 50, 95 : 5. (d). α∗
1 and α∗

2 are carefully set with fixed
k1 : k2 = 95 : 5 such that H(Z3) = 0.

remaining k2 dimensions it is α∗
2. Â is an observation sampled from the mixture

distribution f(Â) = k1

k
f(Â;α∗

1) + k2

k
f(Â;α∗

2). Altering the values of k1, α∗
1, k2

and α∗
2 yields the different hs illustrated in Figure 3.2. The optimal threshold τ ∗ of

OLSC(τ) is discussed.

In Figure 3.2(a), where α∗
1 = 0, α∗

2 = 3 and k1 : k2 = 80 : 20, no positive interval

exists despite the fact that there are 20 non-redundant dimensions. This is because

the effect of all the non-redundant dimensions is overwhelmed by the noisy ones.

In principle, no matter how large its effect, any dimension can be overwhelmed by

a sufficient number of noisy ones. In this case τ ∗ = ∞ and OLSC(τ ∗) selects the

null model.
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In Figure 3.2(b), which is obtained from the previous situation by altering k1 : k2

to 75 : 25, there is a positive interval. But H(∞) is the minimum of all zeros, so

that τ ∗ remains ∞ and the model chosen by OLSC(τ ∗) is still the null one. The

contributive dimensions are still submerged by the noisy ones.

If a finite threshold value τ ∗ exists, it must satisfy H(∞) −H(τ ∗) > 0 (Property 4

of Corollary 3.6.1). It can take on any nonnegative value by adjusting the four

parameters k1, α∗
1, k2 and α∗

2. Figure 3.2(c) shows three functions h, obtained by

setting α∗
1 and α∗

2 to 0 and 20 respectively and making the ratio between k1 and k2

5 : 95, 50 : 50, and 95 : 5. As these curves show, the corresponding values of τ ∗ are

about 2, 4 and 8.

In Figure 3.2(d), k1 : k2 = 95 : 5 and α∗
1 and α∗

2 are set to make H(Z3) = 0, where

Z3 is the third zero of h. In this case, there are two possibilities for τ ∗: the origin

Z1, and Z3. Z3 gives a simpler model. Notice that the number of parameters of

the two models is in the approximate ratio 5 : 100. However, the balance is easily

broken—for example, if α∗
1 increases slightly, then there is a single value 0 for τ ∗.

Although the larger model has slightly smaller predictive error than the smaller one,

it is much more complex. Here is a situation where a far more succinct model can

be obtained with a small sacrifice in predictive accuracy.

Example 3.3 Subset selection based on the sign of h. Although OLSC(τ ∗) is op-

timal among every OLSC(τ), it has limitations. It always deletes dimensions whose

Â’s fall below the threshold, and retains the remaining ones. Thus it may delete

dimensions that lie in the positive intervals of h, and retain ones in the negative in-

tervals. We know that the sign of h is the sign of the expected contribution, and the

selection can be improved by using this fact: we simply retain dimensions whose

h(Â) is positive and discard the remainder.

In the next section we formalize this idea and prove that its predictive accuracy

always improves upon OLSC(τ ∗). Because the positive and negative intervals of

h can lie anywhere along the half real line, this procedure may retain dimensions

with smaller Â and discard ones with larger Â. Or it may delete a dimension whose
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Â lies between those of the other dimensions. For example, in Figure 3.2(b), the

new procedure will keep all the dimensions whose Â’s lie within the small positive

interval, despite the fact that OLSC(τ ∗) chooses the null model.

Example 3.4 General modeling. So far we have only discussed subset selection,

where the estimate Â is either altered to zero or remains the same. A natural ques-

tion is whether better results might be obtained by relaxing this constraint—and

indeed they can be. For example, in Example 3.1, where all dimensions are noisy,

OLSC(τ ∗) deletes them all and chooses the null model. This in effect replaces the

estimate Â by the underlying A∗, which is 0 in this case. Similarly, when all esti-

mates Â have the same underlying A∗ (which is non-zero), and all Â’s are updated

to A∗, the estimated model improves significantly—even though no dimension is

redundant.

A similar thing happens when A is sampled from a mixture distribution. In Fig-

ure 3.2(a), the h-function of the mixture has no positive interval, although 20 out

of 100 dimensions have A∗ = 3. The best that subset selection can do is to discard

all dimensions. However, a dimension with Â = 20—despite h(Â) being less than

0—is unlikely to be a redundant one; it is more likely to belong to the group for

which A∗ = 3. Altering its OLS estimate Â from 20 to 3 is likely to convert the

dimension into a contributive one.

The next section formulates a formal estimation procedure based on this idea.

3.5 Modeling with known G(A∗)

We now assume that the underlying G(A∗) is known and define a group of six

procedures, collectively called pace regression, which build models by adjusting

the orthogonal projections based on estimations of the expected dimensional con-

tributions. They are denoted PACE1, PACE2, . . . , PACE6, and the model produced by

PACEi is written MPACEi . We will discuss in the next section how to estimateG(A∗).
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G(A∗) is the distribution function of a random variable A∗ that represents the di-

mensional absolute distance of the underlying model M∗. These distances, denoted

by A∗
1, . . . , A

∗
k, form a sample of size k from G(A∗). When the mixing distribution

G(A∗) is known, (3.19) can be used to obtain the mixture pdf f(A;G) from the com-

ponent distribution pdf f(A;A∗). From this, along with the component h-function

h(A;A∗), the functions h(A;G) and H(A;G) can be found from (3.20) and (3.12)

respectively. As Theorem 3.3 shows, OLS estimation provides the expressions for

both f(A;A∗) and h(A;A∗).

The pace procedures consist of two steps. The first, which is the same for all pro-

cedures, generates an initial model M. We always use the OLS full model M̂ for

this, although any initial model can be used so long as the component distribution

and the component h-function are available. Decomposing M̂ in a given orthogo-

nal space yields the model’s dimensional absolute distances, say Â1, . . . , Âk. These

are in fact a sample from a mixture distribution F (Â;G) with known component

distribution F (Â;A∗) and mixing distribution G(A∗). In the second step, the final

model is generated from either (3.37) or (3.38), where Ã1, . . . , Ãk are obtained by

updating Â1, . . . , Âk. The new procedures differ in how the updating is done.

To characterize the resulting performance, we define a class of estimators and show

that pace estimators are optimal within this class, or a subclass of it. The class

of estimators Mk (where k is the number of orthogonal dimensions) is as follows:

given the initial model M̂ and its absolute distances in an orthogonal decomposed

model space, every member of Mk is an updating of M̂ by (3.37) and vice versa,

where the updating is entirely dependent on the set of absolute distances of M̂.

Clearly, MOLSC(τ) ∈ Mk for any τ .

Various corollaries below establish that the pace estimators are better than others.

Each estimator’s optimality is established by a theorem that applies to a specific

subclass, and proving each corollary reduces to exhibiting an example where the

performance is actually better. These examples are easily obtainable from the il-

lustrations in Section 3.4. When we say that one estimator is “better than” (or

“equivalent to”) another, we mean in the sense of posterior expected loss. With one
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exception, better estimators have lower prior expected loss (the exception, as noted

below, is Corollary 3.8.1, which compares PACE1 and PACE3). Refer to Section 3.4

for definitions of prior and posterior expected losses.

Of the six procedures, PACE1 and PACE2 perform model-based selection, that is, they

select a subset model from a sequence. Procedures PACE3 and PACE4 address the

dimension-based situation, where each orthogonal dimension is tested and selected

(or not) individually. If these procedures are used for a sequence of orthogonal

nested models, the resulting model may not belong to the sequence. The last two

procedures, PACE5 and PACE6, are not selection procedures. Instead, they update

the absolute distances of the estimated model to values chosen appropriately from

the nonnegative half real line.

Theorem 3.6 shows that there is an optimal threshold for threshold-type OLS subset

selection that minimizes the prior expected loss. We use this idea for nested models.

Procedure 1 (PACE1). Given a sequence of orthogonal nested models, let τ =

arg minZ∈{Zi}H(Z), where {Zi} is the set of zeros of h. Output the model in the

sequence selected by OLSC(τ).

According to Corollary 3.6.1, Procedure 1 finds the optimal threshold τ ∗. Therefore

PACE1 = OLSC(τ ∗) (and MPACE1 = MOLSC(τ∗)). Since the sequence of dimensional

absolute distances of the model M̂ is not necessarily always decreasing, MOLSC(τ∗)

is not guaranteed to be the minimum prior expected loss estimator. However, in

practice these distances do generally decrease, and so in the nested model situation

MOLSC(τ∗) is an excellent approximation to the minimum prior expected loss estima-

tor. In this sense, PACE1 is superior to other OLS subset selection procedures—OLS,

AIC, BIC, RIC, and CIC—for these do not use the optimal threshold τ ∗. In particular,

the procedure CIC uses a threshold that depends on the number of variables in the

subset model as well as the total number of variables. The relative performance

of these procedures depends on the particular experiments used for comparison,

since datasets exist for which any selection criterion’s threshold coincides with the

optimal value τ ∗.
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Instead of approximating the optimum as PACE1 does, PACE2 always selects the

optimal model from a sequence of nested models, where optimality is in the sense

of posterior expected loss.

Procedure 2 (PACE2). Among a sequence of orthogonal nested models, output the

one which has the largest value of
∑j

i=1 h(Âi)/f(Âi) for j = 1, 2, . . . , k.

Theorem 3.7 Given G(A∗), MPACE2 has the smallest posterior expected loss in a

subclass of Mk in which each estimator can only select from the sequence of or-

thogonal nested models that is provided.

Proof. Let Mj be the selected model, then Ãi = 0 if i > j and Ãi = Âi if i ≤ j.

From the definition of dimensional contribution (3.8), we have

E{ bAi}[L(Mj)] = L(M0) −
j∑

i=1

EC(Âi). (3.27)

Because EC(Âi) = h(Âi)/f(Âi) by (3.12), minimizing E{ bAi}[L(Mj)] is equiva-

lent to maximizing
∑j

i=1 h(Âi)/f(Âi) with respect to j. This completes the proof.

�

Corollary 3.7.1 GivenG(A∗) and a sequence of orthogonal nested models, MPACE2

is a better estimator than MOLSC(τ) for any τ . This includes MPACE1 , MOLS, MAIC,

MBIC, MRIC and MCIC.

Since, according to Section 2.6, the cross-validation subset selection procedure

CV(d) =n OLSC((2n − d)/(n − d)) and the bootstrap subset selection procedure

BS(m) =n OLSC((n+m)/m), we have

Corollary 3.7.2 Given G(A∗) and a sequence of orthogonal nested models, n-

asymptotically MPACE2 is a better estimator than MCV(d) for any d and MBS(m)

for any m.
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In fact, the difference between the models generated by PACE1 and PACE2 is small,

because we have

Corollary 3.7.3 GivenG(A∗), if the elements of {Âj; j = 1, . . . , k} are in decreas-

ing order as j increases, MPACE1 =k MPACE2 a.s.

Proof. Since {Âj; j = 1, . . . , k} are in decreasing order as j increases, MPACE2

is in effect the model that minimizes
∫

R+ E bA[L(Mj)] dFk(Â) with respect to j,

where Fk(Â) is the Kolmogorov empirical CDF of Â, and MPACE1 is the model

that minimizes
∫

R+ E bA[L(Mj)] dF (Â) with respect to j. Since, almost surely,

Fk(Â) → F (Â) uniformally as k → ∞ (Glivenko-Cantelli theorem), it implies

that, almost surely,
∫

R+ E bA[L(Mj)] dFk(Â) →
∫

R+ E bA[L(Mj)] dF (Â) as k → ∞,

due to the Helly-Bray theorem (see, e.g., Galambos, 1995). Therefore, minimiz-

ing the prior expected loss is equivalent to minimizing the posterior expected loss,

k-asymptotically. We complete the proof with MPACE1 =k MPACE2 a.s. �

These two procedures show how to select the best model in a sequence of k + 1

nested models. However, no model sequence can guarantee that the optimal model

is one of the nested models. Thus we now consider dimension-based modeling,

where the final model can be a combination of any dimensions. With selection,

the number of potential models given the projections on k dimensions is as large

as 2k. When the orthogonal basis is provided by a sequence of orthogonal nested

models, this kind of selection means that the final model may not be one of the

nested models, and its parameter vector may not be the OLS fit in terms of the

original variables.

Procedure 3 (PACE3). Let τ = arg minZ∈{Zi}H(Z), where {Zi} is the set of zeros

of h. Set Ãj = 0 if Âj ≤ τ ; otherwise Ãj = Âj. Output the model determined by

{Ã1, . . . , Ãk}.

Theorem 3.8 Given G(A∗), MPACE3 is the minimum prior expected loss estimator

of M∗ in an estimator class which is the subclass of Mk in which every estimator

is determined by {Ã1, . . . , Ãk} where Ãj ∈ {0, Âj} for all j.
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The proof is omitted; it is similar to that of Theorem 3.6.

Since MPACE1 is the model determined by {Ã1, . . . , Ãk} where Ãj is either Âj or

0 depending on whether the associated variable is included or not, this estimator

belongs to the class described in Theorem 3.8. This gives the following corollary.

Corollary 3.8.1 Given G(A∗), MPACE3 is a better estimator (in the sense of prior

expected loss) than MPACE1 .

The difference between the models generated by PACE1 and PACE3 is also small,

because

Corollary 3.8.2 GivenG(A∗), if the elements of {Âj; j = 1, . . . , k} are in decreas-

ing order as j increases, MPACE1 = MPACE3 .

As we have seen, whether or not a dimension is contributive is indicated by the sign

of the corresponding h-function. This leads to the next procedure.

Procedure 4 (PACE4). Set Ãj = 0 if h(Âj) ≤ 0; otherwise Ãj = Âj. Output the

model determined by {Ã1, . . . , Ãk}.

PACE4 does not rank dimensions in order of absolute distance and eliminate those

with smaller distances, as do conventional subset selection procedures and the pre-

ceding pace procedures. Instead, it eliminates dimensions that are not contributive

in the estimated model irrespective of the magnitude of their dimensional absolute

distance. It may eliminate a dimension with a larger absolute distance than another

dimension that is retained. (In fact the other procedures may end up doing this

occasionally, but they do so only because of incorrect ranking of variables.)

Theorem 3.9 Given G(A∗), MPACE4 has the smallest posterior expected loss in the

subclass of Mk in which every estimator is determined by {Ã1, . . . , Ãk} where Ãj ∈
{0, Âj} for all j.
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The proof is omitted; it is similar to that of Theorem 3.7.

Because the estimator class defined in Theorem 3.9 covers the classes defined in

Theorems 3.7 and 3.8,

Corollary 3.9.1 GivenG(A∗), MPACE4 is a better estimator thanMPACE2 andMPACE3 .

PACE1, PACE2, PACE3 and PACE4 are all selection procedures: each updated dimen-

sional absolute distance of the estimated model must be either 0 or Âj . The optimal

value of Ãj is often neither of these. If the possible values are chosen from R
+

instead, the best updated estimate Ãj is the one that maximizes the expected con-

tribution of the jth dimension given Âj and G(A∗). The optimality is achieved

over an uncountably infinite set of potential models. This relaxation can improve

performance dramatically even when there are no noisy dimensions.

Procedure 5 (PACE5). Output the model determined by {Ã1, . . . , Ãk}, where

Ãj = arg max
A∈R

+

∫

R+

h(A;A∗)

f(A;A∗)
f(Âj;A

∗) dG(A∗). (3.28)

Theorem 3.10 Given G(A∗), MPACE5 has the smallest posterior expected loss of

all estimators in Mk.

Proof. Each OLS estimate Âj is an observation sampled from the mixture pdf

f(Â;G) determined by the component pdf f(Â;G) and the mixing distribution

G(A∗). If Âj is replaced by any A ∈ R
+ , the expected contribution of A given

Âj and G(A∗) is

EC(A; Âj, G) =

∫
R+ EC(A;A∗)f(Âj;A

∗) dG(A∗)
∫

R+ f(Âj;A∗) dG(A∗)
. (3.29)

Since EC(A;A∗) = h(A;A∗)/f(A;A∗) from (3.12) and
∫

R+ f(Âj;A
∗) dG(A∗)

is constant for every A, the integration on the right-hand side of (3.28) actually

maximizes over the expected contribution of A. From (3.8), this is equivalent to
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minimizing the expected loss in the jth dimension. Because all dimensions are

independent, the posterior expected loss of the updated model given the set {Âj}
and G(A∗) is minimized. �

Corollary 3.10.1 Given G(A∗), MPACE5 is a better estimator than MPACE4 .

This motivates a new shrinkage method: shrink the magnitude (or the sum of the

magnitude) of the orthogonal projections of the model M̂. This is equivalent to

updating the OLS estimate M̂ to a model that satisfies Ãj ≤ Âj for every j. Since

all shrinkage estimators of this type obviously yield a member of Mk, MPACE5 is a

better estimator than any of them.

Although we do not pursue this direction because of the optimality of MPACE5 , this

helps us to understand other shrinkage estimators. Models produced by shrinkage

methods in the literature—ridge regression (including ridge regression for subset se-

lection), NN-GAROTTE and LASSO—do not necessarily require an orthogonal space

and hence do not always belong to this subclass, and so we cannot show that the

new estimator is superior to them in general. However, in the important special case

of orthogonal regression, when the column vectors of X are taken as the orthogonal

axis, the models produced by all these shrinkage methods do belong to this subclass

(see Example 3.1). Therefore,

Corollary 3.10.2 GivenG(A∗), MPACE5 is a better estimator for orthogonal regres-

sion than MRIDGE, MNN-GAROTTE and MLASSO.

A general explicit solution to (3.28) does not seem to exist. Rather than resorting to

numerical techniques, however, a good approximate solution is available. Consid-

ering that

h(A;A∗)

f(A;A∗)
=
c(
√
A;

√
A∗)p(

√
A;

√
A∗) + c(−

√
A;

√
A∗)p(−

√
A;

√
A∗)

p(
√
A;

√
A∗) + p(−

√
A;

√
A∗)

, (3.30)
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the dominant part on the right-hand side is c(
√
A;

√
A∗)p(

√
A;

√
A∗)—and its dom-

inance increases dramatically as A∗ increases. Replacing h(A;A∗)/f(A;A∗) in

(3.28) by c(
√
A;

√
A∗), we obtain the following approximation to PACE5.

Procedure 6 (PACE6). Output the model determined by {Ã1, . . . , Ãk} where

Ãj = arg max
A∈R

+

∫

R+

c(
√
A;

√
A∗)f(Âj;A

∗) dG(A∗). (3.31)

Equation (3.31) can be solved by setting the first derivative of the right-hand side to

zero, resulting in

Ãj =

[∫
R+

√
A∗f(Âj;A

∗) dG(A∗)
∫

R+ f(Âj;A∗) dG(A∗)

]2

. (3.32)

In (3.28), (3.31) and (3.32) the true distribution G(A∗) is discrete (as in (3.21)), so

they become respectively

Ãj = arg max
A∈R

+

m∑

i=1

h(A;α∗
i )

f(A;α∗
i )
f(Âj;α

∗
i )wi, (3.33)

Ãj = arg max
A∈R

+

m∑

i=1

c(
√
A;

√
α∗

i )f(Âj;α
∗
i )wi, (3.34)

and

Ãj =

[∑m

i=1

√
α∗

i f(Âj;α
∗
i )wi∑m

i=1 f(Âj;α∗
i )wi

]2

. (3.35)

The following loose bound can be obtained for the increased posterior expected loss

suffered by the PACE6 approximation.

Theorem 3.11

0 ≤ E[Lj(MPACE6)|Âj, G(A∗)] − E[Lj(MPACE5)|Âj, G(A∗)] < 2e−1. (3.36)
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Proof. See Appendix 3.8.3.

Appendix 3.8.3 actually obtains the tighter bound 4
√
ÃPACE6

j α∗e
−2

q
eAPACE6

j α∗

, where

α∗ is the support point of the distributionG(A∗) that maximizes c(
√
ÃPACE6

j ;
√
A∗)−

EC(ÃPACE6
j ;A∗). This bound rises from zero at the origin in terms of ÃPACE6

j α∗,

achieves the maximum 2e−1 at the point ÃPACE6
j α∗ = 0.5, and thereafter drops ex-

ponentially to zero as ÃPACE6
j α∗ increases. It follows that the increased posterior

expected loss caused by approximating PACE6 is usually close to zero.

Remarks

All these pace procedures adjust the magnitude of the orthogonal projections of

the OLS estimate M̂, based on an estimate of the expected dimensional contri-

butions. Among them, PACE5 and PACE6 go the furthest: each projection of M̂
onto the orthogonal axis can be adjusted to any nonnegative value and the adjusted

value achieves (or approximately achieves) the greatest expected contribution, cor-

responding to the minimum posterior expected loss. These two procedures can

shrink, retain or even expand the values of the absolute dimensional distances. Sur-

prising though it may sound, increasing a zero distance to a much higher value can

improve predictive accuracy.

Of the six pace procedures, PACE2, PACE4 and PACE6 are most appropriate for prac-

tical applications. PACE6 generates a very good approximation to the model from

PACE5, which is the best of the six procedures. Procedure PACE2 chooses the best

member of a sequence of subset models that is provided to it, which is useful if

prior information dictates the sequence of subset models. PACE1 and PACE3 involve

numerical integration and have higher (posterior) expected loss than other proce-

dures. PACE4, which is a lower expected loss procedure than PACE2, is useful for

dimension-based subset selection.
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3.6 The estimation of G(A∗)

Now it is time to consider how to estimate G(A∗) from Â1, Â2, . . . , Âk, which are

the dimensional absolute distances of the OLS estimate M̂. Once this is accom-

plished, the procedures described in the last section become fully defined by re-

placing the true G(A∗), which we assumed in the last section was known, with the

estimate. The estimation of G(A∗) is an independent step in these modeling proce-

dures, and can be investigated independently. It critically influences the quality of

the final model—better estimates of G(A∗) give better estimators for the underlying

model.

Â1, Â2, . . . , Âk are actually a sample from a mixture distribution whose component

distribution F (Â;A∗) is known and whose mixing distribution is G(A∗). (Strictly

speaking, this sample is taken without replacement. However, this is asymptoti-

cally the same as sampling with replacement, and so does not affect our theoretical

results since they are be established in the asymptotic sense.) Estimating G(A∗)

from data points Â1, Â2, . . . , Âk is tantamount to estimating the mixing distribution.

Note that the mixture here is a countable one—the underlyingG(A∗) has support at

A∗
1, A

∗
2, . . . , A

∗
k, and the number of support points is unlimited as k → ∞. Chapter 5

tackles this problem in a general context.

The following theorem guarantees that if the mixing distribution is estimated suffi-

ciently well, the pace regression procedures continue to enjoy the various properties

proved above in the limit of large k.

Theorem 3.12 Let {Gk(A
∗)} be a sequence of CDF estimators. If Gk(A

∗) →w

G(A∗) a.s. as k → ∞, and the known G(A∗) is replaced by the estimator Gk(A
∗),

Theorems 3.6–3.11 (and all their corollaries) hold k-asymptotically a.s.

Proof. According to the Helly-Bray theorem, Gk(A
∗) →w G(A∗) a.s. as k → ∞

implies the almost sure pointwise convergence of all the objective functions used

in these theorems (and their corollaries) to the underlying corresponding functions,

because these functions are continuous. This further implies the almost sure conver-
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gence of the optimal values and of the locations where these optima are achieved,

as k → ∞. This completes the proof. �

All of the above results utilize the loss function ||yM − y∗||2/σ2. However, our real

interest is ||yM − y∗||2. Therefore we need the following corollary.

Corollary 3.12.1 If the loss function ||yM− y∗||2/σ2 is replaced by ||yM− y∗||2 in

Theorems 3.6–3.11 (and all their corollaries),

1. Theorem 3.12 continues to hold, if σ2 is known;

2. Theorem 3.12 holds almost surely as n → ∞ if σ2 is replaced with an n-

asymptotically strongly consistent estimator.

It is well known that both the unbiased OLS estimator σ̂2 (for (n − k) → ∞ as

n → ∞) and the biased maximum likelihood estimator (for k/n → 0) are n-

asymptotically strongly consistent.

In view of Theorem 3.12, any estimator of the mixing distribution is able to provide

the desired theoretic results in the limit if it is strongly consistent in the sense that,

almost surely, it converges weakly to the underlying mixing distribution as k → ∞.

From Chapter 5, the maximum likelihood estimator and a few minimum distance

estimators are known to be strongly consistent. If any of these estimators are used to

obtain Gk(A
∗), Theorem 3.12 is secured. This, finally, closes our circle of analysis.

However, it is pointed out in Chapter 5 that all the minimum distance methods

except the nonnegative-measure-based one suffer from a serious defect in a finite-

sample situation: they may completely ignore small numbers of data points in the

estimated mixture, no matter how distant they are from the dominant data points.

This severely impacts their use in our modeling procedures, because the value of

one dimensional absolute distance is frequently quite different to all the others—

and this implies that the underlying absolute distance has a very high probability

of being different too. In addition, the maximum likelihood approach, which does
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not seem to have this minority cluster problem, can be used for pace regression if

computational cost is not an issue.

For all these estimators, the following three conditions, due to Robbins (1964), must

be satisfied in order to ensure strong consistency (see also Section 5.3.1).

(C1) F (x; θ) is continuous on X × Θ.

(C2) Define G to be the class of CDFs on Θ. If FG1 = FG2 for G1, G2 ∈ G, then

G1 = G2.

(C3) Either Θ is a compact subset of R, or limθ→±∞,θ∈Θ F (x; θ) exists for each

x ∈ X and is not a distribution function on X .

Pace regression involves mixtures of χ2
1(A

∗/2), where A∗ is the mixing parameter.

Conditions C1 and C3 are clearly satisfied. C2, the identifiability condition, is

verified in Appendix 3.8.4.

3.7 Summary

This chapter explores and formally presents a new approach to linear regression.

Not only does this approach yield accurate prediction models, it also reduces model

dimensionality. It outperforms other modeling procedures in the literature, in the

sense of k-asymptotics and, as we will see in Chapter 6, it produces satisfactory

results in simulation studies for finite k.

We have limited our investigation to linear models with normally distributed noise,

but the ideas are so fundamental that we believe they will soon find application in

other realms of empirical modeling.
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3.8 Appendix

3.8.1 Reconstructing model from updated absolute distances

Once final estimates for the absolute distances in each dimension have been found,

the model needs to be reconstructed from them. Consider how to build a model from

a set of absolute distances, denoted by A1, . . . , Ak. Let α = (t1
√
A1, . . . , tk

√
Ak)

′,

where tj is either +1 or −1 depending on whether or not the jth projection of the

prediction vector ycM has the same direction as the orthogonal base bj . This choice

of tj’s value is based on the fact that the projections of ycM and yM∗ are most likely

in the same direction—i.e., any other choice would degrade the estimate.

Our estimate of the parameter vector is

β = (X ′X)−1X ′Bασ, (3.37)

where B is a column matrix formed from the bases b1, . . . , bk. For example, if

{A1, . . . , Ak} are the OLS estimates of the absolute distances in the corresponding

dimensions, (3.37) gives β the value of the OLS estimate β̂.

It may be that not all the Aj’s are available, but a prediction vector is known that

corresponds to all missing Aj’s. This situation will occur if some dimensions are

forced to be in the final model—for example, the constant term, or dimensions that

give very great reductions in variation (very large Aj’s). Suppose the number of

dimensions with known Aj’s is k′, and call the overall prediction vector for the

remaining k − k′ dimensions yrest. Then the estimated parameter vector is

β = (X ′X)−1X ′(yrest +Bασ), (3.38)

where B is an n× k′ matrix and α a k′-vector.

The estimation of β from Aj’s is fully described by (3.37) and (3.38). However,

in practice the computation takes a different, more efficient, route. Once the n × k
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approximation equation of the original least-squares problem has been orthogonally

transformed, finding the least squares solution reduces to solving a matrix equation

Uβ = d, (3.39)

where U is a k×k upper-triangular matrix and d is a k-vector (Lawson and Hanson,

1974, 1995). As a matter of fact, the square of the jth element in d is exactly the

OLS estimate Âjσ
2. When a new set of estimates, say Ãj (j = 1, . . . , k), is obtained,

the corresponding estimate of β∗ is the solution of (3.39) with the jth element in d

replaced by
√
Ãjσ without changing sign. If not all Âj’s are known, so that (3.38)

is used instead of (3.37), only dimensions with known Âj’s are replaced.

3.8.2 The Taylor expansion of h(A;A∗) with respect to
√
A

Let a =
√
A ≥ 0 and a∗ =

√
A∗ ≥ 0. Denote ψ = 1/

√
2π. Because

c(a; a∗) = a∗2 − (a− a∗)2 = 2aa∗ − a2

and

p(a; a∗) = ψe−
(a−a∗)2

2 = ψe
2aa∗−a2

2 e−
a∗

2

2

hence

c(a; a∗)p(a; a∗)

ψe−
a∗2

2

= (2a∗ − a)ae
2a∗−a

2
a

= (2a∗ − a)a +
(2a∗ − a)2

2
a2 +

(2a∗ − a)3

8
a3 +O(a4)

= 2a∗a+ (−1 + 2a∗2)a2 + (−2a∗ + a∗3)a3 +O(a4)
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Similarly

c(−a; a∗) = a∗2 − (a+ a∗)2 = −2aa∗ − a2

and

p(−a; a∗) = ψe−
(a+a∗)2

2 = ψe
−a2

−2aa∗

2 e−
a∗

2

2

hence

c(−a; a∗)p(−a; a∗)
ψe−

a∗2

2

= (−2a∗ − a)ae
−2a∗−a

2
a

= −(2a∗ + a)a+
(2a∗ + a)2

2
a2 − (2a∗ + a)3

8
a3 +O(a4)

= −2a∗a+ (−1 + 2a∗2)a2 + (2a∗ − a∗3)a3 +O(a4)

Therefore

h(A;A∗)

ψe−
a∗2

2

=
c(a; a∗)p(a; a∗) + c(−a; a∗)p(−a; a∗)

2aψe−
a∗2

2

= (−1 + 2a∗2)a+O(a3)

that is,

h(A;A∗) =
1√
2π
e−

A∗

2 [(−1 + 2A∗)
√
A+O(A

3
2 )]. (3.40)

3.8.3 Proof of Theorem 3.11

To prove Theorem 3.11, we need a simple lemma.

Lemma 1 For any A ≥ 0 and A∗ ≥ 0,

0 ≤ c(
√
A;

√
A∗) − EC(A;A∗) < 4

√
AA∗e−4

√
AA∗ ≤ 2e−1. (3.41)
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Proof. For every A ≥ 0 and A∗ ≥ 0, c(
√
A;

√
A∗) ≥ 0 and c(−

√
A;

√
A∗) ≤ 0,

hence

c(
√
A;

√
A∗)

=
c(
√
A;

√
A∗)p(

√
A;

√
A∗) + c(

√
A;

√
A∗)p(−

√
A;

√
A∗)

p(
√
A;

√
A∗) + p(−

√
A;

√
A∗)

≥ c(
√
A;

√
A∗)p(

√
A;

√
A∗) + c(−

√
A;

√
A∗)p(−

√
A;

√
A∗)

p(
√
A;

√
A∗) + p(−

√
A;

√
A∗)

= EC(A;A∗),

and

c(
√
A;

√
A∗) − EC(A;A∗)

=
[c(

√
A;

√
A∗) − c(−

√
A;

√
A∗)]p(−

√
A;

√
A∗)

p(
√
A;

√
A∗) + p(−

√
A;

√
A∗)

=
4
√
AA∗p(−

√
A;

√
A∗)

p(
√
A;

√
A∗) + p(−

√
A;

√
A∗)

<
4
√
AA∗p(−

√
A;

√
A∗)

p(
√
A;

√
A∗)

= 4
√
AA∗e−2

√
AA∗

≤ 2e−1,

thus completing the proof of the lemma. �

Proof of Theorem 3.11. According to the definition of dimensional contribution, to

prove Theorem 3.11 we need to show that

0 ≤ EC(ÃPACE5
j ; Âj, G(A∗)) − EC(ÃPACE6

j ; Âj, G(A∗)) < 2e−1, (3.42)

where G(A∗), no matter continuous or discrete, is the mixing distribution function

used in both procedures. The first inequality in (3.42) is obvious because ÃPACE5
j is

the optimal solution. For the second inequality, from the above lemma and the fact
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that ÃPACE6
j is the optimal solution of (3.34), we have

EC(ÃPACE5
j ; Âj, G(A∗))

=

∫
R+ EC(ÃPACE5

j ;A∗)f(Âj;A
∗) dG(A∗)

∫
R+ f(Âj;A∗) dG(A∗)

≤
∫

R+ c(
√
ÃPACE5

j ;
√
A∗)f(Âj;A

∗) dG(A∗)
∫

R+ f(Âj;A∗) dG(A∗)

≤
∫

R+ c(
√
ÃPACE6

j ;
√
A∗)f(Âj;A

∗) dG(A∗)
∫

R+ f(Âj;A∗) dG(A∗)
.

Hence

EC(ÃPACE5
j ; Âj, G(A∗)) − EC(ÃPACE6

j ; Âj, G(A∗))

≤
∫

R+{c(
√
ÃPACE6

j ;
√
A∗) − EC(ÃPACE6

j ;A∗)}f(Âj;A
∗) dG(A∗)

∫
R+ f(Âj;A∗) dG(A∗)

.

According to the lemma, c(
√
ÃPACE6

j ;
√
A∗) − EC(ÃPACE6

j ;A∗) ≥ 0 for every A∗,

and let

α∗ = arg max
{A∗}

c(
√
ÃPACE6

j ;
√
A∗) − EC(ÃPACE6

j ;A∗),

where {A∗} is the set of support points of G(A∗). Therefore,

EC(ÃPACE5
j ; Âj, G(A∗)) − EC(ÃPACE6

j ; Âj, G(A∗))

≤ c(
√
ÃPACE6

j ;
√
α∗) − EC(ÃPACE6

j ;α∗)

< 4

√
ÃPACE6

j α∗e
−2

q
eAPACE6

j α∗

≤ 2e−1,

which finishes the proof of Theorem 3.11. �

72



3.8.4 Identifiability for mixtures of χ2
1
(A∗/2) distributions

Although we have been unable to locate the following theorem in the literature,

it seems unlikely to be original. Note that here, identifiability applies only to the

situation where the mixing function is limited to being a CDF. Note that the iden-

tifiability of mixtures using CDFs as mixing functions implies the identifiability of

mixtures using any finite nonnegative functions as mixing functions (Lemma 4 in

Section 5.4.3), as required by (5.19).

Theorem 3.13 The mixture of χ2
1(A

∗/2) distributions, where A∗ is the mixing pa-

rameter, is identifiable.

Proof. Let P (x;µ) be the CDF of the distribution N(µ, 1), and F (A;A∗) be the

CDF of the distribution χ2
1(A

∗/2). From the definition of the χ2
1(A

∗/2) distribution

and the symmetry of the normal distribution,

F (A;A∗) = P (
√
A;

√
A∗) − P (−

√
A;

√
A∗)

= P (
√
A;

√
A∗) + P (

√
A;−

√
A∗) − 1, (3.43)

where P (
√
A;

√
A∗) is the CDF of N(

√
A∗, 1) and P (

√
A;−

√
A∗) is the CDF of

N(−
√
A∗, 1). Therefore, if the mixture of F (A;A∗) were unidentifiable, the mix-

ture of normal distributions where the mean µ is the mixing parameter would be

unidentifiable. Clearly this contradicts the well-known identifiability result for mix-

tures of normal distributions (Teicher, 1960), thus completing the proof. �
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Chapter 4

Discussion

4.1 Introduction

Several issues related to pace regression deserve further discussion. Some are nec-

essary to complete the definition of the pace regression procedures in special situa-

tions. Others expand their implications into a broader arena, while yet others raise

interesting open questions.

4.2 Finite k vs. k-asymptotics

We have seen that the pace regression procedures are optimal in a k-asymptotic

sense. Larger numbers of variables tend to produce estimators that are closer to

optimal. If there are only a few candidate variables, pace regression will not neces-

sarily outperform other methods. Since k is inevitably finite in practice, it is worth

expanding on this.

The central idea of pace regression is to decompose the prediction vector of an

estimated model into k orthogonal components, and then adjust each according

to aggregated magnitude information from all components. The more diverse the

magnitudes of the different components, the less they can inform the adjustment of
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any particular one. If one component’s magnitude differs greatly from that of all

others, there is little basis on which to alter its value.

Pace regression shines when many variables have similar effects—a common spe-

cial situation is when many variables have zero effect. As the effects of the variables

disperse, pace regression’s superiority over other procedures fades. When the effect

of each variable is isolated from that of all others, the pace estimator is exactly the

OLS one. In principle, the worst case is when no improvement over OLS is possible.

Although pace regression is k-asymptotically optimal, this does not mean that in-

creasing the number of candidate variables necessarily improves prediction. New

contributive variables should increase predictive accuracy, but new redundant vari-

ables will decrease it. Pre-selection of variables based on background knowledge

will always help modeling, if suitable variables are selected.

4.3 Collinearity

Pace regression, like almost any other linear regression procedure, fails when pre-

sented with (approximately) collinear variables. Hence collinearity should be de-

tected and handled before applying the procedure. We suggest eliminating collinear-

ity by discarding variables. The number of candidate variables k should be reduced

accordingly, because collinearity does not provide new independent dimensions, a

prerequisite of pace regression. In other words, the model has the same degrees of

freedom without collinearity as with it. Appropriate variables can be identified by

examining the matrix X ′X , or QR-transforming X (see, e.g., Lawson and Hanson,

1974, 1995; Dongarra et al., 1979; Anderson et al., 1999).

Note that OLS subset selection procedures are sometimes described as a protection

against collinearity. However, the fact is that none of these automatic procedures

can reliably eliminate collinearity, for collinearity does not necessarily imply that

the projections of the vector y are small.
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4.4 Regression for partial models

The full OLS model forms the basis for pace regression. In some situations, how-

ever, the full model may be unavailable. For example, there may be too many

candidate variables—perhaps more than the number of observations. Although the

largest available partial model can be substituted for the full model, this causes

practical difficulties.

The clustering step in pace regression must take all candidate variables into ac-

count. This is possible so long as the statistical test used to determine the initial

partial model can supply an approximate distribution for the dimensional absolute

distances of the variables that do not participate in it. For example, the partial-F

test may be used to discard variables based on forward selection; typically, dimen-

sional absolute distances are smaller for the discarded variables than for those used

in the model. It seems likely that a sufficiently accurate approximate distribution

for the dimensional absolute distances of the discarded variables can be derived for

this test, though further investigation is necessary to confirm this.

Instead of providing an approximate distribution for the discarded variables, it is

also possible to estimate the mixing distribution directly by assuming that the effects

of these variables are located in an interval of small values. Estimation of the mixing

distribution can then proceed as usual, provided the boundaries of fitting intervals

are all chosen to be outside this interval. Our implementation adopts this approach.

In many practical applications of data mining, some kind of feature selection (see,

e.g. Liu and Motoda, 1998; Hall, 1999) is performed before a formal modeling pro-

cedure is invoked, which is helpful when there are too many features (or variables)

available for the procedure to handle computationally. However, it is generally not

acknowledged that bias is introduced by discarding variables without passing rele-

vant information on to the modeling procedure—though admittedly most modeling

procedures cannot make use of this kind of information.

Estimating the noise variance, should it be unknown a priori, is another issue that
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is affected when only a partial initial model is available. The noise component

will contain the effects of all variables that are not included in the partial model.

Moreover, because of competition between variables, the OLS estimate of σ2 from

the partial model is biased downwards. How to compensate for this is an interesting

topic worthy of further investigation.

4.5 Remarks on modeling principles

As noted in Section 1.2, pace regression measures the success of modeling using

two separate principles. The primary one is accuracy, or the minimization of ex-

pected loss. The secondary one is parsimony, or a preference for the smallest model,

and is only used when it does not conflict with the first—that is, to decide between

several models that have about the same accuracy. The secondary principle is es-

sential if dimensionality reduction is of interest. For example, if the support points

found by the clustering step are not all zero, none of the upgraded Ãj’s by PACE5 and

PACE6 will be zero. But many may be tiny, and eliminating tiny Ãj has negligible

influence on predictive ability.

In the following, we discuss four widely-accepted general principles of modeling

by fitting linear models. When the goal is to minimize the expected loss, the (k-

asymptotic) superiority of pace regression casts doubt on these principles. In fact,

so does the existing empirical Bayes methodology, including Stein estimation—

however, it does not seem to have been applied to fitting linear models in a way that

is directly evaluated based on the loss function; see the review in Section 2.8.

First, pace regression challenges the general least squares principle—or perhaps

more precisely, the unbiasedness principle. All six pace procedures outperform OLS

estimation: PACE1 and PACE3 in the sense of prior expected loss and the remainder

in the sense of posterior expected loss. According to the Gauss-Markov Theorem,

OLS yields a “best linear unbiased estimator” (or BLUE). OLS’s inferiority, however,

is due precisely to the unbiasedness constraint, which fails to utilize all the infor-
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mation implicit in the data. It is well known that biased estimators such as subset

selection and shrinkage can outperform the OLS estimator in particular situations.

We have shown that pace regression estimators, which are also biased, outperform

OLS in all situations. In fact, in modern statistical decision theory, the requirement

of unbiased estimation is usually discarded.

Second, pace regression challenges the maximum likelihood principle. In the linear

regression situation, the maximum likelihood estimator is exactly the same as the

OLS one.

Third, some uses of Bayes’ rule come under attack. The Bayesian estimator BIC

is threshold-based OLS subset selection, where the a priori density is used to de-

termine the threshold. Yet the six pace regression procedures equal or outperform

the best OLS subset selection estimator. This improvement is not based on prior

information—the general validity of which has long been questioned—but on hith-

erto unexploited information that is implicit in the very same data. Furthermore,

when the non-informative prior is used—and the use of the non-informative prior

is widely accepted, even by many non-Bayesians—the Bayes estimator is the same

as the maximum likelihood estimator, i.e., the OLS estimator, and therefore infe-

rior to the pace regression estimators. Although hierarchical Bayes (also known

as Bayes empirical Bayes), which involves some higher level, subjective prior, can

produce similar results to empirical Bayes (see, e.g., Berger, 1985; Lehmann and

Casella, 1998), both differ essentially in whether to utilize prior information or data

information for the distribution of true parameters (or models).

Fourth, questions arise concerning complexity-based modeling. According to the

minimum description length (MDL) principle (Rissanen, 1978), the best model is

the one that minimizes the sum of the model complexity and the data complexity

given the model. In practice the first part is an increasing function of the number of

parameters required to define the model, while the second is the resubstitution error.

Our analysis and experiments do not support this principle. We have found—see the

examples and analysis in Sections 3.4 and 3.5 and the experiments in Chapter 6—

that pace regression may choose models of the same or even larger size, and with
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larger resubstitution errors, than those of other procedures, yet gives much smaller

prediction errors on independent test sets. In addition, the MDL estimator derived

by Rissanen (1978) is the same as the BIC estimator, which has already been shown

inferior to the pace regression estimators in terms of our prediction criterion.

4.6 Orthogonalization selection

Our analysis assumes that the dimensional models associated with the axes in an

orthogonal space are independent. This statement, however, is worth further exam-

ination. When a suitable orthogonalization is given before seeing the data (or more

precisely, the y values), this is clearly true. The problem is that when the orthog-

onalization is generated from the data, say, by a partial-F test, it corresponds to a

selection from a group of candidate orthogonalizations. Such selection will defi-

nitely affect the pace estimators (and many other types of estimator which employ

orthogonalization).

The effect of selecting orthogonalization can be shown by extreme examples. After

eliminating collinearity (see Section 4.3), we could always find an orthogonalization

such that Â1 = Â2 = · · · = Âk, in which case the updating of the PACE5 and

PACE6 estimators will choose the same values of the OLS estimates. Or, possibly,

these Âj values could be adjusted by selecting an appropriate orthogonal basis to

be “distributed” like a uni-component χ2 sample, therefore PACE5 and PACE6 will

update them to the center of this distribution. Generally speaking, such updating

will not achieve the goal of better estimation, because it manipulates the data too

much.

Despite these phenomena, it is not suggested that the procedures are only useful

when an orthogonalization is provided in advance. Rather, employing the data to set

up an orthogonal basis can help to eliminate redundant variables. This phenomenon

resembles the issue of model selection—here it is just orthogonalization selection—

because both involve manipulating the data and thus affect the estimation. The
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selection of an orthogonalization is a competition with uncertainty factors in which

the winner is the one that best satisfies the selection criterion, e.g., the partial-F test.

Orthogonalization selection influences the proposed estimators, yet its effect re-

mains unclear to us. Although experiments with pace regression produce satisfac-

tory results (see Chapter 6) without taking this effect into account, the theoretical

analysis of pace regression is incomplete when the orthogonalization is based upon

the data. We leave this problem open: it is a future extension of pace estimation.

Despite the optimality of pace regression given an orthogonal basis, different or-

thogonal systems result in different estimated models. This obviously contradicts

the invariance principle. We consider this question as follows.

An orthogonal system, like any other assumption used in empirical modeling, can

be pre-determined by employing prior information (background knowledge) or de-

termined from data. Which of these is appropriate depends on knowing (or assum-

ing) which helps the modeling most. An orthogonal system that is natural in an

application is not necessarily the best to employ. In situations when there are many

redundant variables, the data-driven approach based on the partial-F test seems to

be a good choice.

4.7 Updating signed âj?

All proposed pace procedures concern the mixture of Âj’s, or the estimation of

G(A∗). An interesting question arises: is it possible, or indeed better, to estimate

and use the mixing distribution of the mixture of signed âj , where the sign of each

âj is determined by the direction of each orthogonal axis? Hence each âj is inde-

pendent and normally distributed with mean a∗j . Once the mixing distribution, say,

G(a∗), is obtained from the given âj’s through an estimation procedure, each âj

could be updated in a similar way to the proposed pace estimators. Note that the

sign of âj here is different from that defined in Section 3.3.1. Both âj and a∗j are

signed values here, while previously a∗j is always nonnegative.
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a*0

Figure 4.1: Uni-component mixture

Employing only the unsigned values implies that any potential influence of the signs

is shielded out of the estimation, no matter whether it improves or worsens the

estimate. Therefore, it is worth examining situations where signs help and where

they hinder. At first glance, using G(a∗) rather than G(A∗) seems to produce better

estimates, since it employs more information—information about the sign as well as

the magnitude. Nevertheless, our answer to this question is negative: it is possible

but generally not as good. Consider the following examples.

Start from a simple, ideal situation in which the magnitude of all projections are

equal. Further, assume that the directions of the orthogonal axes are chosen so that

the signs of a∗1, a
∗
2, . . . , a

∗
k are the same, i.e., a∗1 = a∗2 = · · · = a∗k = a∗(> 0, without

loss of generality). Then the mixture is a uni-component normal distribution with

mean a∗, as shown in Figure 4.1. The best estimator usingG(a∗)—k-asymptotically

equivalent to using a strongly consistent estimator of G(a∗)—can ideally update all

âj to a∗, resulting in zero expected loss. In contrast, however, the estimator based

on G(A∗) will only update the magnitude, but not the sign, i.e., the data on the

negative half real line will keep the same negative sign with the updated magnitude.

Obviously in this case the estimator based on G(a∗) should be better than the other

one. Note this is an ideal situation. Also, for finite sample, the improvement only

takes effect for the data points around the origin.

The second example involves asymmetric mixtures. Since in practice we are un-

likely to be so fortunate that all a∗j have the same sign, consider a less ideal situa-
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a*0-a*

Figure 4.2: Asymmetric mixture

tion: there are more positive a∗j than negative a∗j . In Figure 4.2, a mixture of two

components is displayed, where two-thirds of the a∗j ’s are set to a∗ and the rest to

−a∗. In this asymmetric case, the advantage of using G(a∗) over using G(A∗) de-

creases, because the ratio of data points that change sign after updating decreases.

Further, in the finite sample situation, the value of a∗ estimated from the set {âj} is

less accurate than from the set {Âj}, since the same number of data points are more

sparsely distributed when using {âj} than when using {Âj}; see also Section 4.2.

More importantly, the assumption of an asymmetric mixture implies the existence

of correlation between the determined axial directions and the projections of the true

response vector. This is equivalent to employing prior information, whose effect, as

always, may upgrade or deteriorate the estimate, depending on how correct it is. For

example, if we know beforehand that all the true parameters are positive, we might

be able to determine an orthogonal basis that takes this information into account,

thus improving estimation. However, more generally, we have no idea whether the

directions of the chosen basis are somehow correlated with the directions of the true

projections. Without this kind of prior information, we can often expect to obtain a

symmetric mixture, as shown in Figure 4.3. Choosing axial directions without any

implication about the projection directions is equivalent in that the axial directions

are randomly chosen.

In the case of symmetric G(a∗), updating involves only updating the magnitude,

not the sign, just as when using G(A∗). However, a better estimate of G(A∗) than
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a*0-a*

Figure 4.3: Symmetric mixture

of G(a∗) is obtained from the same number of data points, because they are more

closely packed together. Furthermore, random assignment of signs implies extra,

imposed uncertainty, thus deteriorating estimation.

In the above, only one single magnitude value is considered, but the idea extends to

situations with multiple or even continuous magnitude values. Without useful prior

information to suggest the choice of axial directions, one would expect a symmetric

mixture to be obtained. In this case, it is better to employ G(A∗) than G(a∗).
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Chapter 5

Efficient, reliable and consistent

estimation of an arbitrary mixing

distribution

5.1 Introduction

A common practical problem is to fit an underlying statistical distribution to a sam-

ple. In some applications, this involves estimating the parameters of a single distri-

bution function—e.g. the mean and variance of a normal distribution. In others, an

appropriate mixture of elementary distributions must be found—e.g. a set of normal

distributions, each with its own mean and variance. Pace regression, as pointed out

in Section 3.6, concerns mixtures of noncentral χ2
1 distributions.

In many situations, the cumulative distribution function (CDF) of a mixture distri-

bution (or model) has the form

FG(x) =

∫

Θ

F (x; θ) dG(θ), (5.1)

where θ ∈ Θ, the parameter space, and x ∈ X , the sample space. This gives the

CDF of the mixture distribution FG(x) in terms of two more elementary distribu-

tions: the component distribution F (x; θ) and the mixing distribution G(θ). The
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former has a single unknown parameter θ,1 while the latter gives a CDF for θ. For

example, F (x; θ) might be the normal distribution with mean θ and unit variance,

where θ is a random variable distributed according to G(θ).

The mixing distribution G(θ) can be either continuous or discrete. In the latter

case, G(θ) is composed of a number of mass points, say, θ1, . . . , θk with masses

w1, . . . , wk respectively, satisfying
∑k

i=1 wi = 1. Then (5.1) can be re-written as

FG(x) =

k∑

i=1

wiF (x; θi), (5.2)

each mass point providing a component, or cluster, in the mixture with the corre-

sponding weight, where these points are also known as the support points of the

mixture. If the number of components k is finite and known a priori, the mixture

distribution is called finite; otherwise it is treated as countably infinite. The qualifier

“countably” is necessary to distinguish this case from the situation with continuous

G(θ), which is also infinite.

The main topic in mixture models—which is also the problem that we will address

in this chapter—is the estimation of G(θ) from sampled data that are independent

and identically distributed according to the unknown distribution FG(x). We will

focus on the estimation of an arbitrary mixing distribution, i.e., the true G(θ) “is

treated completely unspecified as to whether it is discrete, continuous or in any

particular family of distributions; this will be called nonparametric mixture model”

(Lindsay, 1995, p.8).

For tackling this problem, two main approaches exist in the literature (see Sec-

tion 5.2), the maximum likelihood and minimum distance approaches, although the

maximum likelihood approach can also be viewed as a special minimum distance

approach that uses the Kullback–Leibler distance (Titterington et al., 1985). It is

generally believed that the maximum likelihood approach should produce (slightly)

better estimation through solving complicated nonlinear equations, while the (usual)
1In fact, θ could be a vector, but we only focus on the simplest, univariate situation, which is all

that is needed for pace regression.
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minimum distance approach, which only requires solving linear equations with lin-

ear constraints, offers the advantage of computational efficiency. This advantage

makes the minimum distance approach to be the main interest in our work, because

fitting linear models can be embedded in a large modeling system and required re-

peatedly.

The minimum distance approach can be further categorized based on the distance

measure used, for example, CDF-based, pdf-based, etc. As we show in more detail

in Section 5.5, existing minimum distance methods all suffer from a serious draw-

back in finite-data situations (the minority cluster problem): small outlying groups

of data points can be completely ignored in the clusters that are produced. To rectify

this, a new minimum distance method using a nonnegative measure and the idea of

local fitting is proposed, which solves the problem while remaining as computation-

ally efficient as other minimum distance methods. Before proposing this method,

we generalize the CDF-based method and introduce the probability-measure-based

method for reasons of completeness. Theoretical results of strong consistency of the

proposed estimators will also be established. Strong consistency here means that,

almost surely, the estimator sequences converge weakly to any given G(θ) as the

sample size approaches infinity, i.e.,

Pr( lim
n→∞

Gn(θ) = G(θ), θ any continuity point of G) = 1. (5.3)

The minority cluster phenomenon seems to have been overlooked, presumably for

three reasons: small amounts of data may be assumed to represent a small loss; a

few data points can easily be dismissed as outliers; and in the limit the problem

evaporates because the estimators are strongly consistent. However, often these

reasons are inappropriate: the loss function may be sensitive to the distance between

clusters; the small number of outlying data points may actually represent small, but

important, clusters; and any practical clustering situation will necessarily involve

finite data. Pace regression is such an example (see Chapter 3).

Note that the maximum likelihood approach (reviewed in Subsection 5.2.1) does
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not seem to have this problem. The overall likelihood function is the product of

each individual likelihood function, hence any single point that is not in the “neigh-

borhood” of the resulting clusters will make the product zero, which is obviously

not the maximum.

Finally, it is worth mentioning that although our application involves estimating

the mixing distribution in an empirical modeling setting, there are many other

applications. Lindsay (1995) provides an extensive discussion, including known

component densities, the linear inverse problem, random effects models, repeated

measures models, latent class and latent trait models, missing covariates and data,

random coefficient regression models, empirical and hierarchical Bayes, nuisance

parameter models, measurement error models, de-convolution problems, robust-

ness and contamination models, over-dispersion and heterogeneity, clustering, etc.

Many of these subjects “have [a] vast literature of their own.” Books by Tittering-

ton et al. (1985), McLachlan and Basford (1988) also provide extensive treatment

in considerable depth about general and specific topics in mixture models.

In this chapter we frequently use the term “clustering” for the estimation of a mixing

distribution. In our context, both terms have a similar meaning, although in the

literature they have slightly different connotations.

The structure of this chapter is as follows. Existing estimation methods for mixing

distributions are briefly reviewed in Section 5.2. Section 5.3 generalizes the CDF-

based approach, and develops a general proof of the strong consistency of the mix-

ing distribution estimator. Then this proof is adapted for measure-based estimators,

including the probability-measure-based and nonnegative-measure-based ones, in

Section 5.4. Section 5.5 describes the minority cluster problem and illustrates with

experiments how the new method overcomes it. Simulation studies on predictive

accuracy of these minimum distance procedures in the case of overlapping clusters

are given in Section 5.6.
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5.2 Existing estimation methods

In this section, we briefly review the existing methods of the two main approaches

to the estimation of a mixing distribution: the maximum likelihood and minimum

distance approaches. These methods work generally for all types of component

distribution.

The Bayesian approach and its variations are not included, since this methodology

is usually used to control the number of resulting support points, or to mitigate the

effect of outliers, which in our context does not appear to be a problem.

5.2.1 Maximum likelihood methods

The likelihood function for an independent sample from the mixture distribution

has the form

L(G) =

n∏

i=1

Li(G), (5.4)

where Li(G) has the integral form
∫
Li(θ)dG(θ). Lindsay’s (1995) monograph pro-

vides an excellent coverage of the theory, geometry, computation and applications

of maximum likelihood (ML) estimation; see also Böhning (1995) and Lindsay and

Lesperance (1995).

The idea of finding the nonparametric maximum likelihood estimator (NPMLE) of

a mixing distribution was originated by Robbins (1950) in an abstract. It was later

substantially developed by Kiefer and Wolfowitz (1956), who provided conditions

that ensure consistency of the ML estimator.

Algorithmic computation of the NPMLE, however, only began twenty years later.

Laird (1978) proved that the NPMLE is a step function with no more than n steps,

where n is the sample size. She also suggested using the EM algorithm (Demp-

ster et al., 1977) to find the NPMLE. An implementation is provided by DerSimo-
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nian (1986, 1990). Since the EM algorithm often converges very slowly, this is a not

popular method for finding the NPMLE (although it has applications in estimating

finite mixtures).

Gradient-based algorithms are more efficient than EM-based ones. Well-known ex-

amples include the vertex direction method (VDM) and its variations (e.g., Fedorov,

1972; Wu, 1978a,b; Böhning, 1982; Lindsay, 1983), the vertex exchange method

(VEM) (Böhning, 1985, 1986; Böhning et al., 1992), the intra-simplex direction

method (ISDM) (Lesperance and Kalbfleisch, 1992), and the semi-infinite program-

ming method (SIP) (Coope and Watson, 1985; Lesperance and Kalbfleisch, 1992).

Lesperance and Kalbfleisch (1992) point out that ISDM and SIP are stable and very

fast—in one of their experiments, both need only 11 iterations to converge, in con-

trast to 2177 for VDM and 143 for VEM.

The computation of the NPMLE has been significantly improved within the last

twenty-five years. Nevertheless, due to the essence of nonlinear optimization, the

computational cost of all these ML methods increases dramatically as the number

of final support points increases, and in practice this number can be as large as the

sample size. The minimum distance approach is more efficient, since often it only

involves a linear or quadratic mathematical programming problem.

5.2.2 Minimum distance methods

The idea of the minimum distance method is to define some measure of the good-

ness of the clustering and optimize this by suitable choice of a mixing distribution

Gn(θ) for a sample of size n. We generally want the estimator to be strongly con-

sistent as n → ∞, in the sense defined in Section 5.1, for an arbitrary mixing

distribution. We also want to take advantage of any special structure of mixtures to

come up with an efficient algorithmic solution.

We begin with some notation. Let x1, . . . , xn be a sample chosen according to the

mixture distribution, and suppose (without loss of generality) that the sequence is
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ordered so that x1 ≤ x2 ≤ · · · ≤ xn. Let Gn(θ) be a discrete estimator of the

underlying mixing distribution with a set of support points at {θnj; j = 1, . . . , kn}.

Each θnj provides a component of the final clustering with weight wnj ≥ 0, where
∑kn

j=1wnj = 1. Given the support points, obtaining Gn(θ) is equivalent to comput-

ing the weight vector wn = (wn1, wn2, . . . , wnkn
)t. Denote by FGn

(x) the estimated

mixture CDF with respect to Gn(θ).

Two minimum distance estimators were proposed in the late 1960s. Choi and Bul-

gren (1968) used

1

n

n∑

i=1

[FGn
(xi) − i/n]2 (5.5)

as the distance measure. Minimizing this quantity with respect to Gn yields a

strongly consistent estimator. This estimator can be slightly improved upon by us-

ing the Cramér-von Mises statistic

1

n

n∑

i=1

[FGn
(xi) − (i− 1/2)/n]2 + 1/(12n2), (5.6)

which essentially replaces i/n in (5.5) with (i− 1
2
)/n without affecting the asymp-

totic result. As might be expected, this reduces the bias for small-sample cases, as

was demonstrated empirically by Macdonald (1971) in a note on Choi and Bulgren’s

paper.

At about the same time, Deely and Kruse (1968) used the sup-norm associated with

the Kolmogorov-Smirnov test. The minimization is over

sup
1≤i≤n

{|FGn
(xi) − (i− 1)/n|, |FGn

(xi) − i/n|}, (5.7)

and this leads to a linear programming problem. Deely and Kruse also established

the strong consistency of their estimator Gn.

Ten years later, the above approach was extended by Blum and Susarla (1977) to

approximate density functions by using any function sequence {fn} that satisfies
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sup |fn − fG| → 0 a.s. as n → ∞, where fG is the underlying pdf of the mix-

ture. Each fn can be obtained, for example, by a kernel-based density estimator.

Blum and Susarla approximated the function fn by the overall mixture pdf fGn
, and

established the strong consistency of the estimator Gn under weak conditions.

For reason of simplicity and generality, we will denote the approximation between

two mathematical entities of the same type by ≈, which implies the minimization

with respect to an estimator of a distance measure between the entities on either side.

The types of entity involved in this thesis include vector, function and measure, and

we use the same symbol ≈ for each.

In the work reviewed above, two kinds of estimator are used: CDF-based (Choi

and Bulgren, Macdonald, and Deely and Kruse) and pdf-based (Blum and Susarla).

CDF-based estimators involve approximating an empirical distribution with an es-

timated one FGn
. We write this as

FGn
≈ Fn, (5.8)

where Fn is the Kolmogorov empirical CDF,

Fn(x) =
1

n

n∑

i=1

δ[xi,∞)(x), (5.9)

or indeed any empirical CDF that converges to it. Pdf-based estimators involve the

approximation between probability density functions:

fGn
≈ fn, (5.10)

where fGn
is the estimated mixture pdf and fn is the empirical pdf described above.

The entities in (5.8) and (5.10) are functions. When the approximation is computed,

however, it is computed between vectors that represent the functions. These vec-

tors contain the function values at a particular set of points, which we call “fitting

points.” In the work reviewed above, the fitting points are chosen to be the data
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points themselves.

5.3 Generalizing the CDF-based approach

In this section we generalize the CDF-based approach using the form (5.8). A well-

defined CDF-based estimator needs to specify (a) the set of support points, (b) the

set of fitting points, (c) the empirical function, and (d) the distance measure. The

following generalization, due to the considerations given in Subsection 5.3.3, will

cover all of the above four aspects. In Subsection 5.3.1, conditions for establishing

the estimator’s strong consistency are given. The proof of strong consistency is

given in Subsection 5.3.2.

5.3.1 Conditions

Conditions for defining the estimators and ensuring strong consistency are given in

this section. They are divided into two groups. The first includes the continuity

condition (Condition 5.1), the identifiability condition (Condition 5.2), and Con-

dition 5.3. Their satisfaction needs to be checked in practice. The second group,

which can always be satisfied, is used to precisely define the estimator. They are

Condition 5.4 for the selection of (potential) support points, Conditions 5.5–5.6 for

distance measure, Conditions 5.7 for empirical function, and Conditions 5.8–5.9 for

fitting points.

Condition 5.1 F (x; θ) is a continuous function over X × Θ.

Condition 5.2 Define G to be the class of CDFs on Θ. If FG = FH for G,H ∈ G,

then G = H .

Condition 5.2 is known as the identifiability condition. The identifiability problem

of mixture distributions has attracted much research attention since the seminal pa-
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pers by Teicher (1960, 1961, 1963). References and summaries can be found in

Prakasa Rao (1992).

Condition 5.3 Either Θ is a compact subset of R , or limθ→±∞,θ∈Θ F (x; θ) exist

for each x ∈ X and are not distribution functions on X .

Conditions 5.1–5.3 were initially considered by Robbins (1964), and are essential

to establish the strong consistency of the estimator of the mixing distribution given

the uniform convergence of the mixture estimator.

Condition 5.4 Define Gn to be the class of discrete distributions on Θ with sup-

port at θn1, . . . , θnjn
, where the {θnj} are chosen so that for any G ∈ G there is a

sequence {Gw
n} with Gw

n ∈ Gn that converges weakly to G a.s.

Condition 5.4 concerns the selection of support points. In fact, a weakly convergent

sequence {Gw
n}, instead of the almost surely weakly convergent sequence, is always

obtainable. This is because if Θ is compact, a weakly convergent sequence {Gw
n}

for any G can be obtained by, say, equally spacing θnj throughout Θ; if Θ is not

compact, some kind of mapping of the equally spaced points in a compact space

onto Θ can provide such a sequence.

Despite this fact, we adopt a weaker condition here that only requires a sequence

which, almost surely, converges weakly to any given G. We will discover that this

relaxation does not change the conclusion about the strong consistency of the result-

ing estimator. The advantage of using a weaker condition is that the set of support

points {θnj} can be adapted to the given sample, often resulting in a data-oriented

and hence probably smaller set of support points, which implies less computation

and possibly higher accuracy. For example, each data point could provide a sup-

port point, suggested by the unicomponent maximum likelihood estimators. This

set always contains a sequence {Gw
n} which converges weakly to any given G a.s.

Let d(u,v) be a distance measure between two k-vectors u and v. This distance is

not necessarily a metric; that is, the triangle inequality may not be satisfied. Denote
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the Lp-norm by || · ||p. Conditions 5.5 and 5.6 provide a wide class of distance

measures.

Condition 5.5 Either

(i) d(u,v) = ||u− v||∞
or

(ii) if limk→∞
1
k
||u − v||1 6= 0, then limk→∞ d(u,v) 6= 0.

Condition 5.6 d(u,v) ≤ h(||u−v||∞), where h(z) is a univariate, non-decreasing

function and limz→0 h(z) = h(0) = 0.

Examples of distances between two k-vectors satisfying conditions 5.5 and 5.6 are

||u − v||p/ p
√
k (0 < p <∞), ||u − v||pp/k (0 < p <∞), and ||u− v||∞.

Let Fn be any empirical function obtained from observations (not necessarily a

CDF) satisfying

Condition 5.7 limn→∞ ||FG − Fn||∞ = 0 a.s.

According to the Glivenko-Cantelli theorem, the Kolmogorov empirical CDF sat-

isfies this condition. Here δI(x) is the indicator function: δI(x) = 1 if x ∈ I ,

and 0 if otherwise. Other empirical functions which (a.s.) uniformally converge to

the Kolmogorov empirical CDF as n → ∞ satisfy this condition as well. Empir-

ical functions other than the Kolmogorov empirical CDF result in the same strong

consistency conclusion, but can provide flexibility for better estimation in the fi-

nite data situation. For example, an empirical CDF obtained from the Cramer-von

Mises statistic can be easily constructed, which is different from the Kolmogorov

empirical CDF but uniformally convergent to it.

Denote the chosen set of fitting points on X by a vector an = (an1, an2, . . . , anin)t.

The number of points in needs to satisfy

Condition 5.8 limn→∞ in = ∞.
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Let B be the set of all Borel subsets on X . Denote by i(I) the number of fitting

points that are located within the subset I ∈ B, and by PG(I) the probability mea-

sure determined by FG over I .

Condition 5.9 There exists a positive constant c such that, for any I ∈ B,

lim
n→∞

i(I)

in
≥ cPG(I) a.s. (5.11)

Conditions 5.8–5.9 are satisfied when the set of fitting points is an exact copy of

the set of data points, as in the minimum distance methods reviewed in Subsec-

tion 5.2.2. Using a larger set of fitting points when the number of data points is

small makes the resulted estimator more accurate within tolerable computational

cost. Using fewer fitting points when there are many data points over a small inter-

val decreases the computational burden without sacrificing much accuracy. In the

finite sample situation, Condition 5.9 gives great freedom in the choice of fitting

points. For example, more points can be placed around specific areas for better

estimation. All these can be done without sacrificing strong consistency.

5.3.2 Estimators

For any discrete distributionGn(θ) =
∑jn

j=1wnjδ[θnj ,∞)(θ) on Θ, the corresponding

mixture distribution is

FGn
(x) =

∫
F (x; θ) dGn(θ) =

jn∑

j=1

wnjF (x; θnj). (5.12)

Let an be a vector of elements from X ; for example, the set of fitting points. Denote

the vectors of the function values FGn
(x) and Fn(x) corresponding to the elements

of an by FGn
(an) and Fn(an). The distance between two vectors FGn

(an) and

Fn(an) is written

Sn(Gn) = d(FGn
(an), Fn(an)). (5.13)
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The estimator Gn is defined as the one minimizing Sn(Gn). We have

Theorem 5.1 Under Conditions 5.1–5.9, limn→∞Gn →w G a.s.

Proof. The proof of the theorem consists of three steps.

(1). limn→∞ Sn(Gn) = 0 a.s.

Clearly, for any (discrete or continuous) distribution H on Θ, the distribution FH

on X is pointwise continuous under Condition 5.1. Gw
n →w G a.s. (Condition 5.3)

impliesFGw
n
→ FG pointwise a.s. according to the Helly-Bray theorem. This further

implies uniform convergence (Pólya, 1920), that is, limn→∞ ||FGw
n
−FG||∞ = 0 a.s.

Because limn→∞ ||FG − Fn||∞ = 0 a.s. by Condition 5.7, and

||FGw
n
− Fn||∞ ≤ ||FGw

n
− FG||∞ + ||FG − Fn||∞, (5.14)

then limn→∞ ||FGw
n
−Fn||∞ = 0 a.s. Since Sn(Gw

n ) ≤ h(||FGw
n
(an)−Fn(an)||∞) ≤

h(||FGw
n
− Fn||∞), this means that limn→∞ Sn(Gw

n ) = 0 a.s. by Condition 5.6.

Because the estimator Gn is obtained by a minimization procedure over Sn(·), for

every n ≥ 1

Sn(Gn) ≤ Sn(Gw
n ). (5.15)

Therefore, limn→∞ Sn(Gn) = 0 a.s.

(2). limn→∞ ||FGn
− FG||∞ = 0 a.s.

Let H be an arbitrary element in the set {Gn : n → ∞ and limn→∞ ||FGn
−

FG||∞ 6= 0}, i.e. ||FH − FG||∞ 6= 0. Then ∃x0, FH(x0) 6= FG(x0).

Because FH and FG are both continuous and non-decreasing, and FH(−∞) =

FG(−∞) = 0 and FH(∞) = FG(∞) = 1, there must exist an interval I0 in the

range of FG near FG(x0) such that the length ∆F of I0 is positive and inf |FH(x)−
FG(x)| ≥ ε > 0 for all x ∈ F−1

G (I0), where F−1
G (I0) denotes the inverse mapping of

FG over I0. (Note that F−1
G (I0) may not be unique, but the conclusion remains the
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same.) Because ||FG−Fn||∞ → 0 a.s., when n is sufficiently large, ||FG−Fn||∞ can

be made arbitrarily small a.s. Therefore, within F−1
G (I0), inf |FH(x) − Fn(x)| ≥ ε

a.s. as n → ∞. By Condition 5.9, limn→∞ i(F−1
G (I0))/in ≥ cPG(F−1

G (I0)) ≥
c∆F a.s. By Conditions 5.5, either Sn(GH) ≥ ε a.s. if d(u,v) = ||u − v||∞, or

limn→∞
1
in

∑in
i=1 |FH(an) − Fn(an)| ≥ c∆F a.s. if d(u,v) is defined otherwise. In

either situation, Sn(H) 6= 0 a.s.

From the last paragraph, the arbitrariness of H and the continuity of FH in a metric

space with respect to H , we have

Pr( lim
n→∞

Sn(Gn) 6= 0| lim
n→∞

||FGn
− FG||∞ 6= 0) = 1. (5.16)

By step (1), immediately, ||FGn
− FG||∞ → 0 a.s.

(3). Gn →w G a.s.

Robbins (1964) proved that ||FGn
− FG||∞ → 0 a.s. implies that Gn →w G a.s.

under Conditions 5.1–5.3. �

Clearly, the generalized estimator obtained by minimizing (5.13) covers Choi and

Bulgren (1968) and Cramér-von Mises statistic (Macdonald, 1971). It can be further

generalized as follows to cover Deely and Kruse (1968), who use two empirical

CDFs.

Let {Fni, i = 1, . . . , m} be a set of empirical CDFs, where each Fni satisfies Con-

dition 5.7. Denote

Sni(Gn) = d(FGn
(an), Fni(an)). (5.17)

Theorem 5.2 Let Gn be the estimator by minimizing max1≤i≤m Sni(Gn). Then

under Conditions 5.1–5.9, Gn →w G a.s.

The proof is similar to that of Theorem 5.1 and thus omitted.
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The proof of Theorem 5.1 is inspired by the work of Choi and Bulgren (1968) and

Deely and Kruse (1968). The main difference in our proof is the second step. We

claim this proof is more general: it covers their results, while their proof does not

cover ours. A similar proof will be used in the next section for measure-based

estimators.

5.3.3 Remarks

In the above, we have generalized the estimation of a mixing distribution based on

approximating mixture CDFs. As will be shown in Section 5.5, the CDF-based

approach does not solve the minority cluster problem. However, this generalization

is included because of the following considerations:

1. It is of theoretic interest to show that there actually exists a large class of

minimum distance estimators, not just a few individual ones, that can provide

strongly consistent estimates of an arbitrary mixing distribution.

2. We would like to formalize the definition of the estimators of a mixing dis-

tribution, including the selection of support points and fitting points. For ex-

ample, Choi and Bulgren (1968) did not discuss how the set of support points

{θnj} should be chosen for their estimator. Clearly, the consistency of the

estimator relies on how this set is chosen.

3. A more general class of estimators may provide flexibility and adaptability in

practice without losing strong consistency. Condition 5.4 is such an example.

4. The CDF-based approach is a special and simpler case of the measure-based

approach. It provides a starting point for the more complicated situation.
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5.4 The measure-based approach

This section extends the CDF-based approach to the measure-based one. The idea

is to approximate the empirical measure with the estimated measure over intervals,

which we call fitting intervals. The two measures are represented by two vectors

that contain values that the measures take over the fitting intervals. Then distance

in the vector space is minimized with respect to the candidate mixing distributions.

Two approaches are considered further: the probability-measure-based (or PM-

based) approach and the nonnegative-measure-based (NNM-based) approach. For

the former, the empirical measure Pn is approximated by the estimated probability

measure PGn
, which can be written

PGn
≈ Pn, (5.18)

where Gn is a discrete CDF on Θ. For the latter, we abandon the normalization

constraint for Gn so that the estimate is only a nonnegative measure, thus not nec-

essarily a probability measure. We write this as

PG′

n
≈ Pn, (5.19)

where G′
n is a discrete function with nonnegative mass at support points. G′

n can be

normalized afterwards to become a distribution function, if necessary.

As with the CDF-based estimators, we need to specify (a) the set of support points,

(b) the set of fitting intervals, (c) the empirical measure, and (d) the distance mea-

sure. Only (b) and (c) differ from CDF-based estimation. They are given in Sub-

section 5.4.1 for the PM-based approach, and modified in Subsection 5.4.3 to fit

the NNM-based approach. Strong consistency results for both estimators are estab-

lished in Subsections 5.4.2 and 5.4.3.
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5.4.1 Conditions

For the PM-based approach, we need only specify conditions for fitting intervals

and the empirical measure—the other conditions remain identical to those in Sub-

section 5.3.1. We first discuss how to choose the empirical measure, then give

conditions (Conditions 5.11–5.14) for selecting fitting intervals.

Denote the value of a measure P over an interval I by P (I). Let Pn be an em-

pirical measure (i.e., a measure obtained from observations, but not necessarily a

probability measure). Define the corresponding nondecreasing empirical function

Fn (hence not necessarily a CDF) as

Fn(x) = Pn((−∞, x]). (5.20)

Clearly Pn and Fn are uniquely determined by each other on Borel sets. We have

the following condition for Pn.

Condition 5.10 The Fn corresponding to Pn satisfies Condition 5.7.

If Fn is the Kolmogorov empirical CDF as defined in (5.9), the corresponding Pn

over a subset I ∈ B is

Pn(I) =
1

n

n∑

i=1

δI(xi). (5.21)

An immediate result following Condition 5.10 is limn→∞ ||PG(I) − Pn(I)||∞ = 0

a.s. for all I ∈ B.

We determine the set of fitting intervals by the set of the right endpoints and a

function l(x) which, given a right endpoint, generates a left endpoint for the fitting

interval. Given the set of right endpoints {an1, . . . , anin}, the set of fitting intervals

is determined as In = {In1, . . . , Inin} = {(l(an1), an1), . . . , (l(anin), anin)}. Set-

ting each interval to be open, closed or semi-open will not change the asymptotic

conclusion, because of the continuity condition (Condition 5.1).
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In order to establish strong consistency, we require l(x) to satisfy the following.

Condition 5.11 For some constant δx > 0, ∀x ∈ X , x− l(x) ≥ δx, except for those

x’s such that l(x) /∈ X ; for the exceptions, let l(x) = inf X .

An example of such a function is l(x) = x− a for x − a ∈ X , and l(x) = inf X if

otherwise. Further, define

lk(x) =





x, if k = 0;

l(lk−1(x)), if k > 0.
(5.22)

The following conditions govern the selection of fitting intervals; in particular, they

determine the number and locations of right endpoints.

Condition 5.12 limn→∞ in = ∞.

We use an extra CDF Fa(x) to determine the distribution of the right endpoints of

fitting intervals. If possible, we always replace it with FG(x) so that fitting intervals

can be determined dynamically based on the sample; otherwise, some additional

techniques are needed. We will discuss this issue in Subsection 5.4.4.

Condition 5.13 Fa(x) is a strictly increasing CDF throughout X .

Denote by Pa(I) its corresponding probability measure over a subset I ∈ B. Clearly

Pa(I) 6= 0 unless the Lebesgue measure of I is zero for every I ∈ B. Denote by

i(I) the number of points in the intersection between the set of the right endpoints

{ani; i = 1, . . . , in} and a subset I on X .

Condition 5.14 There exists a constant c > 0 such that, for all I ∈ B,

lim
n→∞

i(I)

in
≥ cPa(I) a.s. (5.23)
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If F (x; θ) is strictly increasing throughout X for every θ ∈ Θ, FG(x) is strictly

increasing throughout X as well. In this situation we can use FG(x) to substitute

for Fa(x). Using FG(x) instead of the vague Fa(x) to guide the selection of fitting

intervals simplifies the selection and makes it data-oriented. For example, set in =

n, and ani = xi, i = 1, . . . , n. Then we have limn→∞ i(I)/n = PG(I) a.s., thus

satisfying Condition 5.14, where c is a value satisfying 0 < c ≤ 1.

5.4.2 Approximation with probability measures

P (I) denotes the value of a probability measure P over I ∈ B. Further, let P (In)

denote the vector of the values of the probability measure over the set of fitting

intervals. Our task is to find an estimator Gn ∈ Gn (defined in Condition 5.4) of the

mixing distribution CDF which minimizes

Sn(Gn) = d(PGn
(In), Pn(In)). (5.24)

The proof of the following theorem follows that of Theorem 5.1. The difference is

that here we deal with probability measure and the set of fitting intervals of (pos-

sibly) finite length as defined by Conditions 5.11–5.14, while Theorem 5.1 tackles

CDFs, which use intervals all starting from −∞.

Theorem 5.3 Under Conditions 5.1–5.6 and 5.10–5.14, limn→∞Gn →w G a.s.

The proof of this theorem needs two lemmas.

Lemma 2 Under Condition 5.1 and 5.11, if ||FH −FG||∞ 6= 0 for H,G ∈ G, there

exists a point x0 such that PH(l(x0), x0) 6= PG(l(x0), x0).

Proof of Lemma 2. Assume PH(l(x), x) = PG(l(x), x) for every x ∈ X . FH(x) =
∑∞

k=1 PH(lk(x), lk−1(x)) and FG(x) =
∑∞

k=1 PG(lk(x), lk−1(x)) for every x ∈ X
(note that since FH and FG are continuous, the probability measure over a countable
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set of singletons is zero). Thus FH(x) = FG(x) for all x ∈ X . This contradicts

||FH − FG||∞ 6= 0, thus completing the proof. �

Lemma 3 If there is a point x0 ∈ X such that PH(l(x0), x0) 6= PG(l(x0), x0) for

H,G ∈ G, then given conditions 5.1, 5.5, 5.10-5.14, limn→∞ Sn(H) 6= 0 a.s.

Proof of Lemma 3. Since FH(x) and FG(x) are both continuous, PH(l(x), x) and

PG(l(x), x) are continuous functions of x. There must be an interval I of nonzero

length near x0 such that for every point x ∈ I , PH(l(x), x) − PG(l(x), x) 6= 0.

According to the requirement for Pa(x), we can assume Pa(I) = εP > 0. By Con-

ditions 5.12 and 5.14, no fewer than incεP points are chosen as the right endpoints

of fitting intervals from I a.s. as n→ ∞. Since

||PH(In) − Pn(In)||∞ ≥ ||PH(In) − PG(In)||∞ − ||PG(In) − Pn(In)||∞ (5.25)

and limn→∞ ||PG(In)−Pn(In)||∞ = 0, we have limn→∞ ||PH(In)− Pn(In)||∞ ≥
limn→∞ ||PH(In)−PG(In)||∞ > 0 a.s. Also, limn→∞

1
in
||PH(In)−Pn(In)||1 > 0

a.s. as n→ ∞. This implies limn→∞ Sn(H) 6= 0 a.s. by Condition 5.5. �

Proof of Theorem 5.3. The proof of the theorem consists of three steps.

(1). limn→∞ Sn(Gn) = 0 a.s.

Following the first step in the proof of Theorem 5.1, we obtain limn→∞ ||FGw
n
−

Fn||∞ = 0 a.s. Immediately, limn→∞ ||PGw
n
− Pn||∞ = 0 a.s. for all Borel sets

on X . Since Sn(Gw
n ) ≤ h(||PGw

n
(In) − Pn(In)||∞) ≤ h(||PGw

n
− Pn||∞), this

means that limn→∞ Sn(Gw
n ) = 0 a.s. by Condition 5.6. Because the estimator Gn is

obtained by a minimization procedure of Sn(·), for every n ≥ 1

Sn(Gn) ≤ Sn(Gw
n ). (5.26)

Hence limn→∞ Sn(Gn) = 0 a.s.

(2). limn→∞ ||FGn
− FG||∞ = 0 a.s.
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LetH be an arbitrary element in the set {Gn;n→ ∞ : limn→∞ ||FGn
−FG||∞ 6= 0},

i.e. ||FH − FG||∞ 6= 0. According to Lemmas 2 and 3, limn→∞ Sn(H) 6= 0

a.s. Therefore, due to the arbitrariness of H , the continuity of FH , and step (1),

||FGn
− FG||∞ → 0 a.s., as n→ ∞.

(3). Gn →w G a.s.

The proof is the same as the third step in the proof of Theorem 5.1. �

In Subsection 5.4.1, each fitting interval Ii is uniquely determined by the right end-

point ani—the left endpoint is given by a function l(ani). If we instead determine

each fitting interval in the reverse order—i.e., given the left endpoint, compute the

right endpoint—the following theorem is obtained. The function l(x) for comput-

ing the right endpoint can be defined analogously to Subsection 5.4.1. The proof is

similar and omitted.

Theorem 5.4 Let Gn be the estimator described in the last paragraph. Then under

the same conditions as in Theorem 5.3, limn→∞Gn →w G a.s.

Further, let the ratio between the number of intervals in a subset of the set of fitting

intervals and in be greater than a positive constant as n → ∞, and the intervals in

this subset are either all in the form (l(ani), ani) or all in the form (ani, l(ani)) and

satisfy Conditions 5.13 and 5.14. We have the following theorem, whose proof is

similar and omitted too.

Theorem 5.5 Let Gn be the estimator described in the last paragraph. Then under

the same conditions as in Theorem 5.3, limn→∞Gn →w G a.s.

Theorem 5.5 provides flexibility for practical applications with finite samples. This

issue will be discussed in Subsection 5.4.4.

In fact, Fa(x) can always be replaced with FG(x) in Condition 5.9 for establishing

the theorems in this subsection, even if F (x; θ) is not strictly increasing throughout
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X . This is because the normalization constraint of the estimator Gn ensures that

FH in Lemma 3 is a distribution function on X , thus FH(−∞) = FG(−∞) = 0

and FH(∞) = FG(∞) = 1. This implies that if at any point x0, FH(x0) 6= FG(x0),

there must exist an interval I near x0, satisfying PG(I) 6= 0, such that FH(x) −
FG(x) 6= 0, ∀x ∈ I , which can be used to establish Lemma 3.

We will see that the estimator investigated in the next subsection could not always

replace Fa(x) with FG(x).

Barbe (1998) investigated the properties of mixing distribution estimators, obtained

by approximating the empirical probability measure with the estimated probabil-

ity measure. He established theoretical results based on certain properties of the

estimator. However, he did not develop an operational estimation scheme. The es-

timators discussed in this subsection also form a wider class than the one he used.

For example, Pn may not be a probability measure.

5.4.3 Approximation with nonnegative measures

In the last subsection, we discussed the approximation of empirical measures with

estimated probability measures. Now we consider throwing away the normalization

constraint. As in (5.19), G′
n is a discrete function with nonnegative mass at support

points. Let G′
n(θ) =

∑jn

j=1w
′
njδ(−∞,θnj ](θ) with every w′

nj ≥ 0. The mixture

function becomes

FG′

n
(x) =

∫
F (x; θ) dG′

n(θ) =

jn∑

j=1

w′
njF (x; θnj). (5.27)

Note that the wnj’s are not assumed to sum to one, hence neither G′
n nor FG′

n
are

CDFs. Accordingly, the corresponding nonnegative measure is not a probability

measure. Denote this measure by PG′

n
(I) for any I ∈ B. The estimator G′

n is the

one that minimizes

Sn(G′
n) = d(PG′

n
(In), Pn(In)). (5.28)
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Of course, G′
n can be normalized afterwards.

We will establish strong consistency ofG′
n. Based on the work in the last subsection,

the result is almost straightforward. We need to use the general meaning of weak

convergence for functions, instead of CDFs. In Condition 5.2, G is changed to G ′,

the class of finite, nonnegative, nondecreasing functions defined on X such that

G′(−∞) = 0 for every G′ ∈ G ′. Also, in Condition 5.4, Gn is replaced with G ′
n.

The identifiability is now about general functions. In fact, we have

Lemma 4 The identifiability of mixture FG where G ∈ G implies the identifiability

of mixture FG′ where G′ ∈ G ′.

Proof. Assume FG′ = FH′ , where G′, H ′ ∈ G ′. Then FG′(∞) = FH′(∞),

i.e.,
∫
Θ
G′ dθ =

∫
Θ
H ′ dθ. Let G = G′/

∫
Θ
G′ dθ and H = H ′/

∫
Θ
H ′ dθ. Hence

FG = FH . Since both G and H are CDFs on Θ, G = H , or equivalently, G′ = H ′,

thus completing the proof. �

Also, we need a lemma which is similar to Theorem 2 in Robbins (1964).

Lemma 5 Under Conditions 5.1-5.3 with changes described in the paragraph be-

fore Lemma 4, if limn→∞ ||FG′

n
− FG||∞ = 0 a.s., then G′

n →w G a.s.

The proof is intactly the same as that of Theorem 2 in Robbins (1964) and thus

omitted.

Lemma 6 Let Gn be a CDF obtained by normalizing G′
n and limn→∞G′

n →w G

a.s. where G ∈ G. Then limn→∞Gn →w G a.s.

Let G′
n be the solution obtained by minimizing Sn(G′

n) in (5.28). We have

Theorem 5.6 Under similar conditions with changes mentioned above, the conclu-

sions of Theorems 5.3-5.5 remain true if Gn is replaced with G′
n (or the estimator

obtained by normalizing G′
n).
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The proof of Theorem 5.6 follows exactly that of Theorem 5.3. For step 3, Lemma 5

should be used instead.

It was shown in the last subsection that FG(x) can always be replaced with Fa(x)

in Condition 5.9 to establish strong consistency for Gn obtained from (5.18). This

is, however, not so for G′
n obtained from (5.19). For example, if F (x; θ) is bounded

on X (e.g., uniform distribution), then FG(x) may have intervals with zero PG-

measure. Mixing distributions, with or without components bounded within zero

PG-measure intervals, have the same Sn(·) value as n→ ∞.

5.4.4 Considerations for finite samples

From the previous subsections, it becomes clear that there is a large class of strongly

consistent estimators. The behavior of these estimators, however, differs radically

in the finite sample situation. In the discussion of a few finite sample issues that fol-

lows, we will see that, without careful design, some estimators can perform badly.

We take an algorithmic viewpoint and ensure that the estimation is workable, fast

and accurate in practice. The conditions carefully defined in Subsections 5.3.1 and

5.4.1 provide such flexibility and adaptability.

Of all minimum distance estimators proposed so far, only the nonnegative-measure-

based one is able to solve the minority cluster problem (see Section 5.5), in the

sense that it can always reliably detect small clusters when their locations are far

away from dominant data points. The experiments conducted in Sections 5.5 and

5.6 also seem to suggest that these estimators are generally more accurate and stable

than other minimum distance estimators. We focus on the NNM-based estimator.

The conditions in Subsection 5.3.1 show that, without losing strong consistency,

the set of support points and the set of fitting intervals can be determined without

taking the data points into account. Nevertheless, unless sufficient prior knowl-

edge is provided about the support points and the distribution of data points, such

an independent procedure is unlikely to provide satisfactory results. An algorithm
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that determines the two sets before seeing the data would not work for many gen-

eral cases, because the underlying mixing distribution changes from application to

application. The sample needs to be considered when determining the two sets.

The support points could be suggested by the sample and the component distribu-

tion. As mentioned earlier, each data point could generate a support point using

the unicomponent maximum likelihood estimator. For example, for the mixture of

normal distributions where the mean is the mixing parameter, data points can be

directly taken as support points.

Each data point can be taken as an endpoint of a fitting interval, while the function

l(x) can be decided based on the component distribution. In the above example of

a mixture of normal distributions, we can set, say, l(x) = x− 3σ. Note that fitting

intervals should not be chosen so large that data points may exert an influence on

the approximation at a remote place, or so small that the empirical (probability)

measures are not accurate enough.

The number of support points and the number of fitting intervals can be adjusted ac-

cording to Conditions 5.4, 5.12–5.14. For example, when there are few data points,

more support points and fitting intervals can be used to get a more accurate estimate

within a tolerable computational cost; when there are a large number of data points

in a small region, fewer support points and fitting intervals can be used, which sub-

stantially decreases computational cost while keeping the estimate accurate.

Basing the estimate on solving (5.19) has computational advantages in some cases.

The solution of an equation like the following,


 A′

G′

n
0

0 A′′
G′

n





 w′

n

w′′
n


 ≈


 p′

n

p′′
n


 , (5.29)

subject to w′
n ≥ 0 and w′′

n ≥ 0, is the same as combining the solutions of two

subequations A′
G′

n
w′

n ≈ p′
n subject to w′

n ≥ 0, and A′′
G′

n
w′′

n ≈ p′′
n subject to

w′′
n ≥ 0. Each sub-equation can be further partitioned. This implies that clusters

separating from one another can be estimated separately. Further, normalizing the
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separated clusters’ weight vectors before recombining them can produce a better

estimate. The computational burden decreases significantly as the extent of sepa-

ration increases. The best case is that each data point is isolated from every other

one, suggesting that each point represents a cluster comprising a single point. In

this case, the computational complexity is only linear.

We wish to preserve strong consistency, and determine the support points and fitting

intervals from the data. Under our conditions, however, an extra CDF Fa(x), which

should be strictly increasing, is needed to determine fitting intervals. It can be re-

placed with FG(x) when F (x; θ) is strictly increasing, making it data-oriented. But

when F (x; θ) is not strictly increasing, FG(x) cannot substitute for Fa(x). Since the

selection of fitting intervals should better make use of the sample, this is a dilemma.

However, according to Theorem 5.5 (and its counterpart for G′
n, Theorem 5.6),

Fa(x) could be a CDF used to determine only part of all fitting intervals, no matter

how small the ratio is. This gives complete flexibility for almost anything we want

to do in the finite sample situation. The only problem is that if PG(x) is used as the

selection guide for fitting intervals, unwanted components may appear at locations

where no data points are nearby. This can be overcome by providing enough fitting

intervals at locations that may produce components. This, in turn, suggests that

support points should avoid locations where there are no data points around. Also,

this reduces the number of fitting intervals and hence computational cost.

In fact, for finite samples, using the strictly increasing PG(x) as the selection guide

for fitting intervals suffers from the problem described in the last paragraph. Almost

all distributions have dominant parts and dwindle quickly away from the dominant

parts, hence they are effectively bounded in finite sample situations. Therefore the

strategy discussed in the last paragraph for bounded distributions should be used

for all distributions—i.e., the determination of fitting intervals needs to take support

points into account, so that all regions within these support points’ sphere of in-

fluence are covered by a large enough number of fitting intervals. The information

about the support points’ sphere of influence is available from the component distri-

bution and the number of data points. For regions on which support points have tiny
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influence in terms of probability value, it is not necessary to provide fitting intervals

there, because the equation


 AG′

n

0


wn ≈


 pn

0


 (5.30)

has the same solution as AG′

n
wn ≈ pn.

Finally, in terms of distance measures, not all of those determined by Conditions 5.5

and 5.6 can provide straightforward algebraic solutions to (5.18) and (5.19). The

chosen distance measure determines the type of the mathematical programming

problem. If a quadratic distance measure is chosen, a least squares solution un-

der constraints will be pursued. This approach can be viewed as an extension of

Choi and Bulgren (1968) from CDF-based to measure-based. Elegant and efficient

methods LSE and NNLS provided in Lawson and Hanson (1974, 1995) can be em-

ployed. If the sup-norm distance measure is used, solutions can be found by the

efficient simplex method in linear programming. This approach can be viewed as

an extension of Deely and Kruse (1968).

5.5 The minority cluster problem

This section discusses the minority cluster problem, and illustrates it with simple

experiments. The minimum distance approach based on nonnegative measures pro-

vides a solution, while other minimum distance ones fail. This problem is vital for

pace regression, since ignoring even one isolated data point in the estimated mix-

ing distribution can cause unbounded loss. The discussion below is intended to be

intuitive and practical.
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5.5.1 The problem

Although they perform well asymptotically, the minimum distance methods de-

scribed above suffer from the finite-sample problem discussed earlier: they can

neglect small groups of outlying data points no matter how far they lie from the

dominant data points. The underlying reason is that the objective function to be

minimized is defined globally rather than locally. A global approach means that

the value of the estimated probability density function at a particular place will be

influenced by all data points, no matter how far away they are. This can cause small

groups of data points to be ignored even if they are a long way from the dominant

part of the data sample. From a probabilistic point of view, however, there is no

reason to subsume distant groups within the major clusters just because they are

relatively small.

The ultimate effect of suppressing distant minority clusters depends on how the

clustering is applied. If the application’s loss function depends on the distance be-

tween clusters, the result may prove disastrous because there is no limit to how far

away these outlying groups may be. One might argue that small groups of points

can easily be explained away as outliers, because the effect will become less im-

portant as the number of data points increases—and it will disappear in the limit

of infinite data. However, in a finite-data situation—and all practical applications

necessarily involve finite data—the “outliers” may equally well represent small mi-

nority clusters. Furthermore, outlying data points are not really treated as outliers

by these methods—whether or not they are discarded is merely an artifact of the

global fitting calculation. When clustering, the final mixture distribution should

take all data points into account—including outlying clusters if any exist. If practi-

cal applications demand that small outlying clusters are suppressed, this should be

done in a separate stage.

In distance-based clustering, each data point has a far-reaching effect because of

two global constraints. One is the use of the cumulative distribution function; the

other is the normalization constraint
∑kn

j=1wnj = 1. These constraints may sacrifice
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a small number of data points—at any distance—for a better overall fit to the data

as a whole. Choi and Bulgren (1968), the Cramer-von Mises statistic (Macdonald,

1971), and Deely and Kruse (1968) all enforce both the CDF and the normalization

constraints. Blum and Susarla (1977) drop the CDF, but still enforce the normaliza-

tion constraint. The result is that these clustering methods are only appropriate for

finite mixtures without small clusters, where the risk of suppressing clusters is low.

Here we address the general problem for arbitrary mixtures. Of course, the minority

cluster problem exists for all types of mixture—including finite mixtures.

5.5.2 The solution

Now that the source of the problem has been identified, the solution is clear, at least

in principle: drop both the approximation of CDFs, as Blum and Susarla (1977)

do, and the normalization constraint—no matter how seductive it may seem. This

consideration leads to the nonnegative-measure-based approach described in Sub-

section 5.4.3.

To define the estimation procedure fully, we need to determine (a) the set of support

points, (b) the set of fitting intervals, (c) the empirical measure, and (d) the dis-

tance measure. Theoretical analysis in the previous sections guarantees a strongly

consistent estimator: here we discuss these in an intuitive manner.

Support points. The support points are usually suggested by the data points in the

sample. For example, if the component distribution F (x; θ) is the normal distribu-

tion with mean θ and unit variance, each data point can be taken as a support point.

In fact, the support points are more accurately described as potential support points,

because their associated weights may become zero after solving (5.19)—and, in

practice, many often do.

Fitting intervals. The fitting intervals are also suggested by the data points. In

the normal distribution example with known standard deviation σ, each data point

xi can provide one interval, such as [xi − 3σ, xi], or two, such as [xi − 3σ, xi] and
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[xi, xi + 3σ], or more. There is no problem if the fitting intervals overlap. Their

length should not be so large that points can exert an influence on the clustering at

an unduly remote place, nor so small that the empirical measure is inaccurate. The

experiments reported below use intervals of a few standard deviations around each

data point, and, as we will see, this works well.

Empirical measure. The empirical measure can be the probability measure de-

termined by the Kolmogorov empirical CDF, or any measure that converges to it.

The fitting intervals discussed above can be open, closed, or semi-open. This will

affect the empirical measure if data points are used as interval boundaries, although

it does not change the values of the estimated measure because the corresponding

distribution is continuous. In small-sample situations, bias can be reduced by care-

ful attention to this detail—as Macdonald (1971) discusses with respect to Choi and

Bulgren’s (1968) method.

Distance measure. The choice of distance measure determines what kind of math-

ematical programming problem must be solved. For example, a quadratic distance

will give rise to a least squares problem under linear constraints, whereas the sup-

norm gives rise to a linear programming problem that can be solved using the sim-

plex method. These two measures have efficient solutions that are globally optimal.

5.5.3 Experimental illustration

Experiments are conducted in the following to illustrate the failure of existing min-

imum distance methods to detect small outlying clusters, and the improvement

achieved by the new scheme. The results also suggest that the new method is more

accurate and stable than the others.

When comparing clustering methods, it is not always easy to evaluate the clusters

obtained. To finesse this problem we consider simple artificial situations in which

the proper outcome is clear. Some practical applications of clusters do provide

objective evaluation functions—for example, in our setting of empirical modeling
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(see Section 5.6).

The methods used are Choi and Bulgren (1968) (denoted CHOI), MacDonald’s ap-

plication of the Cramér-von Mises statistic (CRAMÉR), the method with the prob-

ability measure (PM), and the method with the nonnegative measure (NNM). In

each case, equations involving non-negativity and/or linear equality constraints are

solved as quadratic programming problems using the elegant and efficient proce-

dures NNLS and LSEI provided by Lawson and Hanson (1974, 1995). All four

methods have the same computational time complexity.

Experiment 5.1 Reliability of clustering algorithms. We set the sample size n

to 100 throughout the experiments. The data points are artificially generated from a

mixture of two clusters: n1 points from N(0, 1) and n2 points from N(100, 1). The

values of n1 and n2 are in the ratios 99 : 1, 97 : 3, 93 : 7, 80 : 20 and 50 : 50.

Every data point is taken as a potential support point in all four methods: thus the

number of potential components in the clustering is 100. For PM and NNM, fitting

intervals need to be determined. In the experiments, each data point xi provides two

fitting intervals, [xi − 3, xi] and [xi, xi +3]. Any data point located on the boundary

of an interval is counted as half a point when determining the empirical measure

over that interval.

These choices are admittedly crude, and further improvements in the accuracy and

speed of PM and NNM are possible that take advantage of the flexibility provided by

(5.18) and (5.19). For example, accuracy will likely increase with more—and more

carefully chosen—support points and fitting intervals. The fact that it performs

well even with crudely chosen support points and fitting intervals testifies to the

robustness of the method.

Our primary interest in this experiment is the weights of the clusters that are found.

To cast the results in terms of the underlying models, we use the cluster weights to

estimate values for n1 and n2. Of course, the results often do not contain exactly two

clusters—but because the underlying cluster centers, 0 and 100, are well separated
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compared to their standard deviation of 1, it is highly unlikely that any data points

from one cluster will fall anywhere near the other. Thus we use a threshold of 50

to divide the clusters into two groups: those near 0 and those near 100. The final

cluster weights are normalized, and the weights for the first group are summed to

obtain an estimate n̂1 of n1, while those for the second group are summed to give

an estimate n̂2 of n2.

n1 = 99 n1 = 97 n1 = 93 n1 = 80 n1 = 50
n2 = 1 n2 = 3 n2 = 7 n2 = 20 n2 = 50

CHOI Failures 86 42 4 0 0
n̂1/n̂2 99.9/0.1 99.2/0.8 95.8/4.2 82.0/18.0 50.6/49.4
SD(n̂1) 0.36 0.98 1.71 1.77 1.30

CRAMÉR Failures 80 31 1 0 0
n̂1/n̂2 99.8/0.2 98.6/1.4 95.1/4.9 81.6/18.4 49.7/50.3
SD(n̂1) 0.50 1.13 1.89 1.80 1.31

PM Failures 52 5 0 0 0
n̂1/n̂2 99.8/0.2 98.2/1.8 94.1/5.9 80.8/19.2 50.1/49.9
SD(n̂1) 0.32 0.83 0.87 0.78 0.55

NNM Failures 0 0 0 0 0
n̂1/n̂2 99.0/1.0 96.9/3.1 92.8/7.2 79.9/20.1 50.1/49.9
SD(n̂1) 0.01 0.16 0.19 0.34 0.41

Table 5.1: Experimental results for detecting small clusters

Table 5.1 shows results for each of the four methods. Each cell represents one

hundred separate experimental runs. Three figures are recorded. At the top is the

number of times the method failed to detect the smaller cluster, that is, the number

of times n̂2 = 0. In the middle are the average values for n̂1 and n̂2. At the bottom

is the standard deviation of n̂1 and n̂2 (which are equal). These three figures can be

thought of as measures of reliability, accuracy and stability respectively.

The top figures in Table 5.1 show clearly that only NNM is always reliable in the

sense that it never fails to detect the smaller cluster. The other methods fail mostly

when n2 = 1; their failure rate gradually decreases as n2 grows. The center figures

show that, under all conditions, NNM gives a more accurate estimate of the correct

values of n1 and n2 than the other methods. As expected, CRAMÉR shows a notice-

able improvement over CHOI, but it is very minor. The PM method has lower failure

rates and produces estimates that are more accurate and far more stable (indicated
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by the bottom figures) than those for CHOI and CRAMÉR—presumably because it is

less constrained. Of the four methods, NNM is clearly and consistently the winner

in terms of all three measures: reliability, accuracy and stability.

The results of the NNM method can be further improved. If the decomposed form

(5.29) is used instead of (5.19), and the solutions of the sub-equations are normal-

ized before combining them—which is feasible because the two underlying clusters

are so distant from each other—the correct values are obtained for n̂1 and n̂2 in

virtually every trial.

5.6 Simulation studies of accuracy

In this section, we study the predictive accuracy of clustering procedures through

simulations. Since the component distribution has a limited sphere of influence in

finite sample situations, data points should have little effect on the estimation of the

probability density function at far away points. Because NNM uses local fitting, it

may also have some advantage in accuracy over procedures that adopt global fitting,

even in the case of overlapping clusters. We describe the results of two experiments.

Unlike supervised learning, there seems to be no widely accepted criterion for eval-

uating clustering results (Hartigan, 1996). However, for the special case of estimat-

ing a mixing distribution, it is reasonable to employ the quadratic loss function (2.6)

used in empirical Bayes or, equivalently, the loss function (3.4) in pace regression

(when the variance is a known constant), and this is what we adopt. More details

concerning their use are given later.

Experiment 5.2 investigates a mixture of normal distributions with the mean as

the mixing parameter. The underlying mixing distribution is normal as well—

information that is not used by the clustering procedures we tested. This type of

mixture has many practical applications in empirical Bayes analysis, as well as in

Bayesian analysis; see, for example, Berger (1985), Maritz and Lwin (1989), and

Carlin and Louis (1996). The second experiment considers a mixture of noncentral
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χ2
1 distributions with the noncentrality parameter as the mixing one. The underlying

mixing distribution follows Breiman (1995), where he uses it for subset selection.

This experiment closely relates to pace regression.

Unlike Experiment 5.1, data points in Experiment 5.2 and 5.3 are mixed so closely

that there is no clear grouping. Therefore, reliability is not a concern for them. It is

worth mentioning, however, that ignoring even one isolated point in other situations,

as in Experiment 5.1, may dramatically increase the loss.

Experiment 5.2 Accuracy of clustering procedures for mixtures of normal distri-

butions. We consider the mixture distribution

xi|µi ∼ N(µi, 1)

µi ∼ N(0, σ2
µ),

where i = 1, 2, . . . , 100. The simulation results given in Table 5.2 are losses av-

eraged over twenty runs. For each run, 100 data points are generated from the

mixture distribution. Given these data points, the mixing distribution is estimated

by the four procedures CHOI, CRAMÉR, PM and NNM, and then each xi is updated to

be xEB
i using (2.8). The overall loss for all updated estimates is calculated by (2.6),

i.e.,
∑100

i=1 ||xEB
i − µi||2.

Eleven cases with different values of σ2
µ are studied. Generally, as σ2

µ increases,

the prediction losses increase. This is due to the decreasing number of neighboring

points to support updating; see also Section 4.2. For almost every case, PM and NNM

perform similarly, both outperforming CHOI and CRAMÉR with a clear margin.

Experiment 5.3 Accuracy of clustering procedures for mixtures of χ2
1 distributions.

In this experiment, we consider a mixture of noncentral χ2
1 distributions using the

noncentrality parameter as the mixing one, i.e., the mixture (3.19) or (3.22). The

underlying mixing distribution is a modified version of a design by Breiman (1995);

see also Experiment 6.6. Since this experiment relates to linear regression, we adopt

the notation used for pace regression in Chapter 3.
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σ2
µ CHOI CRAMÉR PM NNM

0 4.00 3.93 3.27 3.95
1 59.2 59.1 57.4 57.8
2 75.6 75.5 73.4 73.8
3 86.2 86.2 84.2 84.2
4 89.1 88.8 87.0 87.0
5 96.5 96.5 93.6 93.5
6 100.0 100.0 97.7 97.8
7 100.4 100.5 97.8 97.8
8 102.3 101.9 100.3 100.3
9 104.9 104.8 102.1 102.1

10 104.9 104.8 102.0 102.0

Table 5.2: Experiment 5.2. Average loss of clustering procedures over mixtures of
normal distributions.

Breiman considers two clustering situations in terms of the βj (j = 1, . . . , k) values.

One, with k = 20, has two clusters around 5 and 15 and a cluster at zero. The other,

with k = 40, has three clusters around 10, 20 and 30 and a cluster at zero. We

determine βj in the same way as Breiman. Then we set a∗j = αβj and A∗
j = a∗j

2,

where α is always 1
3

for both cases. The value of α is so chosen that the clusters are

neither too far away from nor too close to each other.

The sample of the mixture distribution is the set {Aj}, where eachAj = a2
j and aj ∼

N(a∗j , 1). Each clustering procedure is applied to the given sample, A1, A2, . . . , Ak,

to produce an estimated mixing distribution Gk(A
∗). Then each Aj is updated by

PACE6 to obtain Ãj . The loss function (3.4) in pace regression, that is the quadratic

loss function (2.6), is used to obtain the true prediction loss for each estimate.

The signs of ãj and a∗j are taken into account when calculating the loss, where

a∗j is always positive and ãj has the same sign as aj. Therefore, the overall loss is
∑k

j=1 ||ãj − a∗j ||2.

The simulation results are given in Table 5.3, each figure being an average over 100

runs. The variable rc (same as used by Breiman) is the radius of each cluster in

the true mixing distribution, i.e., larger rc implies more data points in each clus-

ter. It can be observed from these results that NNM (and probably PM as well) is

always a safe method to apply. For small rc, both CHOI and CRAMÉR produce less
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rc CHOI CRAMÉR PM NNM

k = 20
1 15.9 14.1 9.4 11.1
2 13.3 13.1 13.2 13.0
3 15.3 15.7 16.1 16.1
4 17.5 18.0 18.5 18.5
5 19.6 19.9 20.5 20.4

k = 40
1 55.0 48.8 17.4 17.4
2 29.7 29.9 26.5 26.7
3 32.3 32.5 33.9 33.8
4 36.7 37.0 38.4 38.4
5 40.7 40.8 41.4 41.4

Table 5.3: Experiment 5.3. Average losses of clustering procedures over mixtures
of χ2

1 distributions.

accurate or sometimes very bad results—note that in this experiment data points

are not easily separable. For large rc, however, CHOI and CRAMÉR do seem to

produce slightly more accurate results than the other two. This suggests that CHOI

and CRAMÉR may have a small advantage in predictive accuracy when clustering

is within a relatively small area and there are no small clusters in this area. This

slightly better performance is probably due to CHOI and CRAMÉR’s use of larger

intervals, when there is no risk of suppressing small amounts of data points.

5.7 Summary

The idea exploited in this chapter is simple: a new minimum distance method which

is able to reliably detect small groups of data points, including isolated ones. Re-

liable detection in this case is important in empirical modeling. Existing minimum

distance methods do not cope well with this situation.

The maximum likelihood approach does not seem to suffer from this problem. Nev-

ertheless, it often consumes more computational cost than the minimum distance

one. For many applications, fast estimation is important. When pace regression is
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embedded in a more sophisticated estimation task, it may be necessary to repeatedly

fit linear models.

The predictive accuracy of minimum distance estimators is also empirically inves-

tigated in Section 5.6 for situations with overlapping clusters. Although further

investigation is needed, NNM seems generally preferable.

Despite the simplicity of the underlying idea, most of this chapter is devoted to a

theoretical aspect of new estimators—strong consistency. This is a necessary condi-

tion for establishing asymptotic properties of pace regression, and gives a guarantee

for large sample behaviour.
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Chapter 6

Simulation studies

6.1 Introduction

It is time for some experimental results to illustrate the idea of pace regression and

give some indication how it performs in practice. The results are very much in

accordance with the theoretical analysis in Chapter 3. In addition, they illustrate

some effects that have been discussed in previous chapters.

We will test AIC, BIC, RIC, CIC (in the form (2.5)), PACE2, PACE4, and PACE6. The

OLS full model and the null model—which are actually generated by procedures

OLS (being OLSC(0)) and OLSC(∞)—are included for comparison. Procedures

PACE1, PACE3, and PACE5 are not included because they involve numerical solution

and can be approximated by PACE2, PACE4, and PACE6, respectively.

Two shrinkage methods, NN-GAROTTE and LASSO,1 are used in Experiments 6.1,

6.2 and 6.7. Because the choice of shrinkage parameter in each case is some-

what controversial, we use the best estimate for this parameter obtained by data

resampling—more precisely, five-fold cross-validation over an equally-spaced grid

of twenty-one discrete values for the shrinkage ratio. This choice is computation-

ally intensive, which is why results from these methods are not included in all ex-

periments. The Stein estimation version of LASSO (Tibshirani, 1996) is used in
1The procedure LASSO is downloaded from StatLib (http://lib.stat.cmu.edu/S/) and

NN-GAROTTE from Breiman’s ftp site at UCB (ftp://ftp.stat.berkeley.edu/pub/users/breiman).
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Experiments 6.1 and 6.2, due to the heavy time consumption of the cross-validation

version.2 It is acknowledged that in these two experiments the cross-validation ver-

sion may yield better results, as suggested in Experiment 6.7.

We use the partial-F test and backward elimination of variables to set up the or-

thogonalization, and employ the unbiased σ̂2 estimate of the OLS full model. The

non-central χ2 distribution is used instead of the F -distribution for computational

reasons. To estimate the mixing distributionG(A∗), we adopt the minimum distance

procedure based on nonnegative measure (NNM) given (5.19) or equivalently (5.28)

in Chapter 5, along with the quadratic programming algorithm NNLS provided by

Lawson and Hanson (1974, 1995). Support points are the set {Âj} plus zero (if

there is any Âj near zero), except that points lying in the gap between zero and

three are discarded in order to simplify the model. This gap helps selection crite-

ria PACE2 and PACE4 to properly eliminate dimensions in situations with redundant

variables, because when the h-function’s sign near the origin is negative—which

is crucial for both to eliminate redundant dimensions—it could be incorrectly esti-

mated to be positive (note that h(0+;A∗) > 0 when A∗ ≥ 0.5)). This choice is,

of course, slightly biased towards situations with redundant variables, but does not

sacrifice much prediction accuracy in any situation, and thus can be considered as

an application of the simplicity principle (Section 1.2). For PACE6, Ãj’s smaller

than 0.5 are discarded to simplify the model as well (see also Section 4.5). These

are rough and ready decisions, taken for practical expediency. For more detail, refer

to the source code of the S-PLUS implementation in the Appendix.

Recalling the modeling principles that we discussed in Section 1.2, our interests

focus mainly on predictive accuracy, and the estimated model complexities appear

as a natural by-product.

Both artificial and practical datasets are included in our experiments. One main

advantage of using artificial datasets is that the experiments are completely under

control. Since the true model is known, the prediction errors can be obtained ac-
2In our simulations, NN-GAROTTE takes about two weeks on our computer to obtain the results

for Experiments 6.1 and 6.2, while LASSOCV appears to be several times slower.
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curately and the estimated model complexity can be compared with the true one.

Furthermore, we can design experiments that cover any situations of interest.

Section 6.2 considers artificial datasets that contain only statistically independent

variables. Hence the column vectors of the design matrix form a nearly, yet not

completely, orthogonal basis.

Section 6.3 investigates two more realistic situations using artificial datasets. In one,

studied by Miller (1990), the effects of variables are geometrically distributed. The

other considers clusters of coefficients, following the experiment of Breiman (1995).

As any modeling procedures should finally be applied to solve real problems, Sec-

tion 6.4 extends the investigation to real world datasets. Twelve practical datasets

are used to compare the modeling procedures using cross-validation.

6.2 Artificial datasets: An illustration

To illustrate the ideas of pace regression, in this section we give three experimen-

tal examples that compare pace regression with other procedures in terms of both

prediction accuracy and model complexity, using artificial datasets with statistically

independent variables. In the first, contributive variables have small effects; in the

second they have large effects. The third example tests the influence of the number

of candidate variables on pace regression. Results are given in the form of both

tables and graphs.

Experiment 6.1 Variables with small effects. The underlying model is y = b0 +
∑k

j=1 bjxj + N(0, σ2), where b0 = 0, xj ∼ N(0, 1), Cov(xi, xj) = 0 for i 6= j,

and σ2 = 200. Each parameter bj is either 1 or 0, depending on whether it has an

effect or is redundant. For each sample, n = 1000 and k = 100 (excluding b0 which

is always included in the model). The number of non-redundant variables k∗ is set

to 0, 10, 20, . . . , 100. For each value, the result is the average of twenty runs over

twenty independent training samples, tested on a large independent set. This test
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k∗ 0 10 20 30 40 50 60 70 80 90 100
Dim

NN-GAR. 0.6 12.8 27.2 40.9 50.5 64.7 75.2 87.6 96.7 98.5 99.6
LASSOStein 47.4 47.2 51.0 56.0 60.0 64.2 67.6 72.8 77.4 78.6 81.5
AIC 14.8 21.4 28.1 34.5 40.6 46.9 53.4 59.9 65.2 71.2 77.6
BIC 1.1 4.2 7.4 11.1 14.5 16.7 20.1 22.9 26.6 30.1 32.5
RIC 0.2 1.6 3.7 6.0 7.9 10.4 12.2 14.6 17.9 19.6 21.8
CIC 0.0 0.2 1.3 2.6 28.4 72.0 100 100 100 100 100
PACE2 0.0 4.6 18.6 37.8 59.6 84.0 95.7 99.4 100 100 100
PACE4 0.0 4.6 18.8 37.9 59.6 84.2 95.8 99.4 100 100 100
PACE6 0.6 8.9 22.1 34.0 47.6 62.0 72.8 87.2 94.5 99.1 100

PE
NN-GAR. 0.4 7.3 11.3 14.4 17.6 20.1 21.9 23.0 23.1 23.0 22.9
LASSOStein 5.69 7.46 10.1 12.5 15.7 18.9 22.6 25.6 29.0 35.8 42.6
full 21.6 21.6 21.6 21.6 21.6 21.6 21.6 21.6 21.6 21.6 21.6
AIC 11.2 13.1 15.6 18.2 20.9 23.8 26.4 28.8 31.1 33.5 35.7
BIC 1.7 9.1 16.9 24.5 31.8 41.0 49.4 57.3 65.6 73.3 82.1
RIC 0.5 9.3 18.2 27.5 36.6 45.6 55.4 64.6 72.6 83.5 92.5
CIC 0.0 10.1 19.7 29.3 33.9 29.3 21.6 21.6 21.6 21.6 21.6
PACE2 0.0 9.8 15.6 19.3 21.1 22.1 21.8 21.6 21.6 21.6 21.6
PACE4 0.0 9.8 15.6 19.3 21.3 22.2 22.0 22.0 21.8 21.8 21.7
PACE6 0.1 7.0 10.6 13.2 15.4 16.9 17.1 16.5 15.5 14.5 10.7

Table 6.1: Experiment 6.1. Average dimensionality and prediction error of the
estimated models.

set is generated from the same model structure with 10,000 observations and zero

noise variance, and hence can be taken as the true model. The results are shown in

Figure 6.1 and recorded in Table 6.1.

Figure 6.1(a) and Figure 6.1(b) show the dimensionality (Dim) of the estimated

models and their prediction errors (PE), respectively; the horizontal axis is k∗ in

both cases. In Figure 6.1(a), the solid line gives the size of the underlying models.

Since prediction accuracy rather than model complexity is used as the standard for

modeling, the best estimated model does not necessarily have the same complexity

as the underlying one—dimensionality reduction is merely a byproduct of parame-

ter estimation. Models generated by PACE2, PACE4 and PACE6 find the underlying

null hypothesis H0 and the underlying full hypothesis Hf correctly; their seeming

inconsistency between these extremes is in fact necessary for the estimated models

to produce optimal predictions. AIC overfits H0 and underfits Hf . BIC and RIC
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Figure 6.1: Experiment 6.1, k = 100, σ2 = 200. (a) Dimensionality. (b) Prediction
error.

both fit H0 well, but dramatically underfit all the other hypotheses—including Hf .

CIC successfully selects both H0 and Hf but either underfits or overfits models in

between. NN-GAROTTE generally chooses slightly larger models than PACE6, but

LASSOStein significantly overfits for small k∗ and underfits for large k∗.

In Figure 6.1(b), the vertical axis represents the average mean squared error in pre-

dicting independent test sets. The models built by BIC and RIC have errors nearly

as great as the null model. AIC is slightly better for Hf than BIC and RIC, but

fails on H0. CIC eventually coincides with the full model as k∗ increases, and

produces large errors for some model structures between H0 and Hf . It is inter-

esting to note that PACE2 always performs as well as the best of OLSC(∞) (the null

model), RIC, BIC, AIC, CIC, and OLS (the full model): no OLS subset selection pro-

cedures produce models that are sensibly better. Recall that PACE2 selects the op-

timal subset model from the sequence, and in this respect resembles PACE1, which

is the optimal threshold-based OLS subset selection procedure OLSC(τ ∗). PACE4

performs similarly to PACE2. Remarkably, PACE6 outperforms PACE2 and PACE4 by

a large margin, even when there are no redundant variables. The shrinkage methods

NN-GAROTTE and LASSOStein are competitive with PACE2 and PACE4—better for

small k∗ and worse for large k∗—but can never outperform PACE6 in any practical

sense, which is consistent with Corollary 3.10.2 and Theorem 3.11.
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k∗ 0 10 20 30 40 50 60 70 80 90 100
Dim

NN-GAR. 0.6 21.0 32.6 45.7 57.1 67.2 78.0 87.0 94.3 98.5 100
LASSOStein 47.4 46.8 52.8 59.0 64.2 71.0 76.6 82.6 88.3 93.7 92.3
AIC 14.8 23.4 32.0 40.5 49.2 58.2 66.4 75.3 83.0 91.4 99.7
BIC 1.1 10.6 20.1 29.4 39.0 48.4 57.8 67.2 75.9 85.4 94.0
RIC 0.2 9.6 18.8 27.4 36.6 45.3 54.0 62.5 70.3 78.0 86.0
CIC 0.0 9.6 21.1 72.4 100 100 100 100 100 100 100
PACE2 0.0 10.3 21.4 31.5 42.0 53.0 63.2 74.0 83.4 93.3 100
PACE4 0.0 10.3 21.4 31.5 42.1 53.0 63.4 74.0 83.5 93.3 100
PACE6 0.6 11.5 22.1 32.6 43.0 54.2 63.9 74.3 83.4 92.5 100

PE
NN-GAR. 0.10 1.35 2.12 2.83 3.61 4.17 4.72 5.27 5.56 5.70 5.71
LASSOStein 1.42 1.91 2.65 3.43 4.43 5.27 6.15 7.00 7.94 9.61 35.60
full 5.40 5.40 5.40 5.40 5.40 5.40 5.40 5.40 5.40 5.40 5.40
AIC 2.80 3.00 3.27 3.53 3.85 4.16 4.40 4.70 4.95 5.32 5.56
BIC 0.43 1.00 1.59 2.71 3.44 4.50 5.62 6.35 7.88 8.76 10.5
RIC 0.12 1.00 2.03 3.82 5.04 6.81 8.59 10.3 13.1 15.8 18.3
CIC 0.00 0.99 1.83 4.31 5.40 5.40 5.40 5.40 5.40 5.40 5.40
PACE2 0.00 1.06 1.71 2.40 2.95 3.56 3.96 4.57 5.03 5.29 5.40
PACE4 0.00 1.06 1.71 2.40 2.92 3.58 3.98 4.57 5.04 5.29 5.40
PACE6 0.03 0.80 1.19 1.82 2.31 2.66 2.92 3.24 3.28 3.22 2.48

Table 6.2: Experiment 6.2. Average dimensionality and prediction error of the
estimated models.

Experiment 6.2 Variables with large effects. In this experiment the underlying

model is the same as in the last experiment except that σ2 = 50; results are shown

in Figure 6.2 and Table 6.2.

The results are similar to those in the previous example. As Figure 6.2(a) shows,

models generated by PACE2, PACE4 and PACE6 lie closer to the line of underlying

models than in the last example. AIC generally overfits by an amount that decreases

as k∗ increases. RIC and BIC generally underfit by an amount that increases as k∗ in-

creases. CIC settles on the full model earlier than in the last example. NN-GAROTTE

and LASSOStein generally choose models of larger dimensionalities than PACE2,

PACE4 and PACE6.

In terms of prediction error (Figure 6.2(b)), PACE2 and PACE4 are still the best of all

OLS subset selection procedures, and are almost always better and never meaning-

fully worse than NN-GAROTTE and LASSOStein (see also the discussion of shrinkage
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Figure 6.2: Experiment 6.2. k = 100, σ2 = 50. (a) Dimensionality. (b) Prediction
error.

estimation in situations with different variable effects; Example 3.1), while PACE6 is

significantly superior. When there are no redundant variables, PACE6 chooses a full-

sized model but uses different coefficients from OLS, yielding a model with much

smaller prediction error than the OLS full model. This defies conventional wisdom,

which views the OLS full model as the best possible choice when all variables have

large effects.

Experiment 6.3 Rate of convergence. Our third example explores the influence of

the number of candidate variables. The value of k is chosen to be 10, 20, . . . , 100

respectively, and for each value k∗ is chosen as 0, k/2 and k; otherwise the exper-

imental conditions are as in Experiment 6.1. Note that variables with small effects

are harder to distinguish in the presence of noisy variables. Results are shown in

Figure 6.3 and recorded in Table 6.3.

The pace regression procedures are always among the best in terms of prediction

error, a property enjoyed by none of the conventional procedures. None of the

pace procedures suffer noticeably as the number of candidate variables k decreases.

Apparently, they are stable when k is as small as ten.
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k 10 20 30 40 50 60 70 80 90 100
Dim AIC 1.7 2.5 5.0 5.8 7.8 8.2 12.3 10.9 13.2 14.8
(k∗

= 0) BIC 0.0 0.2 0.3 0.2 0.2 0.5 0.8 0.5 0.9 1.1
RIC 0.2 0.3 0.3 0.2 0.2 0.1 0.2 0.2 0.3 0.2
CIC 0.0 0.1 0.0 0.0 0.0 0.0 0.1 0.0 0.0 0.0
PACE2 0.9 0.3 0.3 0.2 0.1 0.1 0.1 0.1 0.1 0.0
PACE4 0.9 0.3 0.3 0.2 0.1 0.1 0.1 0.1 0.1 0.0
PACE6 0.8 0.7 1.1 0.6 0.3 0.6 1.4 0.5 0.6 0.6

PE AIC 1.1 2.0 3.5 4.4 5.8 6.1 9.5 8.5 10.7 11.2
(k∗

= 0) BIC 0.0 0.5 0.5 0.5 0.5 0.7 1.4 0.8 1.6 1.7
RIC 0.3 0.6 0.5 0.5 0.4 0.3 0.6 0.4 0.7 0.5
CIC 0.0 0.1 0.0 0.0 0.0 0.0 0.2 0.0 0.0 0.0
PACE2 0.5 0.5 0.4 0.4 0.1 0.2 0.2 0.1 0.1 0.0
PACE4 0.5 0.5 0.4 0.4 0.1 0.2 0.2 0.1 0.1 0.0
PACE6 0.2 0.2 0.3 0.2 0.2 0.1 0.4 0.1 0.2 0.1

Dim AIC 4.8 8.9 14.6 18.8 23.4 27.2 33.2 37.0 40.2 46.9
(k∗

=
k
2 ) BIC 2.0 3.5 6.2 6.5 7.9 10.6 12.0 13.3 13.9 16.7

RIC 3.0 4.2 6.2 5.8 6.7 8.0 8.3 9.7 8.7 10.4
CIC 0.0 0.1 0.0 0.0 0.0 0.0 0.1 0.0 0.0 0.0
PACE2 7.2 14.6 22.3 32.8 41.0 45.9 57.9 59.1 65.6 84.0
PACE4 7.2 14.6 22.3 32.8 41.0 46.0 58.0 59.1 65.8 84.2
PACE6 5.9 11.1 18.2 24.8 31.4 34.0 44.8 46.6 51.0 62.0

PE AIC 2.3 4.7 7.2 9.0 11.4 13.8 17.1 18.1 22.0 23.8
(k∗

=
k
2 ) BIC 3.5 8.0 11.0 15.8 20.2 22.9 27.8 32.2 37.3 41.0

RIC 2.8 7.5 10.9 16.5 20.9 24.7 30.4 35.3 41.8 45.6
CIC 2.8 5.4 8.0 11.3 12.5 16.9 19.7 21.6 29.4 29.3
PACE2 2.1 4.5 6.8 8.3 10.7 12.6 16.0 16.9 19.4 22.1
PACE4 2.1 4.5 6.8 8.3 10.8 12.7 16.2 16.9 19.5 22.2
PACE6 1.8 3.4 5.3 6.8 8.3 9.6 12.2 12.9 15.9 16.9

Dim AIC 7.7 15.6 23.6 31.0 38.6 45.9 52.0 60.9 67.5 77.6
(k∗

= k) BIC 3.3 7.2 11.1 13.2 15.2 19.9 22.1 24.4 27.4 32.5
RIC 5.3 8.5 11.3 12.3 13.1 15.6 16.6 18.1 18.8 21.8
CIC 10.0 20.0 30.0 40.0 50.0 60.0 70.0 80.0 90.0 100
PACE2 9.4 20.0 30.0 40.0 50.0 60.0 70.0 80.0 90.0 100
PACE4 9.4 20.0 30.0 40.0 50.0 60.0 70.0 80.0 90.0 100
PACE6 9.2 20.0 29.9 39.6 49.9 60.0 70.0 80.0 90.0 100

PE full 2.0 4.0 6.4 8.2 10.4 12.1 16.2 16.6 19.1 21.6
(k∗

= k) AIC 3.5 7.0 10.3 13.8 17.1 21.2 26.7 28.3 33.1 35.7
BIC 7.7 15.3 22.8 31.3 40.5 47.2 56.4 65.7 74.0 82.1
RIC 5.6 13.9 22.6 32.1 42.5 51.3 61.9 71.8 82.4 92.5
CIC 2.0 4.0 6.4 8.2 10.4 12.1 16.2 16.6 19.1 21.6
PACE2 2.3 4.0 6.4 8.2 10.4 12.1 16.2 16.6 19.1 21.6
PACE4 2.3 4.0 6.4 8.3 10.6 12.3 16.4 16.9 19.4 21.7
PACE6 1.2 1.0 2.6 2.7 4.5 5.2 7.8 8.0 10.4 10.7

Table 6.3: Experiment 6.3—for the true hypotheses, k∗ = 0, k
2
, and k, respectively.
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Figure 6.3: Experiment 6.3. (a), (c) and (e) show the dimensionalities of the esti-
mated models when the underlying models are the null, half, and full hypotheses.
(b), (d) and (f) show corresponding prediction errors over large independent test
sets.
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6.3 Artificial datasets: Towards reality

Miller (1990) considers an artificial situation for subset selection that assumes “geo-

metric progression of values of the true projections”, i.e., the geometric distribution

of A∗. Despite the fact that, as he points out (p.181), “there is no evidence that this

pattern is realistic”, it is probably closer to reality than the models in the last section,

as evidenced by the distribution of eigenvalues of a few practical datasets given in

Table 6.2, Miller, 1990. Hence this section tests how pace regression compares with

other methods in this artificial situation. Real world datasets will be tested in the

next section.

We know that the extent of upgrading each Âj by pace regression basically depends

on the number of Â around it. In particular, PACE2 and PACE4, both essentially

selection procedures, rely more on the number around the true threshold value τ ∗.

Experiment 6.4 uses a situation in which there are relatively more A∗
j around τ ∗,

so that PACE2 and PACE4 should perform similarly to how they would if τ ∗ were

known. Experiment 6.5 roughly follows Miller’s idea, in which case, however, few

A∗
j are around τ ∗, and hence pace regression will produce less satisfactory results.

Breiman (1995) investigates another artificial situation in which the nonzero true

coefficient values are distributed in two or three groups, and the column vectors

of X are normally, but not independently, distributed. Experiment 6.6 follows this

idea.

For the experiments in this section, we include results for both the x-fixed and x-

random situations. From these results, it can be seen that all procedures perform

almost identically in both situations. We should not conclude, of course, that this

will remain true in other cases, in particular for small n.

Experiment 6.4 Geometrically distributed effects. We now investigate a simple

geometric distribution of effect. Except where described below, all other options in

this experiment are the same as used previously.
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Figure 6.4: h(Â;G) in Experiment 6.4.

The linear model with 100 explanatory variables is used, i.e.,

y =

100∑

j=1

βjxj + ε, (6.1)

where the noise component ε ∼ N(0, σ2). The probability density function of Â is

determined by the following mixture model

100 × f(Â;G) = 50 × f(Â; 0) + 25 × f(Â; 1) + 13 × f(Â; 4) + 6 × f(Â; 9) +

3 × f(Â; 16) + 2 × f(Â; 25) + 1 × f(Â; 36), (6.2)

i.e., A∗ = 0, 1, 4, 9, 16, 25 and 36 with probabilities .5, .25, .13, .6, .3, .2 and .1

respectively.

The corresponding mixture h-function is shown in Figure 6.4. It can be seen that

τ ∗ ≈ 2.5, for OLSC(τ). Hence this situation seems favorable to AIC, for (n-

asymptotically) AIC = OLSC(2), which is nearly the optimal selection procedure

here. Since here BIC = OLSC(logn) = OLSC(6.9) and RIC = OLSC(2 log k) =

OLSC(9.2), both should be inferior to AIC.

The effects A∗ = 0, 1, 4, 9, 16, 25, 36 are converted to parameters through the ex-
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Procedure x-fixed model x-random model
Dim PE Dim PE

full (OLS) 100.0 1.03 100.0 1.11
null 0.0 2.73 0.0 2.68
AIC 37.8 0.96 37.2 1.03
BIC 15.4 1.09 14.6 1.16
RIC 11.3 1.21 10.9 1.30
CIC 13.7 1.15 12.4 1.26
PACE2 45.2 1.00 41.2 1.05
PACE4 45.3 1.03 41.4 1.08
PACE6 39.2 0.80 36.7 0.84

Table 6.4: Results of Experiment 6.4.

pression

βj =

√
A∗

jσ
2

n
. (6.3)

We let xj ∼ N(0, 1) independently for all j. For each training set, let σ2 = 10 and

the number of observations n = 1000. Then the true model becomes

y = 0 × (x1 + · · · + x50) + 0.1 × (x51 + · · · + x75) + 0.2 × (x76 + · · ·+ x88) +

0.3 × (x89 + · · · + x94) + 0.4 × (x95 + x96 + x97) + 0.5 × (x98 + x99) +

0.6 × x100 + ε. (6.4)

To test the estimated model, two situations are considered: x-fixed and x-random.

In the x-fixed situation, the training and test sets share the same X matrix, but only

the training set contains the noise component ε. In the x-random situation, a large,

independent, noise-free test set (n = 10000, and different X from the training set)

is generated, and the coefficients in (6.4) are used to obtain the response vector.

Table 6.4 presents the experimental results. Each figure in the table is the average

of 100 runs. The model dimensionality Dim is the number of remaining variables,

excluding the intercept, in the trained model. PE is the mean squared prediction

error by the trained model over the test set.

As shown in Table 6.4, the null model is clearly the worst in terms of prediction
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Figure 6.5: The mixture h-function for k = 10, 20, 30, 40 predictors, and A∗
j =

(10αj−1)2 with α = 0.8.

error. The full model is relatively good, even better than BIC, RIC and CIC—this

is due to the high threshold values employed by the latter. AIC and three pace

estimators are better than the full model. AIC, PACE2 and PACE4 perform similarly:

AIC is slightly better because the other two have to estimate the threshold value

while it uses a nearly optimal threshold value. PACE6 beats all others by a clear

margin, although it chooses models of similar dimensionality to AIC, PACE2 and

PACE4.

Experiment 6.5 Geometrically distributed effects, Miller’s case. We now look

at Miller’s (1990, pp.177–181) case where effects are distributed geometrically. In

our experiment, however, we examine the situation with independent explanatory

variables, whereas Miller (pp.186-187) performs similarity transformations on the

variance-covariance matrix. Correlated explanatory variables will be inspected in

Experiments 6.6 and 6.7.

Miller’s assignment of the effects is equivalent to this: for a model with k predictors

(excluding the constant term), the underlying A∗
j = (10αj−1)2 for j = 1, . . . , k. In

particular, he considers the situations k = 10, 20, 30 or 40 and α = 0.8 or 0.6; i.e.,

for α = 0.8, A∗
j = 100, 64, 41, 26, 17, 11, 6.9, 4.4, 2.8, 1.8, . . . , and for α = 0.6,
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Figure 6.6: The mixture h-function for k = 10, 20, 30, 40 predictors, and A∗
j =

(10αj−1)2 with α = 0.6.

α = 0.8 α = 0.6

k = 10 k = 20 k = 30 k = 40 k = 10 k = 20 k = 30 k = 40

τ∗ ≈ 0 0.8 3.5 5 2 5.5 6.5 7.5

Table 6.5: τ ∗ for α = 0.8 and 0.6 respectively in Experiment 6.5.

A∗
j = 100, 36, 13, 4.7, 1.7, 0.6, 0.22, . . . . Figure 6.5 and 6.6 show the mixture h-

functions for the α = 0.8 and 0.6 situations respectively. From both figures, we

can roughly estimate the values of τ ∗ for each situation, given in Table 6.5. When

the threshold value of a model selection criterion is near τ ∗, this criterion should

resemble the optimal selection criterion in performance. This observation helps to

explain the experimental results.

As in Experiment 6.4, each βj is chosen according to (6.3), where n = 1000 and

σ2 = 10. Therefore the model for α = 0.8 is of the form

y = 1x1 + 0.8x2 + 0.64x3 + 0.512x4 + 0.41x5 + 0.33x6 + 0.26x7 +

0.21x8 + 0.17x9 + 0.13x10 + · · ·+ 0.8k−1xk + ε, (6.5)
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and the model for α = 0.6 is of the form

y = 1x1 + 0.6x2 + 0.36x3 + 0.22x4 + 0.13x5 + 0.078x6 + 0.047x7 +

0.028x8 + 0.017x9 + 0.01x10 + · · ·+ 0.6k−1xk + ε. (6.6)

Training and test sets are generated as in Experiment 6.4.

The experimental results are given in Table 6.6 and 6.7 for α = 0.8 and 0.6 respec-

tively. Among all these results, PACE6 is clearly the best: it never (sensibly) loses to

any other procedures, and often wins by a clear margin. In some cases, procedures

PACE2 and PACE4 are inferior to the best selection criterion—despite the fact that,

theoretically, they are k-asymptotically the best selection criteria. This is the price

that pace regression pays for estimating G(A∗) in the finite k situation. It could

be slightly inferior to other selection procedures which have the threshold values

near τ ∗; nevertheless, no individual one of the OLS, null, AIC, BIC = OLSC(6.9),

RIC = OLSC(2 log k) and CIC selection criteria can always be optimal.

The accuracy of pace estimators relies on the accuracy of the estimated G(A∗),

which further depends on the number of predictors (i.e., the number ofAj’s)—more

precisely, the number of Aj’s around a particular point of interest, for example,

τ ∗ for PACE2 and PACE4. In this experiment, there are often few data points close

enough to τ ∗ to provide enough information for accurately estimatingG(A∗) around

τ ∗. In the cases α = 0.6 and k = 30 and 40, for example, τ ∗ ≈ 6.5 and 7.5, but we

only haveA∗
j = 100, 36, 13, 4.7, 1.7, 0.6, 0.22, . . . . For samples distributed like this,

the clustering result around τ ∗ is unlikely to be accurate, implying higher expected

loss for pace estimators.

Experiment 6.6 Breiman’s case. This experiment explores a situation considered

by Breiman (1995, pp.379–382).

According to Breiman (1995, p.379), the “values of the coefficients were renor-

malized so that in the X-controlled case, the average R2 was around .85, in the

X-random, about .75.” Since details of the “re-normalization” are not given, the
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Procedure k x-fixed model x-random model
Dim PE Dim PE

full (OLS) 10 0.11 10 0.11
null 0 2.79 0 2.72
AIC 8.61 0.13 8.6 0.14
BIC 6.53 0.24 6.61 0.24
RIC 10 7.37 0.18 7.53 0.19
CIC 9.87 0.11 9.81 0.12
PACE2 9.45 0.12 9.44 0.12
PACE4 10 0.11 10 0.11
PACE6 10 0.11 10 0.11
full (OLS) 20 0.20 20 0.22
null 0 2.80 0 2.74
AIC 10.8 0.20 11.0 0.22
BIC 6.83 0.27 6.71 0.29
RIC 20 7.10 0.25 7.23 0.26
CIC 10.6 0.21 10.6 0.23
PACE2 12.2 0.21 12.1 0.23
PACE4 12.2 0.21 12.1 0.23
PACE6 11.5 0.20 11.3 0.22
full (OLS) 30 0.31 30 0.30
null 0 2.75 0 2.74
AIC 12.7 0.27 12.1 0.25
BIC 7.06 0.27 7.15 0.27
RIC 30 7.11 0.27 7.21 0.27
CIC 8.40 0.26 8.42 0.26
PACE2 13.4 0.28 11.6 0.26
PACE4 13.4 0.28 11.6 0.26
PACE6 12.4 0.23 11.3 0.23
full (OLS) 40 0.41 40 0.43
null 0 2.78 0 2.79
AIC 14.1 0.33 13.8 0.34
BIC 7.17 0.28 6.96 0.31
RIC 40 6.99 0.29 6.73 0.31
CIC 7.52 0.29 7.26 0.31
PACE2 11.2 0.32 11.1 0.33
PACE4 11.3 0.31 11.2 0.33
PACE6 11.5 0.26 11.3 0.28

Table 6.6: Experiment 6.5. Results for k = 10, 20, 30, 40 predictors, and A∗
j =

(10αj−1)2 with α = 0.8.
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Procedure k x-fixed model x-random model
Dim PE Dim PE

full (OLS) 10 0.11 10 0.11
null 0 1.57 0 1.61
AIC 4.92 0.10 5.13 0.11
BIC 3.23 0.13 3.44 0.13
RIC 10 3.77 0.12 3.96 0.11
CIC 5.12 0.11 5.3 0.11
PACE2 5.28 0.12 5.75 0.11
PACE4 10 0.11 10 0.11
PACE6 10 0.11 10 0.11
full (OLS) 20 0.20 20 0.22
null 0 1.57 0 1.60
AIC 6.35 0.16 6.56 0.17
BIC 3.24 0.13 3.48 0.14
RIC 20 3.5 0.13 3.76 0.13
CIC 3.4 0.14 3.76 0.14
PACE2 4.54 0.15 5.37 0.16
PACE4 4.66 0.14 5.53 0.15
PACE6 4.72 0.13 5.56 0.13
full (OLS) 30 0.31 30 0.30
null 0 1.55 0 1.54
AIC 8.5 0.22 7.92 0.20
BIC 3.59 0.14 3.37 0.15
RIC 30 3.61 0.14 3.41 0.15
CIC 3.28 0.15 3.12 0.16
PACE2 4.59 0.18 3.88 0.18
PACE4 4.73 0.16 4.05 0.17
PACE6 5.48 0.14 4.72 0.14
full (OLS) 40 0.41 40 0.43
null 0 1.58 0 1.59
AIC 10.2 0.29 9.71 0.29
BIC 3.63 0.16 3.58 0.16
RIC 40 3.52 0.16 3.44 0.16
CIC 3.12 0.16 3.03 0.17
PACE2 4.33 0.23 3.84 0.23
PACE4 4.73 0.19 4.24 0.19
PACE6 5.47 0.16 5.09 0.16

Table 6.7: Experiment 6.5. Results for k = 10, 20, 30, 40 predictors, and A∗
j =

(10αj−1)2 with α = 0.6.
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Procedure rc = 1 rc = 2 rc = 3 rc = 4 rc = 5

Dim PE Dim PE Dim PE Dim PE Dim PE
x-fixed (k = 20, n = 40)

full (OLS) 20 0.54 20 0.54 20 0.54 20 0.54 20 0.54
null 0 3.65 0 4.00 0 4.88 0 5.76 0 6.58
AIC 4.77 0.32 6.4 0.42 7.45 0.48 8.00 0.51 8.69 0.53
BIC 3.01 0.21 3.97 0.36 5.07 0.46 5.86 0.53 6.38 0.58
RIC 2.32 0.14 2.98 0.34 3.83 0.49 4.41 0.59 4.84 0.67
CIC 2.25 0.14 3.04 0.37 3.92 0.53 5.09 0.62 6.01 0.64
PACE2 3.47 0.20 5.46 0.41 6.89 0.51 8.19 0.57 9.41 0.58
PACE4 3.62 0.20 5.74 0.40 7.22 0.51 8.61 0.56 9.72 0.58
PACE6 3.76 0.16 5.46 0.34 6.99 0.46 8.17 0.51 8.99 0.54

x-random (k = 40, n = 80)
full (OLS) 40 1.06 40 1.06 40 1.06 40 1.06 40 1.06
null 0 0.41 0 2.60 0 3.22 0 3.85 0 4.43
AIC 8.46 0.48 10.2 0.55 12.1 0.67 13.1 0.75 13.9 0.80
BIC 3.94 0.30 5.51 0.38 6.74 0.52 7.55 0.64 8.06 0.71
RIC 2.27 0.26 3.64 0.31 4.85 0.50 5.25 0.64 5.60 0.76
CIC 1.22 0.30 3.38 0.31 4.47 0.53 5.17 0.67 6.03 0.76
PACE2 3.50 0.36 5.83 0.41 8.31 0.60 10.8 0.75 12.7 0.80
PACE4 4.55 0.34 6.45 0.40 9.08 0.59 11.7 0.74 13.4 0.80
PACE6 5.04 0.27 7.37 0.33 9.72 0.47 11.5 0.60 13.0 0.66

Table 6.8: Experiment 6.6, both the x-fixed and x-random situations

normalization factor α used here sets β∗
j = αβj , for j = 1, . . . , k , so that

R2 ≈
nα2

∑k
j=1 βj

2

nα2
∑k

j=1 βj
2 + k

, (6.7)

that is,

α(n, k, R2) ≈
√

k

n(1 −R2)
∑k

j=1 βj
2
. (6.8)

Therefore, in the x-fixed case

α(40, 20, 0.85) ≈
√

10

3
∑k

j=1 βj
2
, (6.9)
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and in the x-random case

α(80, 40, 0.75) ≈
√

2∑k

j=1 βj
2
. (6.10)

Given this normalization, subset selection procedures seem to produce models of

similar dimensionalities to those given in Breiman’s paper. Each βj is obtained by

Breiman’s method, p.379.

Experimental results are given in Table 6.8. The performance of pace estimators

are as in Experiment 6.5; PACE6 is the best of all. However, PACE2 and PACE4 are

not optimal selection criteria in all situations. They are intermediate in performance

to other selection criteria—not the best, not the worst. While further investigation

is needed to fully understand the results, a plausible explanation is that, as in Ex-

periment 6.5, few data points are available to accurately estimate G(A∗) around

τ ∗.

6.4 Practical datasets

This section presents simulation studies on practical datasets.

Experiment 6.7 Practical datasets. The datasets used are chosen from several

that are available. They are chosen for their relatively large number of continuous

or binary variables, to highlight the need for subset selection and also in accordance

with our k-asymptotic conclusions. To simplify the situation and focus on the ba-

sic idea, non-binary nominal variables originally contained in some datasets are

discarded, and so are observations with missing values; future extensions of pace

regression may take these issues into account.

Table 6.7 lists the names of these datasets, together with the number of observations

n and the number of variables k in each dataset. The datasets Autos (Automobile),

Cpu (Computer Hardware), and Cleveland (Heart Disease—Processed Cleveland)

141



Autos Bankbill Bodyfat Cholesterol Cleveland Cpu
n / k 159 / 16 71 / 16 252 / 15 297 / 14 297 / 14 209 / 7

Horses Housing Ozone Pollution Prim9 Uscrime
n / k 102 / 14 506 / 14 203 / 10 60 / 16 500 / 9 47 / 16

Table 6.9: Practical datasets used in Experiment 6.7.

are obtained from the Machine Learning Repository at UCI3 (Blake et al., 1998).

Bankbill, Horses and Uscrime are from OzDASL4 (Australasian Data and Story Li-

brary). Bodyfat, Housing (Boston) and Pollution are from StatLib5. Ozone is from

Leo Breiman’s Web site6. Prim9 is available from the S-PLUS package. Cholesterol

is used by Kilpatrick and Cameron-Jones (1998). Most of these datasets are widely

used for testing numeric predictors.

Pace regression procedures, together with others, are applied to these datasets with-

out much scrutiny. This is less than optimal, and often inappropriate. For example,

some datasets are intrinsically nonlinear, and/or the noise component is not nor-

mally distributed.

Although the results obtained are generally supportive, careful interpretation is

necessary. First, the finite situation may not be large enough to support our k-

asymptotic conclusions, or the elements in the set {Âj} are too separated to support

meaningful updating (Section 4.2). In fact, it is well known that no estimator is uni-

formally optimal in all finite situations. Second, the choice of these datasets may

not be extensive enough, or they could be biased in some unknown way. Third,

since the true model is unknown and thus cross-validation results are used instead,

there is no consensus on the validity of data resampling techniques (Section 2.6).

The experimental results are given in Table 6.7. Each figure is the average of twenty

runs of 10-fold cross-validation results, where the “Dim” column gives the average

estimated dimensionality (excluding the intercept) and the “PE(%)” column the av-

erage squared prediction error relative to the sample variance of the response vari-
3http://www.ics.uci.edu/∼mlearn/MLRepository.html
4http://www.maths.uq.edu.au/∼gks/data/index.html
5http://lib.stat.cmu.edu/datasets/
6ftp://ftp.stat.berkeley.edu/pub/users/breiman
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Procedure Autos Bankbill Bodyfat Cholesterol
Dim PE (%) Dim PE (%) Dim PE (%) Dim PE (%)

NN-GAR. 10.6 21.5 10.39 7.45 8.10 2.76 10.38 101.1
LASSOCV 9.72 21.5 9.71 8.65 2.99 2.73 5.75 97.4
full (OLS) 15.00 21.4 15.00 7.86 14.00 2.75 13.00 97.1
null 0.00 100.5 0.00 101.01 0.00 100.48 0.00 100.4
AIC 7.82 23.6 9.64 8.76 3.38 2.71 4.31 97.4
BIC 3.87 23.9 8.73 8.99 2.24 2.67 2.54 97.6
RIC 3.57 23.6 8.02 9.78 2.24 2.67 2.65 97.0
CIC 5.00 24.5 12.54 8.56 2.23 2.68 2.23 99.9
PACE2 12.95 21.9 13.77 8.20 2.24 2.68 4.42 97.4
PACE4 12.99 21.8 13.80 8.20 2.25 2.68 4.50 97.3
PACE6 10.51 21.1 12.67 8.34 2.32 2.66 4.35 96.2

Cleveland Cpu Horses Housing
Dim PE (%) Dim PE (%) Dim PE (%) Dim PE (%)

NN-GAR. 9.60 47.6 5.10 25.5 4.90 109 7.50 28.0
LASSOCV 9.10 47.8 5.15 23.4 1.23 97 6.53 28.1
full (OLS) 13.00 48.2 6.00 18.4 13.00 106 13.0 28.3
null 0.00 100.3 0.00 100.7 0.00 102 0.0 100.3
AIC 8.24 50.2 5.06 18.0 3.87 108 11.0 28.0
BIC 5.31 51.3 4.94 17.9 2.50 106 10.7 28.8
RIC 5.41 51.3 5.00 17.7 2.14 108 10.8 28.5
CIC 11.46 49.1 6.00 18.4 0.29 107 11.9 28.2
PACE2 12.35 48.5 5.21 18.2 2.65 107 11.6 28.2
PACE4 12.35 48.6 5.21 18.2 2.68 108 11.6 28.2
PACE6 11.17 49.3 5.14 18.2 2.98 102 11.4 28.2

Ozone Pollution Prim9 Uscrime
Dim PE (%) Dim PE (%) Dim PE (%) Dim PE (%)

NN-GAR. 5.78 32.2 7.69 69.0 6.90 58.3 8.81 60.9
LASSOCV 5.62 32.3 5.32 47.9 6.43 54.1 9.67 49.8
full (OLS) 9.00 31.6 15.00 60.8 7.00 53.5 15.00 52.1
null 0.00 100.6 0.00 102.1 0.00 100.2 0.00 102.9
AIC 5.54 31.6 7.24 58.3 7.00 53.5 6.91 49.3
BIC 3.60 34.3 5.04 65.3 4.13 54.6 5.26 49.3
RIC 4.24 33.5 4.51 66.3 5.87 54.8 3.81 52.7
CIC 5.92 31.7 5.64 67.1 7.00 53.5 5.00 53.4
PACE2 7.17 31.7 8.96 62.7 6.78 53.8 9.16 54.4
PACE4 7.17 31.7 9.06 62.9 6.85 53.8 9.21 54.9
PACE6 6.08 31.5 7.86 56.0 6.97 53.8 7.78 50.7

Table 6.10: Results for practical datasets in Experiment 6.7.
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able (i.e., the null model should have roughly 100% relative error).

It can be seen from Table 6.7 that the pace estimators, especially PACE6, generally

produce the best cross-validation results in terms of prediction error. This is con-

sistent with the results on artificial datasets in the previous sections. LASSOCV also

generally gives good results on these datasets, in particular Horses and Pollution,

while NN-GAROTTE does not seem to perform so well.

6.5 Remarks

In this chapter, experiments have been carried out over many datasets, ranging from

artificial to practical. Although these are all finite k situations, pace estimators

perform reasonably well, especially PACE6, in terms of squared error, in accordance

with the k-asymptotic conclusions.

We also notice that pace estimators, mainly PACE2 and PACE4, perform slightly

worse than the best of the other selection estimators in some situations. This is the

price that pace regression has to pay for estimating G(A∗) in finite situations. In

almost all cases, given the true G(A∗), the experimental results are predictable.

Unlike other modeling procedures used in the experiments, pace estimators may

have room for further improvement. This is because an estimator of the mixing

distribution that is better than the currently used NNM may be available—e.g., the

ML estimator. Even for the NNM estimator itself, the choices of potential support

points, fitting intervals, empirical measure, and distance measure can all affect the

results. The current choices are not necessarily optimal.
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Chapter 7

Summary and final remarks

7.1 Summary

This thesis presents a new approach to fitting linear models, called “pace regres-

sion”, which also overcomes the dimensionality determination problem introduced

in Section 1.1. It endeavors to minimize the expected prediction loss, which leads

to the k-asymptotic optimality of pace regression as established theoretically. In

orthogonal spaces, it outperforms, in the sense of expected loss, many existing pro-

cedures for fitting linear models when the number of free parameters is infinitely

large. Dimensionality determination turns out to be a natural by-product of the

goal of minimizing expected loss. These theoretical conclusions are supported by

simulation studies in Chapter 6.

Pace regression consists of six procedures, denoted by PACE1, . . . , PACE6, respec-

tively, which are optimal in their corresponding model spaces (Section 3.5). Among

them, PACE5 is the best, but requires numeric integration and thus is computationally

expensive. However, it can be approximated very well by PACE6, which provides

consistently satisfactory results in our simulation studies.

The main idea of these procedures, explained in Chapter 3, is to decompose the ini-

tially estimated model—we always use the OLS full model—in an orthogonal space

into dimensional models, which are statistically independent. These dimensional
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models are then employed to obtain an estimate of the distribution of the true ef-

fects in each individual dimension. This allows the initially estimated dimensional

models to be upgraded by filtering out the estimated expected uncertainty, and hence

overcomes the competition phenomena in model selection based on data explana-

tion. The concept of “contribution”, which is introduced in Section 3.3, can be used

to indicate whether and how much a model outperforms the null one. It is employed

throughout the remainder of the thesis to explain the task of model selection and to

obtain pace regression procedures.

Chapter 4 discusses some related issues. Several major modeling principles are ex-

amined retrospectively in Section 4.5. Orthogonalization selection—a competition

phenomenon analogous to model selection—is covered in Section 4.6. The possi-

bility of updating signed projections is discussed in Section 4.7.

Although starting from the viewpoint of competing models, the idea of this work

turns out to be similar to the empirical Bayes methodology pioneered by Rob-

bins (1951, 1955, 1964), and has a close relation with Stein or shrinkage estima-

tion (Stein, 1955; James and Stein, 1961). The shrinkage idea was explored in linear

regression by Sclove (1968), Breiman (1995) and Tibshirani (1996), for example.

Through this thesis, we have gained a deep understanding of the problem of fitting

linear models by minimizing expected quadratic loss. Key issues in fitting linear

models are introduced in Chapter 2, and throughout the thesis major existing pro-

cedures for fitting linear models are reviewed and compared, both theoretically and

empirically, with the proposed ones. They include OLS, AIC, BIC, RIC, CIC, CV(d),

BS(m), RIDGE, NN-GAROTTE and LASSO.

Chapter 5 investigates the estimation of an arbitrary mixing distribution. Although

this is an independent topic with its own value, it is an essential part of pace regres-

sion. Two minimum distance approaches based on the probability measure and on

a nonnegative measure are introduced. While all the estimators are strongly con-

sistent, the minimum distance approach based on a nonnegative measure is both

computationally efficient and reliable. The maximum likelihood estimator can be
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reliable but not efficient; other minimum distance estimators can be efficient but not

reliable. By “reliable” here we mean that no isolated data points are ignored in the

estimated mixing distribution. This is vital for pace regression, because one single

ignored point can cause unbounded loss. The predictive accuracy of these mini-

mum distance procedures in the case of overlapping clusters is studied empirically

in Section 5.6, giving results that generally favor the new methods.

Finally, it is worth pointing out that the optimality of pace regression is only in the

sense of k-asymptotics, and hence does not exclude the use of OLS, and perhaps

many other procedures for fitting linear models, in situations of finite k, especially

when k is small or there are few neighboring data points to support a reasonable

updating.

7.2 Unsolved problems and possible extensions

In this section, we list some unsolved problems and possible extensions of pace

regression—most have appeared earlier in the thesis. Since the issues covered in

the thesis are general and have broadly-based potential, we have not attempted to

generate an extensive list of extensions.

Orthogonalization selection What is the effect of orthogonalization selection and

orthogonalization selection methods on pace regression (Section 4.6)?

Other noise distributions Only normally distributed noise components are con-

sidered in the current implementation of pace regression. Extension to other

types of distribution, even an empirical distribution, seems fairly straightfor-

ward.

Full model unavailable How should the situation when the full model is unavail-

able and the noise variance is estimated inaccurately (Section 4.4) be han-

dled?
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The x-random model It is known that the x-random model converges to the x-

fixed model for large samples (Section 2.2). However, for small samples, the

x-random assumption should in principle result in a different model, because

it involves more uncertainty—namely sampling uncertainty.

Enumerated variables Enumerated variables can be incorporated into linear re-

gression, as well as into pace regression, using dummy variables. However,

if the transformation into dummy variables relies on the response vector (so

as to reduce dimensionality), it involves competition too. This time the com-

petition occurs among the multiple labels of each enumerated variable. Note

that binary variables do not have this problem and thus can be used straight-

forwardly in pace regression as numeric variables.

Missing values Missing values are another unknowns: they could be filled in so as

to minimize the expected loss.

Other loss functions In many applications concerning gains in monetary units,

minimizing the expected absolute deviation, rather than the quadratic loss

considered here, is more appropriate.

Other model structures The ideas of pace regression are applicable to many model

structures, such as those mentioned in Section 1.1—although they may re-

quire some adaptation.

Classification Classification differs from regression in that it uses a discrete, often

unordered, prediction space, rather than a continuous one. Both share similar

methodology: a method that is applicable in one paradigm is often applicable

in the other too. We would like to extend the ideas of pace regression to solve

classification problems too.

Statistically dependent competing models Future research may extend into the

broader arena concerning general issues of statistically dependent competing

models (Section 7.3).
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7.3 Modeling methodologies

In spite of rigorous mathematical analysis, empirical Bayes (including Stein esti-

mation) is often criticized from a philosophical viewpoint. One seemingly obvious

problem, which is still controversial today (see, e.g., discussions following Brown,

1990), is that completely irrelevant (or statistically unrelatedly distributed) events,

given in arbitrary measurement units, can be employed to improve estimation of

each other. Efron and Morris (1973a, p.379) comment on this phenomenon as fol-

lows:

Do you mean that if I want to estimate tea consumption in Taiwan I will

do better to estimate simultaneously the speed of light and the weight

of hogs in Montana?

The empirical Bayes methodology contradicts some well-known statistical princi-

ples, such as conditionality, sufficiency and invariance.

In a non-technical introduction to Stein estimation, Efron and Morris (1977, pp.125-

126), in the context of an example concerning rates of an endemic disease in cities,

concluded that “the James-Stein method gives better estimates for a majority of

cities, and it reduces the total error of estimation for the sum of all cities. It cannot

be demonstrated, however, that Stein’s method is superior for any particular city;

in fact, the James-Stein prediction can be substantially worse.” This clearly indi-

cates that estimation should depend on the loss function employed in the specific

application—a notion consistent with statistical decision theory.

Two different loss functions are of interest here. One is the loss concerning a partic-

ular player, and the other the overall loss concerning a group of players. Successful

application of empirical Bayes implies that it is reasonable to employ overall loss in

this application. The further assumption of statistical independence of the players’

performance is needed in order to apply the mathematical tools that are available.
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The second type of loss concerns the performance of a team of players. Although

employing information about all players’ past performance through empirical Bayes

estimation may or may not improve the estimation of a particular player’s true abil-

ity, it is always (technically, almost surely) the correct approach—in other words,

asymptotically optimal using general empirical Bayes estimation and finitely better

using Stein estimation—to estimating a team’s true ability and hence to predicting

its future performance.

A linear model—or any model—with multiple free parameters is such a team, each

parameter being a player. Note that parameters could be completely irrelevant, but

they are bound together into a team by the prediction task. It may seem slightly

beyond the existing empirical Bayes methods, since the performance of these play-

ers could be, and often are, statistically dependent. The general question should be

how to estimate the team’s true ability, given statistically dependent performance of

players.

Pace regression handles statistical dependence using dummy players, namely the

absolute dimensional distances of the estimated model in an orthogonal space. This

approach provides a general way of eliminating statistical dependence. There are

other possible ways of defining dummy players, and from the empirical Bayes view-

point it is immaterial how they are defined as long as they are statistically indepen-

dent of each other. The choice of A1, . . . , Ak in pace regression has these advan-

tages: (1) they share the same scale of signal-to-noise ratio, and thus the estimation

is invariant of the choice of measurement units; (2) the mixture distribution is well

defined, with mathematical solutions available; (3) they are simply related to the

loss function of prediction (in the x-fixed situation); (4) many applications have

some zero, or almost zero, A∗
j ’s, and updating each corresponding Aj often im-

proves estimation and reduces dimensionality (see Section 4.2).

Nevertheless, using dummy players in this way is not a perfect solution. When the

determination of orthogonal basis relies on the observed response, it suffers from the

orthogonalization selection problem (Section 4.6). Information about the statistical

dependence of the original players might be available, or simply estimable from
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data. If so, it might be employable to improve the estimate of the team’s true ability.

Estimation of a particular player’s true ability using the loss function concerning

this single player is actually estimation given the player’s name, which is differ-

ent from estimation given the player’s performance while the performance of all

players in a team is mixed together with their names lost or ignored. This is be-

cause the latter addresses the team ability given that performance, thus sharing the

same methodology of estimating team ability. For example, pre-selecting parame-

ters based on performance (i.e., data explanation) affects the estimation of the team

ability; see Section 4.4.

This point generalizes to situations with many competing models. When the final

model is determined based on its performance—rather than on some prior belief—

after seeing all the models’ performance, the estimation of its true ability should

take into account all candidates’ performance. In fact, the final model, assumed

optimal, does not have to be one of the candidate models—it can be a modification

of one model or a weighted combination of all candidates.

Modern computing technology allows the investigation of larger and larger data

sets and the exploration of increasingly wide model spaces. Data mining (see, e.g.,

Fayyad et al., 1996; Friedman, 1997; Witten and Frank, 1999), as a burgeoning new

technology, often produces many candidate models from computationally intensive

algorithms. While this can help to find more appropriate models, the chance effects

increase. How to determine the optimal model given a number of competing ones

is precisely our concern above.

The subjective prior used in Bayesian analysis concerns the specification of the

model space in terms of probabilistic weights, thus relating to Fisher’s first problem

(see Section 1.1). Without a prior, the model space would otherwise be specified

implicitly with (for example) a uniform distribution. Both empirical Bayes and pace

regression fully exploit data after all prior information—including specification of

the model space—is given. Thus both belong to Fisher’s second problem type.

The story told by empirical Bayes and pace regression is that the data contains all
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necessary information for the convergence of optimal predictive modeling, while

the tips given by any prior information—the correctness of which is always subject

to practical examination—play at most a role of speeding up this convergence.

“Torturing” data is deemed to be unacceptable modeling practice (see Section 1.3).

In fact, however, empirical modeling always tortures the data to some extent—the

larger the model space, the more the data is tortured. Since some model space,

large or small, is indispensable, the correct approach is to take the effect of the

necessary data torturing into account within the modeling procedure. This is what

pace regression does. And does successfully.
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Appendix

Help files and source code

The ideas presented in the thesis are formally implemented in the computer lan-

guages of S-PLUS/R and FORTRAN 77. The whole program runs under ver-

sions 3.4 and 5.1 of S-PLUS (MathSoft, Inc.1), and under version 1.1.1 of R.2 Help

files for most important S-PLUS functions are included. The program is free soft-

ware; it can be redistributed and/or modified under the terms of the GNU General

Public License (version 2) as published by the Free Software Foundation.3

One extra software package is utilized in the implementation, namely the elegant

NNLS algorithm by Lawson and Hanson (1974, 1995), which is public domain and

obtainable from NetLib.4

The source code is organized in six files (five in S-PLUS/R and one in FORTRAN

77):

disctfun.q contains functions that handle discrete functions. They are mainly

employed in our work to represent discrete pdfs; in particular, the discrete,

arbitrary mixing distributions.
1http://www.mathsoft.com/
2http://lib.stat.cmu.edu/R/CRAN/
3Free Software Foundation, Inc. 675 Mass Ave, Cambridge, MA 02139, USA.

http://www.gnu.org/.
4http://www.netlib.org/lawson-hanson/all
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ls.q is basically an S-PLUS/R interface to functions in FORTRAN for solving

linear system problems, including QR transformation, non-negative linear

regression, non-negative linear regression with equality constraints, upper-

triangular equation solution.

mixing.q includes functions for the estimation of an arbitrary mixing distribu-

tions.

pace.q has functions about pace regression and for handling objects of class

“pace”.

util.q gives a few small functions.

ls.f has functions in FORTRAN for solving some linear systems problems.
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A.1 Help files

bmixing:

See mixing.

disctfun:

Constructor of a Discrete Function

DESCRIPTION:
Returns a univariate discrete function which is always
zero except over a discrete set of data points.

USAGE:
disctfun(data=NULL, values=NULL, classname, normalize=F,

sorting=F)

REQUIRED ARGUMENTS:
None.

OPTIONAL ARGUMENTS:
data: The set of data points over which the function takes

non-zero values.
values: The set of the function values over the specified data

points.
classname: Extra class names; e.g., c("sorted", "normed"), if

data are sorted and values are L1-normalized on input.
normalize: Will L1-normalize values (so as to make a discrete

pdf function).
sorting: Will sort data.

VALUE:
Returns an object of class "disctfun".

DETAILS:
Each discrete function is stored in a (n x 2) matrix,
where the first column stores the data points over which
the function takes non-zero values, and the second column
stores the corresponding function values at these points.

SEE ALSO:
disctfun.object, mixing.

EXAMPLES:
disctfun()
disctfun(c(1:5,10:6), 10:1, T, T)
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disctfun.object:

Discrete Function Object

DESCRIPTION:
These are objects of class "disctfun". They represent the
discrete functions which take non-zero values over a
discrete set of data points .

GENERATION:
This class of objects can be generated by the contructor
disctfun.

METHODS:
The "disctfun" class of objects has methods for these
generic functions: sort, print, is, normalize, unique,
plot, "+", "*", etc.

STRUCTURE:
Each discrete function is stored in a (n x 2) matrix,
where the first column stores the data points over which
the function takes non-zero values, and the second column
stores the corresponding function values at these points.

Since it is a special matrix, methods for matrices can be
used.

SEE ALSO:
disctfun, mixing.

fintervals:

Fitting Intervals

DESCRIPTION:
Returns a set of fitting intervals given the set of
fitting points.

USAGE:
fintervals(fp, rb=0, cn=3, dist=c("chisq", "norm"),

method=c("nnm", "pm", "choi", "cramer"), minb=0.5)

REQUIRED ARGUMENTS:
fp: fitting points. Allow being unsorted.

OPTIONAL ARGUMENTS:
rb: Only used for Chi-sqaured distribution. No fitting

intervals’ endpoints are allowed to fall into the interval
(0,rb). If the left endpoint does, it is replaced by 0; if
the right endpoint does, replaced by rb. This is useful
for the function mixing() when ne != 0.
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cn: Only for normal distribution. The length of each fitting
interval is 2*cn.

dist: type of distribution; only implemented for non-central
Chi-sqaure ("chisq") with one degree of freedom and normal
distribution with variance 1 ("norm").

method: One of "nnm", "pm", "choi" and "cramer"; see mixing.
minb: Only for Chi-squared distribution and method "nnm". No

right endpoint is allowed between (0, minb); delete such
intervals if generated.

VALUE:
fitting intervals (stored in a two-coloumn matrix).

SEE ALSO:
mixing, spoints.

EXAMPLES:
fintervals(1:10)
fintervals(1:10, rb=2)

lsqr:

QR Transformation of the Least Squares Problem

DESCRIPTION:
QR-transform the least squares problem

A x = b
into

R x = t(Q) b
where

A = Q R, and
R is an upper-triagular matrix (could be rank-

deficient)
Q is an orthogonal matrix.

USAGE:
lsqr(a,b,pvt,ks=0,tol=1e-6,type=1)

REQUIRED ARGUMENTS:
a: matrix A
b: vector b

OPTIONAL ARGUMENTS:
pvt: column pivoting vector, only columns specified in pvt are

used in QR-transformed. If not provided, all columns are
considered.

ks: the first ks columns specified in pvt are QR-transformed
in the same order. (But they may be deleted due to rank
deficiency.)

tol: tolerance for collinearity
type: used for finding the most suitable pivoting column.

1 based on explanation ratio.
2 based on largest diagonal element.
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VALUE:
a: R (including the zeroed elements)
b: t(Q) b
pvt: pivoting index
ks: pseudorank of R (determined by the value of tol)
w: explanation matrix.

w[1,] sum of squares in a[,j] and b[,j]
w[2,] sum of unexplained squares

DETAILS:
This is an S-Plus/R interface to the function LSQR in
FORTRAN. Refer to the source code of this function for
more detail.

REFERENCES:
Lawson, C. L. and Hanson, Richard J. (1974, 1995).
"Solving Least Squares Problems", Prentice-Hall.

Dongarra, J. J., Bunch, J.R., Moler, C.B. and Stewart,
G.W. (1979). "LINPACK Users’ Guide." Philadelphia, PA:
SIAM Publications.

Anderson, E., Bai, Z., Bischof, C., Blackford, S., Demmel,
J., Dongarra, J., Du Croz, J., Greenbaum, A., Hammarling,
S., McKenney, A., Sorensen, D. (1999). "LAPACK Users’
Guide." Third edition. Philadelphia, PA: SIAM
Publications.

EXAMPLES:
a <- matrix(rnorm(500),ncol=10)
b <- 1:50 / 50
lsqr(a,b)

mixing, bmixing:

Minimum Distance Estimator of an Arbitrary Mixing Distribution.

DESCRIPTION:
The minimum distance estimation of an arbitrary mixing
distribution based on a sample from the mixture
distribution, given the component distribution.

USAGE:
mixing(data, ne=0, t=3, dist=c("chisq", "norm"),

method=c("nnm", "pm", "choi", "cramer"))
bmixing(data, ne = 0, t = 3, dist = c("chisq", "norm"),

method = c("nnm", "pm", "choi", "cramer"),
minb = 0.5)

REQUIRED ARGUMENTS:
data: A sample from the mixture distribution.
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OPTIONAL ARGUMENTS:
ne: number of extra points with small values; only used for

Chi-square distribution.
t: threshold for support points; only used for Chi-square

distribution.
dist: type of distribution; only implemented for non-

central Chi-square ("chisq") with one degree of freedom
and normal distribution with variance 1 ("norm").

method: one of the four methods:
"nnm": based on nonnegative measures (Wang, 2000)
"pm": based on probability measures (Wang, 2000)
"choi": based on CDFs (Choi and Bulren, 1968)
"cramer": Cramer-von Mises statistic,

also CDF-based (MacDonald, 1971).

The default is "nnm", which, unlike the other three, does
not have the minority cluster problem.

minb: Only for Chi-squared distribution and method "nnm". No
right endpoint is allowed between (0, minb); delete such
intervals if any.

VALUE:
the estimated mixing distribution as an object of class
"disctfun".

DETAILS:
The seperability of data points are tested by the function
mixing() using the function separable(). Each block is
handled by the function bmixing().

REFERENCES:
Choi, K., and Bulgren, W. B. (1968). An estimation
procedure for mixtures of distributions. J. R. Statist.
Soc. B, 30, 444-460.

MacDonald, P. D. M. (1971). Comment on a paper by Choi and
Bulgren. J. R. Statist. Soc. B, 33, 326-329.

Wang, Y. (2000). A new approach to fitting linear models
in high dimensional spaces. PhD thesis, Department of
Computer Science, University of Waikato, New Zealand.

SEE ALSO:
pace, disctfun, separable, spoints, fintervals.

EXAMPLES:
mixing(1:10) # mixing distribution of nchiq
bmixing(1:10)
mixing(c(5:15, 50:60)) # two main blocks
bmixing(c(5:15, 50:60))
mixing(c(5:15, 50:60), ne=20) # ne affects the estimation
bmixing(c(5:15, 50:60), ne=20)
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nnls, nnlse:

Problems NNLS and NNLSE

DESCRIPTION:
Problem NNLS (nonnegative least squares):

Minimize || A x - b ||
subject to x >= 0

Problem NNLSE (nonnegative least squares with equality
constraints):

Minimize || A x - b ||
subject to E x = f
and x >= 0

USAGE:
nnls(a,b)
nnlse(a, b, e, f)

REQUIRED ARGUMENTS:
a: matrix A
b: vector b
e: matrix E
f: vector f

VALUE:
x: the solution vector
rnorm: the Euclidean norm of the residual vector.
index: defines the sets P and Z as follows:

P: index[1:nsetp] INDEX(1)
Z: index[(nsetp+1):n]

mode: the success-failure flag with the following meaning:
1 The solution has been computed successfully.
2 The dimensions of the problem is bad,

either m <= 0 or n <= 0
3 Iteration count exceeded.

More than 3*n itereations.

DETAILS:
This is an S-Plus/R interface to the algorithm NNLS
proposed by Lawson and Hanson (1974, 1995), and to the
algorithm NNLSE by Haskell and Hanson (1981) and Hanson
and Haskell (1982).

Problem NNLSE converges to Problem NNLS by considering
Minimize || / A\ / b\ ||

|| | | x - | | ||
|| \e E/ \e f/ ||

subject to x >= 0
as e --> 0+.

Here the implemented nnlse only considers the situation
that xj >= 0 for all j, while the original algorithm
allows restriction on some xj only.
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The two functions nnls and nnlse are tested based on the
source code of NNLS (in FORTRAN 77), which is public
domain and obtained from http://www.netlib.org/lawson-
hanson/all.

REFERENCES:
Lawson, C. L. and Hanson, R. J. (1974, 1995). "Solving
Least Squares Problems", Prentice-Hall.

Haskell, K. H. and Hanson, R. J. (1981). An algorithm for
linear least squares problems with equality and
nonnegativity constraints. Math. Prog. 21 (1981), pp.
98-118.

Hanson, R. J. and Haskell, K. H. (1982). Algorithm 587.
Two algorithms for the linearly constrained least squares
problem. ACM Trans. on Math. Software, Sept. 1982.

EXAMPLES:
a <- matrix(rnorm(500),ncol=10)
b <- 1:50 / 50
nnls(a,b)
e <- rep(1,10)
f <- 1
nnlse(a,b,e,f)

nnlse:

See nnls.

pace:

Pace Estimator of a Linear Regression Model

DESCRIPTION:
Returns an object of class "pace" that represents a fit of
a linear model.

USAGE:
pace(x, y, va, yname=NULL, ycol=0, pvt=NULL, kp=0,

intercept=T, ne=0, method=<<see below>>, tau=2,
tol=1e-6)

REQUIRED ARGUMENTS:
x: regression matrix. It is a matrix, or a data.frame, or

anything else that can be coerced into a matrix through
function as.matrix().
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OPTIONAL ARGUMENTS:
y: response vector. If y is missing, the last column in x or

the column specified by ycol is the response vector.
va: variance of noise component.
yname: name of response vector.
ycol: column number in x for response vector, if y not

provided.
pvt: pivoting vector which stores the column numbers that will

be considered in the estimation. When NULL (default), all
columns are taken into account.

kp: the ordering of the first kp (=0, by default) columns
specified in pvt are pre-chosen. The estimation will not
change their ordering, but they are suject to rank-
deficiency examination.

intercept: if intercept should be added into the regression
matrix.

ne: number of extra variables which are pre-excluded before
calling this function due to small effects (i.e., A’s).
Only used for pace methods and cic.

method: one of the methods "pace6" (default), "pace2", "pace4",
"olsc", "ols", "full", "null", "aic", "bic", "ric", "cic".
See DETAILS and REFERENCES below.

tau: threshold value for the method "olsc(tau)".
tol: tolerance threshold for collinearity. = 1e-6, by default.

VALUE:
An object of class "pace" is returned. See pace.object for
details.

DETAILS:
For methods pace2, pace4, pace6 and olsc, refer to Wang
(2000) and Wang et al. (2000). Further, n-aymptotically,
aic = olsc(2), bic = olsc(log(n)), and ric = olsc(2
log(k)), where n is the number of observations and k is
the number of free parameters (or candidate variables).

Method aic is prospoed by Akaike (1973).

Method bic is by Schwarz (1978).

For method ric, refer to Donoho and Johnstone (1994) and
Foster and George (1994)

Method cic is due to Tibshirani and Knight (1997).

Method ols is the ordinary least squares estimation
including all parameters after eliminating (psuedo-)
collinearity, while method full is the ols without
eliminating collinearity. Method null returns the mean of
the response, included for reason of completeness.

REFERENCES:
Akaike, H. (1973). Information theory and an extension of
the maximum likelihood principle. Proc. 2nd Int. Symp.
Inform. Theory, suppl. Problems of Control and
Information theory, pp267-281.
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Donoho, D. L. and Johnstone, I. M. (1994). Ideal Spatial
Adaptation via Wavelet Shrinkage. Biometrika 81, 425-55.

Foster, D. and George, E. (1994). The risk inflation
criterion for multiple regression. Annals of Statistics,
22, 1947-1975.

Schwarz, G. (1978). Estimating the dimension of a model.
Annals of Statistics. Vol. 6, No. 2, March 1978. 461-464

Tibshirani, R. and Knight, K. (1997). The covariance
inflation criterion for model selection . Technical
report, November, 1997, Department of Statistics,
University of Stanford.

Wang, Y. (2000). A new approach to fitting linear models
in high dimensional spaces. PhD thesis, Department of
Computer Science, University of Waikato, New Zealand.

Wang, Y., Witten, I. H. and Scott, A. (2000). Pace
regression. (Submitted.)

SEE ALSO:
pace.object, predict.pace

EXAMPLES:
x <- matrix(rnorm(500), ncol=10) # completely random
pace(x) # equivalently, pace(x,method="pace6")
for(i in c("ols","null","aic","bic","ric","cic","pace2",

"pace4","pace6")) {cat("---- METHOD", i,"--- \n\n");
print(pace(x, method=i))}

y <- x %*% c(rep(0,5), rep(.5,5)) + rnorm(50)
# mixed effect response

for(i in c("ols","null","aic","bic","ric","cic","pace2",
"pace4","pace6")) {cat("---- METHOD", i,"--- \n\n");
print(pace(x, y, method=i))}

pace(x,y,method="olsc",tau=5)
pace(x,y, ne=20) # influence of extra variables

pace.object:

Pace Regression Model Object

DESCRIPTION:
These are objects of class "pace". They represent the fit
of a linear regression model by pace estimator.

GENERATION:
This class of objects is returned from the function pace
to represent a fitted linear model.

METHODS:
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The "pace" class of objects (at the moment) has methods
for these generic functions: print, predict.

STRUCTURE:
coef: fitted coefficients of the linear model.
pvt: pivoting columns in the training set.
ycol: the column in the training set considered as the

response vector.
intercept: intercept is used or not.
va: given or estimated noise variance (i.e., the unbiased OLS

estimate).
ks: the final model dimensionality.
kc: psuedo-rank of the design matrix (determined due to the

value of tol).
ndims: total number of dimensions.
nobs: number of observations.
ne: nubmer of extra variables with small effects.
call: function call.
A: observed absolute distances of the OLS full model.
At: updated absolute distances.
mixing: estimated mixing distribution from observed absolute

distances.

SEE ALSO:
pace, predict.pace, mixing

predict.pace:

Predicts New Obsevations Using a Pace Linear Model Estimate.

DESCRIPTION:
Returns the predicted values for the response variable.

USAGE:
predict.pace(p, x, y)

REQUIRED ARGUMENTS:
p: an object of class "pace".
x: test set (may or may not contain the response vector.)

OPTIONAL ARGUMENTS:
y: response vector (if not stored in x).

VALUE:
pred: predicted response vector.
resid: residual vector (if applicable).

SEE ALSO:
pace, pace.object.

EXAMPLES:
x <- matrix(rnorm(500), ncol=10)
p <- pace(x)
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xtest <- matrix(rnorm(500), ncol=10)
predict(p, xtest)

rsolve:

Solving Upper-Triangular Equation

DESCRIPTION:
Solve the upper-triangular equation

X * b = y

where X is an upper-triagular matrix (could be rank-
deficient). Here the columns of X may be pre-indexed.

USAGE:
rsolve(x,y,pvt,ks)

REQUIRED ARGUMENTS:
x: matrix X
y: vector y

OPTIONAL ARGUMENTS:
pvt: column pivoting vector, only columns specified in pvt are

used in solving the equation. If not provided, all columns
are considered.

ks: the first ks columns specified in pvt are QR-transformed
in the same order.

VALUE:
the solution vector b

DETAILS:
This is an S-Plus/R interface to the function RSOLVE in
FORTRAN. Refer to the source code of this function for
more detail.

REFERENCES:
Dongarra, J. J., Bunch, J.R., Moler, C.B. and Stewart,
G.W. (1979). "LINPACK Users’ Guide." Philadelphia, PA:
SIAM Publications.

Press, W.H., Flanney, B.P., Teukkolky S.A., Vatterling,
U.T. (1994). "Numerical Recipes in C." Cambridge
University Press.

Anderson, E., Bai, Z., Bischof, C., Blackford, S., Demmel,
J., Dongarra, J., Du Croz, J., Greenbaum, A., Hammarling,
S., McKenney, A., Sorensen, D. (1999). "LAPACK Users’
Guide." Third edition. Philadelphia, PA: SIAM
Publications.

EXAMPLES:
a <- matrix(rnorm(500),ncol=10)
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b <- 1:50 / 50
fit <- lsqr(a,b)
rsolve(fit$a,fit$b,fit$pvt)

separable:

Seperability of a Point from a Set of Points.

DESCRIPTION:
Test if a point could be separable from a set of data
points, based on probability, for the purpose of
estimating mixing distribution.

USAGE:
separable(data, x, ne=0, thresh=0.1,

dist=c("chisq", "norm"))

REQUIRED ARGUMENTS:
data: incrementally sorted data points.
x: a single point, satisfying that either x <= min(data) or x

>= max(data).

OPTIONAL ARGUMENTS:
ne: number of extra data points of small values (= 0, by

default). Only used from chisq distribution.
thresh: a threshold value based on probability (= 0.1, by

default). Larger value implies easier seperability.
dist: type of distribution; only implemented for non-

central Chi-square ("chisq") with one degree of freedom
and normal distribution with variance 1 ("norm").

VALUE:
T or F, implying whether x is separable from data.

DETAILS:
Used by the estimation of a mixing distribution so that
the whole set of data points could be seperated into
blocks to speed up estimation.

REFERENCES:
Wang, Y. (2000). A new approach to fitting linear models
in high dimensional spaces. PhD thesis, Department of
Computer Science, University of Waikato, New Zealand.

SEE ALSO:
mixing, pace

EXAMPLES:
separable(5:10, 25) # Returns T
separable(5:10, 25, ne=20) # Returns F, for extra small

# values not included in data.
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spoints:

Support Points

DESCRIPTION:
Returns the set of candidate support points for the
minimum distance estimation of an arbitrary mixing
distribution.

USAGE:
spoints(data, ne=0, dist=c("chisq", "norm"), ns=100, t=3)

REQUIRED ARGUMENTS:
data: A sample of the mixture distribution.

OPTIONAL ARGUMENTS:
ne: number of extra points with small values. Only used for

Chi-sqaured distribution.
dist: type of distribution; only implemented for non-

central Chi-square ("chisq") with one degree of freedom
and normal distribution with variance 1 ("norm").

ns: Maximum number of support points. Only for normal
distribution.

t: No support points inside (0, t).

VALUE:
Support points (stored as a vector).

SEE ALSO:
mixing, fintervals.

EXAMPLES:
spoints(1:10)
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A.2 Source code

disctfun.q:

# ------------------------------------------------------------
#
# Functions for manipulating discrete functions
#
# ------------------------------------------------------------

disctfun <- function(data=NULL, values=NULL, classname,
normalize = F, sorting = F)

{
if( missing(data) ) n <- 0
else n <- length(data)
if( n == 0) { # empty disctfun

if(is.null( version$language ) ) { # S language
d <- NULL
class(d) <- "disctfun"
return (d)

}
else { # R language

d <- matrix(nrow=0,ncol=2,dimnames =
list(NULL,c("Points", "Values")))

class(d) <- "disctfun"
return (d)

}
}
else {

if( missing(values) ) values <- rep(1/n,n)
else if (length(values) != n)

stop("Lengths of data and values must match.")
else if( normalize ) values <- values / sum(values)
d <- array(c(data, values),dim=c(n,2),dimnames =

list(paste("[",1:n,",]",sep=""),
c("Points", "Values")))

class(d) <- "disctfun"
}
if( ! missing(classname) )

class(d) <- unique( c(class(d), classname) )
if( missing(values) || normalize )

class(d) <- unique( c(class(d),"normed") )
if( is.sorted(data) )

class(d) <- unique( c(class(d), "sorted") )
if( sorting && !is.sorted(d) ) sort.disctfun(d)
else d

}

sort.disctfun <- function(d)
{
if (length(d) == 0) return (d)
if( is.sorted(d) ) return (d)
n <- dim(d)[1]
if( n != 1) {
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i <- sort.list(d[,1])
cl <- class(d)
d <- array(d[i,], dim=c(n,2),dimnames =

list(paste("[",1:n,",]",sep=""),
c("Points", "Values")))

class(d) <- cl
}
class(d) <- unique( c(class(d),"sorted") )
d

}

is.disctfun <- function(d)
{

if( is.na( match("disctfun", class(d) ) ) ) F
else T

}

normalize.disctfun <- function(d)
{

d[,2] <- d[,2] / sum(d[,2])
class(d) <- unique( c(class(d),"normed") )
d

}

print.disctfun <- function(d)
{

if( length(d) == 0 ) cat("disctfun()\n")
else if(dim(d)[1] == 0) cat("disctfun()\n")
else print(unclass(d))
invisible(d)

}

unique.disctfun <- function(d)
# On input, d is sorted.
{

count <- 1
if(dim(d)[1] >= 2) {
for ( i in 2:dim(d)[1] )

if( d[count,1] != d[i,1] ) {
count <- count + 1
d[count,] <- d[i,]

}
else d[count,2] <- d[count,2] + d[i,2]

disctfun(d[1:count,1], d[1:count,2],"sorted")
}
else {
class(d) <- c(class(d),"sorted")
d

}
}

"+.disctfun" <- function(d1,d2)
{

if(! is.disctfun(d1) | ! is.disctfun(d2) )
stop("the argument(s) not disctfun.")
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if( length(d1) == 0) d2
else if (length(d2) == 0) d1
else {

d <- disctfun( c(d1[,1],d2[,1]), c(d1[,2],d2[,2]), sort = T )
# In R, unique is not a generic function
unique.disctfun(d)

}
}

"*.disctfun" <- function(x,d)
{
if( is.disctfun(d) ) {

if( length(x) == 1 )
{ if( length(d) != 0 ) d[,2] <- x * d[,2] }

else stop("Inappropriate type of argument.")
# this seems necessary for R
class(d) <- unique(c("disctfun", class(d)))
d

}
else if( is.disctfun(x) ) {

if( length(d) == 1 )
{ if( length(x) != 0 ) x[,2] <- d * x[,2] }

else stop("Inappropriate type of argument.")
# this seems necessary for R
class(x) <- unique(c("disctfun", class(x)))
x

}
}

plot.disctfun <- function(d,xlab="x", ylab="y",lty=1,...)
{
if( length(d) != 0)

plot(d[,1],d[,2],xlab=xlab, ylab=ylab,type="h",...)
else cat("NULL (disctfun); nothing ploted.\n")

}

ls.q:

# ------------------------------------------------------------
#
# Functions for solving linear system problems.
#
# ------------------------------------------------------------

nnls <- function(a,b)
{
m <- as.integer(dim(a)[1])
n <- as.integer(dim(a)[2])
storage.mode(a) <- "double"
storage.mode(b) <- "double"
x <- as.double(rep(0, n)) # only for output
rnorm <- 0
storage.mode(rnorm) <- "double" # only for output
w <- x # n-vector of working space
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zz <- b # m-vector of working space
index <- as.integer(rep(0,n))
mode <- as.integer(0) # = 1, success
.Fortran("nnls",a,m,m,n,b,x=x,rnorm=rnorm,w,zz,index=index,

mode=mode)[c("x","rnorm","index","mode")]
}

nnls.disctfun <- function(s, sp)
{

index <- s$index[s$x[s$index]!=0]
disctfun(sp[index],s$x[index], normalize=T, sorting=T)

}

nnlse <- function(a, b, e, f)
{

eps <- 1e-3; # eps is adjustable.

nnls(rbind(e, a * eps), c(f, b * eps))
}

lsqr <- function(a,b,pvt,ks=0,tol=1e-6,type=1)
{

if ( ! is.matrix(b) ) dim(b) <- c(length(b),1)
if ( ! is.matrix(a) ) dim(a) <- c(1,length(a))
m <- as.integer(dim(a)[1])
n <- as.integer(dim(a)[2])
if ( m != dim(b)[1] )
stop("dim(a)[1] != dim(b)[1] in lsqr()")

nb <- as.integer(dim(b)[2])
if(missing(pvt) || is.null(pvt)) pvt <- 1:n
else if( ! correct.pvt(pvt,n) ) stop("mis-specified pvt.")
kp <- length(pvt)
kn <- 0
storage.mode(kn) <- "integer"
storage.mode(kp) <- "integer"
storage.mode(a) <- "double"
storage.mode(b) <- "double"
storage.mode(pvt) <- "integer"
storage.mode(ks) <- "integer"
storage.mode(tol) <- "double"
storage.mode(type) <- "integer"
if(ks < 0 || ks > kp) stop("ks out of range in lsqr()")
w <- matrix(0, nrow = 2, ncol = n+nb) # working space
storage.mode(w) <- "double"
.Fortran("lsqr", a=a,m,m,n,b=b,m,nb,pvt=pvt,kp,ks=ks,w=w,tol,

type)[c("a","b","pvt","ks","w")]
}

correct.pvt <- function(pvt,n) {
! ( max(pvt) > n || # out of range

min(pvt) < 1 || # out of range
any(duplicated(pvt)) # has duplicated
)

}

rsolve <- function(x,y,pvt,ks)
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{
if ( ! is.matrix(y) ) dim(y) <- c(length(y),1)
if ( ! is.matrix(x) ) dim(x) <- c(1,length(x))
m <- as.integer(dim(x)[1])
n <- as.integer(dim(x)[2])
mn <- min(m,n)
ny <- as.integer(dim(y)[2])
if(missing(pvt)) {

pvt <- 1:mn
}
if ( missing(ks) ) ks <- length(pvt)
if(ks < 0 || ks > mn) stop("ks out of range in lsqr()")
storage.mode(x) <- "double"
storage.mode(y) <- "double"
storage.mode(pvt) <- "integer"
storage.mode(ks) <- "integer"
.Fortran("rsolve", x,m,y=y,m,ny,pvt,ks)$y[1:ks,]

}

mixing.q:

# ------------------------------------------------------------
#
# Functions for the estimation of a mixing distribution
#
# ------------------------------------------------------------

spoints <- function(data, ne =0, dist = c("chisq", "norm"),
ns = 100, t = 3)

{
if( ! is.sorted(data) ) data <- sort(data)

dist <- match.arg(dist)
n <- length(data)
if(n < 2) stop("tiny size data.")

if(dist == "chisq" && (data[1] < t || ne != 0) ) {
sp <- 0
ns <- ns -1
if(data[n] == t) ns <- 1

}
else sp <- NULL
switch (dist,

"norm" = data, #seq(data[1], data[n], length=ns),
c(sp, data[data >= t]) )

}

fintervals <- function( fp, rb = 0, cn = 3,
dist = c("chisq", "norm"),
method = c("nnm", "pm", "choi", "cramer"),
minb = 0.5)

{
dist <- match.arg(dist)
method <- match.arg(method)
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switch( method,
"pm" = ,
"nnm" = switch( dist,

"chisq" = {f <- cbind(c(fp,invlfun(fp[(i<-fp>=minb)])),
c(lfun(fp),fp[i]) )

if( rb >= 0 ) {
f[f[,1] > 0 & f[,1] < rb, 1] <- 0
f[f[,2] > 0 & f[,2] < rb, 2] <- rb

}
f

},
"norm" = cbind( c(fp,fp-cn), c(fp+cn,fp) )),

"choi" = ,
"cramer" = switch( dist,

"chisq" = cbind(pmax(min(fp) - 50, 0), fp),
"norm" = cbind(min(fp) - 50, fp) )

)
}

lfun <- function( x, c1 = 5, c2 = 20 )
# ------------------------------------------------------------
# function l(x)
#
# Returns the right boudary points of fitting intervals
# given the left ones
# ------------------------------------------------------------
{

if(length(x) == 0) NULL
else {
x[x<0] <- 0
c1 + x + c2 * sqrt(x)

}
}

invlfun <- function( x, c1 = 5, c2 = 20 )
# ------------------------------------------------------------
# inverse l-function
# ------------------------------------------------------------
{

if(length(x) == 0) NULL
else {
x[x<=c1] <- c1
(sqrt( x - c1 + c2 * c2 / 4 ) - c2 / 2 )ˆ2

}
}

epm <- function(data, intervals, ne = 0, rb = 0, bw = 0.5)
# ------------------------------------------------------------
# empirical probability measure over intervals
# ------------------------------------------------------------
{

n <- length(data)
pm <- rep(0, nrow(intervals))
for ( i in 1:n )
pm <- pm + (data[i]>intervals[,1] & data[i]<intervals[,2]) +

( (data[i] == intervals[,1]) + (data[i] ==
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intervals[,2])) * bw
i <- intervals[,1] < rb & intervals[,2] >= rb
pm[i] <- pm[i] + ne
pm / (n + ne)

}

probmatrix <- function( data, bins, dist = c("chisq", "norm") )
# ------------------------------------------------------------
# Probability matrix
# ------------------------------------------------------------
{
dist <- match.arg(dist)
n<-length(data)
e <- matrix(nrow=nrow(bins),ncol=n)
for (j in 1:n)

e[,j] <- switch(dist,
"chisq" = pchisq1(bins[,2], data[j]) -
pchisq1(bins[,1], data[j]),
"norm" = pnorm(bins[,2], data[j]) -
pnorm(bins[,1], data[j]) )

e
}

bmixing <- function(data, ne = 0, t = 3, dist = c("chisq","norm"),
method = c("nnm","pm","choi","cramer"),
minb=0.5)

{
dist <- match.arg(dist)
method <- match.arg(method)

if( !is.sorted(data) ) {
data <- sort(data)
class(data) <- unique( c(class(data),"sorted") )

}

n <- length(data)

if( n == 0 ) return (disctfun())
if( n == 1 ) {

if( dist == "chisq" && data < t ) return ( disctfun(0) )
else return ( disctfun(max( data )) )

}

# support points
sp <- spoints(data, ne = ne, t = t, dist = dist)
rb <- 0
# fitting intervals
if(ne != 0) {

rb <- max(minb,data[min(3,n)])
fi <- fintervals(data, rb = rb, dist = dist, method = method,

minb=minb)
}
else fi <- fintervals(data, dist = dist, method = method,

minb=minb)

bw <- switch(method,
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"cramer" =,
"nnm" =,
"pm" = 0.5,
"choi" = 1 )

# empirical probability measure
b <- epm(data, fi, ne=ne, rb=rb, bw=bw)
a <- probmatrix(sp, fi, dist = dist)
ns <- length(sp)
nnls.disctfun(switch( method,

"nnm" = nnls(a,b),
nnlse(a,b,matrix(1,nrow=1,ncol=ns),1))

, sp)
}

mixing <- function(data, ne = 0, t = 3, dist = c("chisq","norm"),
method = c("nnm","pm","choi","cramer"))

{
dist <- match.arg(dist)
method <- match.arg(method)

n <- length(data)
if( n <= 1 )
return ( bmixing(data,ne,t=t,dist=dist,method=method) )

if( ! is.sorted(data) ) data <- sort(data)
d <- disctfun()
start <- 1
for( i in 1:(n-1) ) {
if( separable(data[start:i], data[i+1],ne, dist=dist) &&

separable(data[(i+1):n], data[i], dist=dist) ) {
x <- data[start:i]
class(x) <- "sorted"
d <- d + ( i - start + 1 + ne) *
bmixing(x,ne,t=t,dist=dist,method=method)

start <- i+1
ne <- 0

}
}
x <- data[start:n]
class(x) <- "sorted"
normalize( d + ( n - start + 1 + ne) *

bmixing(x,ne,t=t,dist=dist,method=method) )
}

separable <- function(data, x, ne = 0, thresh = 0.10,
dist = c("chisq","norm") )

{
if (length(x) != 1) stop("length(x) must be one.")

dist <- match.arg(dist)
n <- length(data)
mi <- data[1]

if (dist == "norm")
if( sum( 1 - pnorm( abs( x - data) ) ) <= thresh ) T
else F
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else {
rx <- sqrt(x)
p1 <- pnorm( abs(rx - sqrt(data)) )
p2 <- pnorm( abs(rx - seq(0,sqrt(mi),len=3)) )
if( sum( 1 - p1, ne/3 * (1 - p2) ) <= thresh ) T
else F

}
}

pmixture <- function(x, d, dist="chisq")
{
n <- length(x)
p <- rep(0, len=n)
for( i in 1:length(d[,1]) )

p <- p + pchisq1(x, d[i,1]) * d[i,2]
p

}

plotmix <- function(d, xlim, ylim=c(0,1), dist="chisq",...)
{
if( missing(xlim) ) {

mi <- min(d[,1])
ma <- max(d[,1])
low <- max(0, sqrt(mi)-3)ˆ2
high <- (sqrt(ma) + 3)ˆ2
xlim <- c(low,high)

}
x <- seq(xlim[1], xlim[2], len=100)
y <- pmixture(x, d, dist=dist)
plot(x,y,type="l", xlim=xlim, ylim=ylim, ...)

}

pace.q:

# ------------------------------------------------------------
#
# Functions for pace regression
#
# ------------------------------------------------------------

contrib <- function(a, as)
{
asˆ2 - (as - a)ˆ2

}

bhfun <- function(A, As) {
hrfun(sqrt(A),sqrt(As))

}

bhrfun <- function(a, as) # hrfun without being divided by (2*a)
{
contrib(a,as) * dnorm(a,as) + contrib(-a,as) * dnorm(-a,as)

}
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hfun <- function(A, As) {
hrfun(sqrt(A),sqrt(As))

}

hrfun <- function(a, as) {
(contrib(a,as)*dnorm(a,as)+contrib(-a,as)*dnorm(-a,as))/(2*a)

}

hmixfun <- function(A, d)
{

n <- length(A)
h <- rep(0,n)
rc <- sqrt(d[,1])
for( i in 1:n )
if( A[i] != 0 ) h[i] <- h[i] + hrfun(sqrt(A[i]),rc) %*% d[,2]

h
}

bffun <- function(A, As)
{

bfrfun(sqrt(A), sqrt(As))
}

bfrfun <- function(a, as)
# ffun() without being divided by (2*a)
{

dnorm(a, as) + dnorm(-a, as)
}

ffun <- function(A, As)
{

frfun(sqrt(A), sqrt(As))
}

frfun <- function(a, as)
{

( dnorm(a, as) + dnorm(-a, as) ) / (2*a)
}

fmixfun <- function(A, d)
{

n <- length(A)
f <- rep(0,n)
rc <- sqrt(d[,1])
for( i in 1:n )
f[i] <- f[i] + frfun(sqrt(A[i]),rc) %*% d[,2]

f
}

pace2 <- function(A, d)
{

k <- length(A)
con <- cumsum( hmixfun(A, d) / fmixfun(A, d) )
ma <- max(0,con)
ima <- match(ma, con, nomatch=0) # number of positive a’s
if(ima < k) A[(ima+1):k] <- 0 # if not the last one

177



A
}

pace4 <- function(A, d)
{
con <- hmixfun(A, d) / fmixfun(A, d)
A[con <= 0] <- 0
A

}

pace6 <- function(A, d, t = 0.5)
{
for( i in 1:length(A) ) {

de <- sum( bffun(A[i], d[,1]) * d[,2] )
if(de > 0)

A[i] <- (sum(sqrt(d[,1]) * bffun(A[i], d[,1])*d[,2])/de)ˆ2
}
A[A<=t] <- 0
A

}

pace <- function(x,y,va,yname=NULL,ycol=0,pvt=NULL,kp=0,
intercept=T,ne=0,
method=c("pace6","pace2","pace4","olsc","ols",

"ful ","null","aic","bic","ric","cic"),
tau=2,tol=1e-6)

{
method <- match.arg(method)
if ( is.data.frame(x) ) x <- as.matrix(x)
ncol <- dim(x)[2]
if(is.null(dimnames(x)[[2]]))

dimnames(x) <- list(dimnames(x)[[1]],paste("X",1:ncol,sep=""))
namelist <- dimnames(x)[[2]]
if ( missing(y) ) {

if(ycol == 0 || ycol == "last") ycol <- ncol
y <- x[,ycol]
if( is.null(yname) ) yname <- dimnames(x)[[2]][ycol]
x <- x[,-ycol]
if ( ! is.matrix(x) ) x <- as.matrix(x)
dimnames(x) <- list(NULL,namelist[-ycol])

}
if ( ! is.matrix(y) ) y <- as.matrix(y)
if (intercept) {

x <- cbind(1,x)
ki <- 1
kp <- kp + 1
if(! is.null(pvt)) pvt <- c(1,pvt+1)
dimnames(x)[[2]][1] <- "(Intercept)"

}
else ki <- 0
m <- as.integer(dim(x)[1])
n <- as.integer(dim(x)[2])
mn <- min(m,n)
if ( m != dim(y)[1] )

stop("dim(x)[1] != dim(y)[1]")
# first kp columns in pvt[] will maintain the same order
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kp <- max(ki,kp)
# QR transformation
if(method == "full" ) ans <- lsqr(x,y,pvt,tol=0,ks=kp)
else ans <- lsqr(x,y,pvt,ks=kp,tol=tol)
kc <- ks <- ans$ks # kc is psuedo-rank (unchangable),

# ks is used as the model dimensionality
b2 <- ans$bˆ2
if(missing(va)) {
if ( m - ks <= 0 ) va <- 0 # data wholly explained
else va <- sum(b2[(ks+1):m])/(m-ks) # OLS variance estimator

}
At <- A <- d <- NULL
mi <- min(b2[ki:ks])
if(va > max(1e-10, mi * 1e-10) ) { # Is va is tiny?
A <- b2[1:ks] / va
names(A) <- dimnames(x)[[2]][ans$pvt[1:ks]]

}
ne <- ne + (mn - ks)
# Check (asymptotically) olsc-equivalent methods.
switch( method,

"full" = , # full is slightly different from
# ols in that collinearity not
# excluded

"ols" = { # ols = olsc(0)
method <- "olsc"
tau <- 0

},
"aic" = { # aic = olsc(2)

method <- "olsc"
tau <- 2

},
"bic" = { # bic = olsc(log(n))

method <- "olsc"
tau <- log(m)

},
"ric" = { # ric = olsc(2log(k))

method <- "olsc"
tau <- 2 * log(ks)

},
"null" = { # null = olsc(+inf)

method <- "olsc"
tau <- 2*max(b2) + 1e20
ks <- kp

}
)

switch( method, # default method is pace2,4,6
"olsc" = { # olsc-equivalent methods

if( ! is.null(A) ) {
At <- A
names(At) <- names(A)
if(kp < ks)

ksp <- match(max(0,cum<-cumsum(At[(kp+1):ks]-tau)),
cum, nomatch=0)

else ksp <- 0
if(kp+ksp+1 <= ks) At[(kp+ksp+1):ks] <- 0
ks <- kp + ksp
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ans$b[1:ks] <- sign(ans$b[1:ks])*sqrt(At[1:ks]*va)
}

},
"cic" = { # cic method

if( ! is.null(A) ) {
At <- A
names(At) <- names(A)
kl <- ks - kp
if(kp < ks)

ksp <- match(max(0,cum <-
cumsum(At[(kp+1):ks] -

4*log((ne+kl)/1:kl))),
cum, nomatch=0)

else ksp <- 0
if(kp+ksp+1 <= ks) At[(kp+ksp+1):ks] <- 0
ks <- kp + ksp
ans$b[1:ks] <- sign(ans$b[1:ks]) *

sqrt(At[1:ks] * va)
}

},
if( ! is.null(A) && ks > 1) { # runs when va is not tiny

At <- A
names(At) <- names(A)
d <- mixing(A[2:ks],ne=ne) # mixing distribution
At[2:ks] <- get(method)(A[2:ks],d)
# get rid of zero coefs
ks <- ks - match(F, rev(At[2:ks] < 0.001),

nomatch = ks) + 1
ans$b[1:ks] <- sign(ans$b[1:ks]) * sqrt(At[1:ks] * va)

}
else { # delete variables that explain little data

ave <- mean(b2[1:ks])
ks <- ks - match(T, rev( b2[1:ks] > 1e-5 * ave),

nomatch=0) + 1
}
)

coef <- rsolve(ans$a[1:ks,],ans$b[1:ks,],ans$pvt[1:ks],ks)
i <- sort.list(ans$pvt[1:ks])
pvt <- ans$pvt[i]
coef <- coef[i]
names(coef) <- dimnames(x)[[2]][pvt[1:ks]]
if( ! is.null(yname) ) {

coef <- as.matrix(coef)
dimnames(coef)[[2]] <- yname

}
fit <- list(coef = coef, pvt = pvt, ycol = ycol, intercept =

intercept, va = va, ks = ks, kc = kc, ndims = n,
nobs = m, ne = ne, call = match.call() )

if( !is.null(A)) fit$A <- A
if( !is.null(At)) fit$At <- At
if( !is.null(d)) fit$mixing <- unclass(d)
class(fit) <- "pace"
fit

}

print.pace <- function (p) {
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cat("Call:\n")
print(p$call)
cat("\n")
cat("Coefficients:\n")
print(p$coef)
cat("\n")
cat("Number of observations:",p$nobs,"\n")
cat("Number of dimensions: ",length(p$coef)," (out of ", p$kc,

", plus ", p$ndims - p$kc, " abandoned for collinearity)\n",
sep="")

}

predict.pace <- function(p,x,y)
{

if( ! is.matrix(x) ) x <- as.matrix(x)
n <- dim(x)[1]
k <- length(p$pvt)
if( p$intercept )
if(k == 1) pred <- rep(p$coef[1],n)
else {

pred <- p$coef[1] + x[,p$pvt[2:k]-1,drop=FALSE] %*%
p$coef[2:k]

}
else pred <- x[,p$pvt] %*% p$coef
fit <- list(pred = pred)
if(! missing(y)) fit$resid <- y - pred
else if(p$ycol >= 1 && p$ycol <= ncol(x))
fit$resid <- x[,p$ycol] - pred

if( length(fit$resid) != 0 ) names(fit$resid) <- NULL
fit

}

util.q:

# ------------------------------------------------------------
#
# Utility functions
#
# ------------------------------------------------------------

is.sorted <- function(data)
{

if( is.na( match("sorted", class(data) ) ) ) F
else T

}

is.normed <- function(data)
{

if( is.na( match("normed", class(data) ) ) ) F
else T

}

normalize <- function(x,...) UseMethod("normalize")
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rchisq1 <- function(n, ncp = 0)
# rchisq() in S-Plus (up to version 5.1) does not work for
# non-central Chi-square distribution.
{
rnorm( n, mean = sqrt(ncp) )ˆ2

}

pchisq1 <- function(x, ncp = 0)
# The S+ language (both versions 3.4 and 5.1) fails to return 0
# for, say, pchisq(0,1,1). The same function in R seems to work
# fine. In the following, the probability value is set to zero
# when the location is at zero.
# Here we only consider the situation df = 1, using a new
# function name pchisq1. Also, efficiency is taken into account,
# within the application’s accuracy requirement.
{
i <- x == 0 | sqrt(x) - sqrt(ncp) < -10
j <- sqrt(x) - sqrt(ncp) > 10
p <- rep(0,length(x))
p[j] <- 1
p[!i & !j] <- pchisq(x[!i & !j], 1, ncp)
p

}
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ls.f:

c --------------------------------------------------------
subroutine upw2(a,mda,j,k,m,s2)
double precision a(mda,*), s2, e2
integer j,k,m

e2 = a(k,j) * a(k,j)
if( e2 > .1 * s2 ) then

s2 = sum2(a,mda,j,k+1,m)
else

s2 = s2 - e2
endif
end

c --------------------------------------------------------
c Constructs single Householder orthogonal transformation
c Input: a(mda,*) ; matrix A
c mda ; the first dimension of A
c j ; the j-th column
c k ; the k-th element
c s2 ; s2 = dˆ2
c Output: a(k,j) ; = a(k,j) - d
c d ; diagonal element of R
c q ; = - u’u/2, where u is the transformation
c ; vector. Hence should not be zero.
c --------------------------------------------------------

subroutine hh1(a,mda,j,k,d,q,s2)
integer mda,j,k
double precision a(mda,*),s2,d,q

if (a(k,j) .ge. 0) then
d = - dsqrt(s2)

else
d = dsqrt(s2)

endif
a(k,j) = a(k,j) - d
q = a(k,j) * d
end

c --------------------------------------------------------
c Performs single Householder transformation on one column
c of a matrix
c
c Input: a(mda,)
c m ; a(k..m,j) stores the transformation
c ; vectur u
c j ; the j-th column
c k ; the k-th element
c q ; q = -u’u/2; must be negative
c b(mdb,) ; stores the to-be-transformed vector
c l ; b(k..m,l) to be transformed
c Output: b(k..m,l) ; transformed part of b
c --------------------------------------------------------

subroutine hh2(a,mda,m,j,k,q,b,mdb,l)
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integer mda,m,k,j,mdb,l
double precision a(mda,*),q,b(mdb,*),s,alpha

s = 0.0
do 10 i=k,m

s = s + a(i,j) * b(i,l)
10 continue

alpha = s / q
do 20 i=k,m

b(i,l) = b(i,l) + alpha * a(i,j)
20 continue

end

c --------------------------------------------------------
c Constructs Givens orthogonal rotation matrix
c
c Algorithm refers to P58, Chapter 10 of
c C. L. Lawson and R. J. Hanson (1974).
c "Solving Least Squares Problems". Prentice-Hall, Inc.
c --------------------------------------------------------

subroutine gg1(v1, v2, c, s)
double precision v1, v2, c, s
double precision ma, r

ma = max(dabs(v1), dabs(v2))
if (ma .eq. 0.0) then

c = 1.0
s = 0.0

else
r = ma * dsqrt((v1/ma)**2 + (v2/ma)**2)
c = v1/r
s = v2/r

endif
end

c --------------------------------------------------------
c Performs Givens orthogonal transformation
c
c Algorithm refering to P59, Chapter 10 of
c C. L. Lawson an R. J. Hanson (1974).
c "Solving Least Squares Problems". Prentice-Hall, Inc.
c --------------------------------------------------------

subroutine gg2(c, s, z1, z2)
double precision c, s, z1, z2
double precision w

w = c * z1 + s * z2
z2 = -s * z1 + c * z2
z1 = w
end

c --------------------------------------------------------
function sum(a,mda,j,l,h)
integer mda,j,l,h,i
double precision a(mda,*)
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sum = 0.0
do 10 i=l,h

sum = sum + a(i,j)
10 continue

end

c --------------------------------------------------------
function sum2(a,mda,j,l,h)
integer mda,j,l,h,i
double precision a(mda,*)

sum2 = 0.0
do 10 i=l,h

sum2 = sum2 + a(i,j) * a(i,j)
10 continue

end

c --------------------------------------------------------
c stepwise least sqaures QR decomposition for equation
c a x = b
c i.e., a is QR-decomposed and b is QR-transformed
c accordingly. Stepwise here means each calling of this
c function either adds or deletes a column vector, into or
c from the vector pvt(0..ks-1).
c
c It is the caller’s responsibility that the added column is
c nonsingular
c
c Input: a(mda,*) ; matrix a
c m,n ; (m x n) elements are occupied
c ; it is likely mda = m
c b(mdb,*) ; vector or matrix b
c ; if is matrix, only the first column
c ; may help the transformation
c nb ; (m x nb) elements are occupied
c pvt(kp) ; pivoting column indices
c kp ; kp elements in pvt() are considered
c ks ; on input, the firs ks columns indexed
c ; in pvt() are already QR-transformed.
c j ; the pvt(j)-th column of a will be added
c ; (if add = 1) or deleted (if add = -1)
c w(2,*) ; w(1,pvt) saves the total sum of squares
c ; of the used column vectors.
c ; w(2,pvt) saves the unexplained sum of
c ; squares.
c add ; = 1, adds a new column and does
c ; QR transformation.
c ; = -1, deletes the column
c Output: a(,) ; QR transformed
c b(,) ; QR transformed
c pvt() ;
c ks ; ks = ks + 1, if add = 1
c ; ks = ks - 1, if add = -1
c w(2, *) ; changed accordingly
c --------------------------------------------------------

subroutine steplsqr(a,mda,m,n,b,mdb,nb,pvt,kp,ks,j,w,add)
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integer mda,m,n,mdb,nb,pvt(*),j,ks,kp
double precision a(mda,*),b(mdb,*),w(2,*),q,d,c,s
integer pj,k,add,pk

if( add .eq. 1 ) then
c -- add pvt(j)-th column

ks = ks + 1
pj = pvt(j)
pvt(j) = pvt(ks)
pvt(ks) = pj

call hh1(a,mda,pj,ks,d,q,w(2,pj))

do 20 k = ks+1,kp
pk = pvt(k)
call hh2( a,mda,m,pj,ks,q,a,mda,pk )
call upw2( a,mda,pk,ks,m,w(2,pk) )

20 continue
do 30 k = 1,nb

call hh2( a,mda,m,pj,ks,q,b,mdb,k )
call upw2( b,mdb,k,ks,m,w(2,n+k) )

30 continue
w(2, pj) = 0.0
a(ks, pj) = d
do 40 k = ks+1, m

a(k,pj) = 0.0
40 continue
50 continue

else
c -- delete pvt(j)-th column (swap with pvt(ks) and
c -- ks decrements)

ks = ks - 1
pj = pvt(j)
do 110 i = j, ks

pvt(i) = pvt(i+1)
110 continue

pvt(ks+1) = pj
c -- givens rotation --

do 140 i=j, ks
call gg1( a(i,pvt(i)), a(i+1,pvt(i)), c, s )
do 120 l=i, kp

call gg2( c, s, a(i,pvt(l)), a(i+1,pvt(l)) )
120 continue

do 130 l = 1, nb
call gg2( c, s, b(i,l), b(i+1,l))

130 continue
140 continue

do 145 j = ks+1, kp
pj = pvt(j)
w(2,pj) = w(2,pj) + a(ks+1,pj) * a(ks+1,pj)

145 continue
do 150 l = 1, nb

w(2,n+l) = w(2,n+l) + b(ks+1,l) * b(ks+1,l)
150 continue

endif
end
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c --------------------------------------------------------
c The pvt(j)-th column is chosen
c
c choose the column with the largest diagonal element
c
c type = 1 VIF-based, otherwise based on diagonal element
c
c Input: pvt ; column vector
c ks ; number of
c j ;
c --------------------------------------------------------

subroutine colj(pvt,ks,j,ln,w,tol,type)
integer pvt(*),ks,j,l,ln,type
double precision w(2,*),ma,now,tol

ma = tol * 0.1
do 10 l=ks+1,ln

if (ks .eq. 0) type = 2
now = colmax( w, pvt(l), type )
if (now .le. ma) goto 10
ma = now
j = l

10 continue
if(ma .lt. tol) j = 0
end

c --------------------------------------------------------
c returns the pivoting value, being subject to the
c examination < tol
c Input: w(2,*) ; w(1,j), the total sum of squares
c ; w(2,j), the unexplained sum of
c ; squares
c j ; the j-th column vector
c type ; = 1, VIF-based
c ; = 2, based on the diagonal element
c Output: colmax ; value
c --------------------------------------------------------

function colmax(w,j,type)
integer j, type
double precision w(2,*)

if (type .eq. 1) then
if(w(1,j) .le. 0.0) then

colmax = 0.0
else

colmax = w(2,j) / w(1,j)
endif

else
if(w(2,j) .le. 0.0) then

colmax = 0.0
else

colmax = dsqrt( w(2,j) )
endif

endif
end
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c --------------------------------------------------------
c QR decomposition for the linear regression problem a x = b
c
c Important note: on entry, the vector pvt[1:np] is given (and
c supposedly correct), the first ks (could be zero) elements
c in pvt(*) will always be kept inside the final selection.
c This is useful when, for example, the constant term is
c always included in the final model.
c --------------------------------------------------------

subroutine lsqr(a,mda,m,n,b,mdb,nb,pvt,kp,ks,w,tol,type)
integer pvt(*),tmp,ld
integer mda,m,n,mdb,nb,lp,kp,ks,type,pj
double precision a(mda,*), b(mdb,*)
double precision w(2,*),tol,ma

if(tol .lt. 1e-20) tol = 1e-20
ld = min(m,kp)

c computes the squared sum for each column of a and b
do 10 j=1,kp

pj = pvt(j)
w(1,pj) = sum2(a,mda,pj,1,m)
w(2,pj) = w(1,pj)

10 continue
do 15 j=1,nb

w(1,n+j) = sum2(b,mdb,j,1,m)
w(2,n+j) = w(1,n+j)

15 continue

c The first ks columns defined in pvt(*) are pre-chosen.
c However, they are subject to rank examination.

lp = ks
ks = 0
do 17 j=1,lp

pj = pvt(j)
ma = colmax(w,pj,type)
if(ma > tol) then

call steplsqr(a,mda,m,n,b,mdb,nb,pvt,kp,ks,j,w,1)
if ( ks .ge. ld) go to 18

endif
17 continue
18 continue
c lp is the number of pre-chosen column variables.

lp = ks
ld = min(ld,kp)

c the rest columns defined in pvt(*) are subject to
c rank examination

do 50 k=ks+1,ld
c -- choose the pivoting column j --

call colj(pvt,ks,j,kp,w,tol,type)
if(j .eq. 0) then

kp = k - 1
go to 60

endif
call steplsqr(a,mda,m,n,b,mdb,nb,pvt,kp,ks,j,w,1)
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50 continue
60 continue

c if ks is small, or less than n, forward is unnecessary.
c Forward selection is only necessary when backward is
c insufficient, such as there are too many (noncollinear)
c variables.

if( kp .gt. n .or. kp .gt. 200) then
call forward(a,mda,ks,n,b,mdb,nb,pvt,kp,ks,lp,w)

endif

call backward(a,mda,ks,n,b,mdb,nb,pvt,kp,ks,lp,w)

end

c --------------------------------------------------------
c forward : forward ordering based on data explanation
c a x = b
c
c Input: a(mda,*) ; matrix to be QR-transformed
c m,n ; (m x n) elements are occupied
c b(mdb,nb) ; (m x nb) elements are occupied
c pvt(kp) ; indices of pivoting columns
c kp ; the first kp elements in pvt()
c ; are to be used
c ks ; psuedo-rank of a
c lp ; the first lp elements indexed in pvt()
c ; are already QR-transformed and will not
c ; change.
c w(2,n+nb) ; w(1,) stores the total sum of each
c ; column of a and b.
c ; w(2,) stores the unexplained sum of
c ; squares
c Output: a(,) ; Upper triagular matrix by
c ; QR-transformation
c b(,) ; QR-transformed
c pvt() ; re-ordered
c --------------------------------------------------------

subroutine forward(a,mda,m,n,b,mdb,nb,pvt,kp,ks,lp,w)
integer pvt(*),tmp,ld
integer mda,m,n,mdb,nb,kp,ks,pj,jma,jth,li
double precision a(mda,*), b(mdb,*)
double precision w(2,*),ma,sum,r

do 1 j=lp+1,kp
pj = pvt(j)
w(2,pj) = sum2(a,mda,pj,lp+1,m)

1 continue

do 2 j=1,nb
w(2,n+j) = sum2(b,mdb,j,lp+1,m)

2 continue

do 130 i=lp+1,ks
ma = -1e20
jma = 0

189



do 20 j=i,kp
c -- choose the pivoting column j based on data explanation --

pj = pvt(j)
sum = 0.0
do 10 k = i, n

sum = sum + a(k,pj) * b(k,1)
10 continue
c w(2,pj) should not be zero

r = sum * sum / w(2,pj)
if(r > ma) then

ma = r
jma = j

endif
20 continue

if(jma .eq. 0) then
ks = i
goto 200

else
call steplsqr(a,mda,m,n,b,mdb,nb,pvt,kp,i-1,jma,w,1)

endif
130 continue

200 continue

end

c --------------------------------------------------------
c backward variable elimination
c --------------------------------------------------------

subroutine backward(a,mda,m,n,b,mdb,nb,pvt,kp,ks,lp,w)
integer pvt(*),tmp,lp
integer mda,m,n,mdb,nb,kp,ks,jmi,jth,kscopy,pj
double precision a(mda,*), b(mdb,*)
double precision w(2,*),ma,absd,sum
double precision xxx(ks+nb),s2

c backward elimination; the rank ks is not supposed to change
kscopy = ks
do 50 j = ks, lp+1, -1

call coljd(a,mda,m,n,b,mdb,nb,pvt,kp,ks,lp+1,w,jmi)
call steplsqr(a,mda,m,n,b,mdb,nb,pvt,kp,ks,jmi,w,-1)

50 continue

c restores the rank and data explanation
ks = kscopy
do 100 j=lp+1,kp

pj = pvt(j)
s2 = sum2(a,mda,pj,lp+1,ks)
w(2,pj) = w(2,pj) - s2

100 continue

do 110 j=1,nb
s2 = sum2(b,mdb,j,lp+1,ks)
w(2,n+j) = w(2,n+j) - s2

110 continue
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end

c --------------------------------------------------------
subroutine coljd(a,mda,m,n,b,mdb,nb,pvt,kp,ks,jth,w,jmi)
integer pvt(*),tmp,ld
integer mda,m,n,mdb,nb,kp,ks,pj,jmi,jth
double precision a(mda,*), b(mdb,*)
double precision w(2,*),mi,val

mi = dabs( b(ks,1) )
jmi = ks
do 50 j = jth, ks-1

call coljdval(a,mda,b,mdb,pvt,ks,j,val)
if (val .le. mi) then

mi = val
jmi = j

endif
50 continue

end

c --------------------------------------------------------
subroutine coljdval(a,mda,b,mdb,pvt,ks,jth,val)
integer pvt(*)
integer mda,mdb,ks,jth
double precision a(mda,*), b(mdb,*)
double precision val,c,s
double precision xxx(ks)

do 10 j = jth+1, ks
xxx(j) = a(jth,pvt(j))

10 continue
val = b(jth,1)

do 50 j = jth+1, ks
call gg1( xxx(j), a(j,pvt(j)), c, s )
do 30 l=j+1, ks

xxx(l) = -s * xxx(l) + c * a(j,pvt(l))
30 continue

val = -s * val + c * b(j,1)
50 continue

val = dabs( val )
end

c --------------------------------------------------------
subroutine rsolve(a,mda,b,mdb,nb,pvt,ks)
integer mda,mdb,nb,ks
integer pvt(*)
double precision a(mda,*),b(mdb,*)

if(ks .le. 0) return
do 50 k=1,nb

b(ks,k) = b(ks,k) / a(ks,pvt(ks))
do 40 i=ks-1,1,-1

sum = 0.0
do 30 j=i+1,ks
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sum = sum + a(i,pvt(j)) * b(j,k)
30 continue

b(i,k) = (b(i,k) - sum) / a(i,pvt(i))
40 continue
50 continue

end
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