
A Simple Approach to Ordinal Classification

Eibe Frank and Mark Hall

Department of Computer Science
University of Waikato

Hamilton, New Zealand
{eibe, mhall}@cs.waikato.ac.nz

Abstract. Machine learning methods for classification problems com-
monly assume that the class values are unordered. However, in many
practical applications the class values do exhibit a natural order—for
example, when learning how to grade. The standard approach to ordinal
classification converts the class value into a numeric quantity and ap-
plies a regression learner to the transformed data, translating the output
back into a discrete class value in a post-processing step. A disadvan-
tage of this method is that it can only be applied in conjunction with a
regression scheme.
In this paper we present a simple method that enables standard classifi-
cation algorithms to make use of ordering information in class attributes.
By applying it in conjunction with a decision tree learner we show that
it outperforms the naive approach, which treats the class values as an
unordered set. Compared to special-purpose algorithms for ordinal clas-
sification our method has the advantage that it can be applied without
any modification to the underlying learning scheme.

1 Introduction

Classification algorithms map a set of attribute values to a categorical target
value, represented by a class attribute. Practical applications of machine learning
frequently involve situations exhibiting an order among the different categories
represented by the class attribute. However, standard classification algorithms
cannot make use of this ordering information: they treat the class attribute as a
nominal quantity—a set of unordered values.

Statisticians differentiate between four basic quantities that can be repre-
sented in an attribute, often referred to as levels of measurement [9]. There are
four types of measurements: nominal, ordinal, interval, and ratio quantities. The
difference between nominal and ordinal quantities is that the latter exhibit an
order among the different values that they can assume. An ordinal attribute
could, for example, represent a coarse classification of the outside temperature
represented by the values Hot, Mild, and Cool. It is clear that there is an order
among those values and that we can write Hot > Mild > Cool.

Interval quantities are similar to ordinal quantities in that they exhibit an
order. They differ because their values are measured in fixed and equal units. This
implies that the difference between two values can be determined by subtracting

them. This does not make sense if the quantity is ordinal. Temperature measured
in degrees Fahrenheit is an interval quantity. Ratio quantities additionally exhibit
a zero point. This means that it is possible to multiply their values.

Standard classification algorithms for nominal classes can be applied to or-
dinal prediction problems by discarding the ordering information in the class
attribute. However, some information is lost when this is done, information that
can potentially improve the predictive performance of a classifier.

This paper presents a simple method that enables standard classification
algorithms to exploit the ordering information in ordinal prediction problems.
Empirical results—obtained using the decision tree learner C4.5 [7]—show that
it indeed improves classification accuracy on unseen data. A key feature of our
method is that it does not require any modification of the underlying learning
algorithm—it is applicable as long as the classifier produces class probability
estimates.

The method is explicitly designed for ordinal problems—in other words, for
classification tasks with ordered categories. Standard regression techniques for
numeric prediction problems can be applied when the target value represents an
interval or ratio quantity. However, their application to truly ordinal problems
is necessarily ad hoc.

This paper is structured as follows. In Section 2 we present our approach
to ordinal classification. Section 3 contains experimental results on a collection
of benchmark datasets, demonstrating that the predictive accuracy of decision
trees can be improved by applying this method to exploit ordering information in
the class. Section 4 discusses related work on custom-made learning algorithms
for ordinal problems and approaches that use regression techniques for ordinal
classification. Section 5 summarizes the contributions made in this paper.

2 Transforming the Ordinal Classification Problem

Figure 1 shows in diagrammatic form how our method allows a standard classi-
fication learner to be applied to an ordinal prediction task. The data is from a
fictional temperature prediction problem and has an ordinal class attribute with
three values (Cool, Mild and Hot). The upper part depicts the training process
and the lower part the testing process.

A simple trick allows the underlying learning algorithms to take advantage of
ordered class values. First, the data is transformed from a k-class ordinal problem
to k−1 binary class problems. Figure 2 shows the process of converting an ordinal
attribute A∗ with ordered values V1, V2, ..., Vk into k − 1 binary attributes, one
for each of the original attribute’s first k − 1 values. The ith binary attribute
represents the test A∗ > Vi.

Training starts by deriving new datasets from the original dataset, one for
each of the k − 1 new binary class attributes. In Figure 1 there are two de-
rived datasets, the first has a class attribute that represents Target > Cool and
the second has a class attribute that represents Target > Mild. Each derived
dataset contains the same number of attributes as the original, with the same

Original
Dataset

Derived
Datasets

Classifiers

New
Instance

Attributes Target

5.7, 3.0, ... ?

1 - Pr(Target > Cool | 5.7, 3, ..) = 0.05

 Pr(Target > Cool | 5.7, 3, ..)
Pr(Target > Mild | 5.7, 3, ...)

=
0.25

Pr(Target > Mild | 5.7, 3, ..) = 0.7

Predicted
Class Hot

B: Target > Mild

Attributes Class

4.4, 3.9, ...
4.7, 3.2, ...
6.7, 3.1, ...
5.8, 2.7, ...
... ...

Cool
Cool
Mild
Hot

Attributes Target

4.4, 3.9, ...
4.7, 3.2, ...
6.7, 3.1, ...
5.8, 2.7, ...
... ...

0
0
0
1

Discrete class learner Discrete class learner

Pr(Target > Mild | X)

A: Target > Cool

Attributes Target

4.4, 3.9, ...
4.7, 3.2, ...
6.7, 3.1, ...
5.8, 2.7, ...
... ...

0
0
1
1

Pr(Target > Cool | X)

Fig. 1. How standard classification algorithms are applied to ordinal prediction

attribute values for each instance—apart from the class attribute. In the next
step the classification algorithm is applied to generate a model for each of the
new datasets.

To predict the class value of an unseen instance we need to estimate the
probabilities of the k original ordinal classes using our k − 1 models. Estima-
tion of the probability for the first and last ordinal class value depends on a
single classifier. The probability of the first ordinal value (Cool) is given by
1−Pr(Target > Cool). Similarly, the last ordinal value (Hot) is computed from
Pr(Target > Mild). For class values in the middle of the range—in this case
there is only one (Mild)—the probability depends on a pair of classifiers. In this

V V V V
1 2 3 4

A*

{V , V , V }
2 3 4

A*

{V , V }
1 2

A*

A*

{V }
1

1

3

2

{V , V }
3 4

{V , V , V }
1 2 3

{V }
4

Fig. 2. Transformation of an ordinal attribute with four values into three binary at-
tributes

example it is given by Pr(Target > Cool) − Pr(Target > Mild)). In general,
for class values Vi,

Pr(V1) = 1 − Pr(Target > V1)

Pr(Vi) = Pr(Target > Vi−1) − Pr(Target > Vi) , 1 < i < k

Pr(Vk) = Pr(Targe > Vk−1)

At prediction time, an instance of unknown class is processed by each of
the k − 1 classifiers and the probability of each of the k ordinal class values
is calculated using the above method. The class with maximum probability is
assigned to the instance.

3 Experimental Results

To test the hypothesis that the above method improves the generalization perfor-
mance of a standard classification algorithm on ordinal prediction problems, we
performed experiments on artificial and real-world datasets in conjunction with

Table 1. Datasets and their characteristics

Dataset Instances Attributes Numeric Nominal

Abalone 4177 9 7 2
Ailerons 13750 41 40 1
Delta Ailerons 7129 6 5 1
Elevators 16599 19 18 1
Delta Elevators 9517 7 6 1
2D Planes 40768 11 10 1
Pole Telecomm 15000 49 48 1
Friedman Artificial 40768 11 10 1
MV Artificial 40768 11 7 4
Kinematics of Robot Arm 8192 9 8 1
Computer Activity (1) 8192 13 12 1
Computer Activity (2) 8192 22 21 1
Census Domain (1) 22784 9 8 1
Census Domain (2) 22784 17 16 1
Auto MPG 398 8 4 4
Auto Price 159 16 15 1
Boston Housing 506 14 12 2
Diabetes 43 3 2 1
Pyrimidines 74 28 27 1
Triazines 186 61 60 1
Machine CPU 209 7 6 1
Servo 167 5 0 5
Wisconsin Breast Cancer 194 33 32 1
Pumadyn Domain (1) 8192 9 8 1
Pumadyn Domain (2) 8192 33 32 1
Bank Domain (1) 8192 9 8 1
Bank Domain (2) 8192 33 32 1
California Housing 20640 9 8 1
Stocks Domain 950 10 9 1

the C4.5 decision tree learner [7]. We used a collection of benchmark datasets
representing numeric prediction problems and converted the numeric target val-
ues into ordinal quantities using equal-frequency binning. This unsupervised
discretization method divides the range of observed values into a given number
of intervals so that the number of instances in each interval is approximately
constant. The resulting class values are ordered, representing variable-size inter-
vals of the original numeric quantity. This method was chosen because of the
lack of benchmark datasets involving ordinal class values.

The datasets were taken from a publicly available collection of regression
problems [8]. The properties of these 29 datasets are shown in Table 1. For each
dataset we created three different versions by discretizing the target value into
three, five, and ten intervals respectively. This was done to evaluate the influence
of different numbers of classes on the schemes’ relative performance.

All accuracy estimates were obtained by averaging the results from 10 sepa-
rate runs of stratified 10-fold cross-validation. In other words, each scheme was
applied 100 times to generate an estimate for a particular dataset. Throughout,
we speak of two results for a dataset as being “significantly different” if the
difference is statistically significant at the 1% level according to a paired two-
sided t-test, each pair of data points consisting of the estimates obtained in one
ten-fold cross-validation run for the two learning schemes being compared. A
significant difference in this sense means that, with high probability, a complete
cross-validation [4] on the dataset would result in a difference in accuracy.1

Table 2 shows the accuracy estimates for the decision tree learner C4.52

in the five-class situation, applied (a) without any modification of the input
and output (C4.5), (b) in conjunction with the ordinal classification method
presented in Section 2 (C45-ORD), and (c) using the standard one-per-class
method (see, e.g., [9]) for applying a two-class learner to a multi-class problem
(C4.5-1PC). We have included C4.5-1PC in the comparison to ascertain whether
overall differences in performance are due to the fact that we transform the multi-
class problem into several two-class problems. Standard deviations are also shown
(based on the 10 accuracy estimates obtained from the 10 cross-validation runs).

Results for C4.5 and C4.5-1PC are marked with ◦ if they show significant
improvement over the corresponding results for C4.5-ORD, and with • if they
show significant degradation. Table 3 shows how the different methods compare
with each other. Each entry indicates the number of datasets for which the
method associated with its column is (significantly) more accurate than the
method associated with its row.

The results show that the ordinal classification method frequently improves
performance compared to plain C4.5. On 18 datasets, C4.5-ORD is significantly
more accurate than C4.5, and significantly worse on none. The results also show
that the performance difference is not due to the fact that each learning problem
has been converted into several two-class problems: C45-ORD is significantly
more accurate than C4.5-1PC on 16 datasets, and significantly worse on only
four.

A sign test confirms the hypothesis that the ordinal classification procedure
from Section 2 improves performance. Note that the results for the two different
versions of the computer activity, census domain, pumadyn domain, and bank
domain datasets are highly correlated. Consequently we ignore the smaller ver-
sion of each of these four datasets when we perform the sign test (i.e. we only
consider version number 2 in each case). If this is done, C4.5-ORD wins against
plain C4.5 on 19 datasets and looses on only four (not taking the significance of
the individual differences into account). According to a two-sided sign test this
ratio is significant at the 0.005%-level. The win/loss-ratio between C4.5-ORD
and C4.5-1PC is 18/6 and significant at the 0.05%-level.

1 A complete cross-validation is performed by averaging across all possible cross-
validation runs that can be performed for a particular dataset.

2 We used the implementation of C4.5 that is part of the WEKA machine learning
workbench.

Table 2. Experimental results for target value discretized into five bins: percentage of
correct classifications, and standard deviation

Dataset C4.5-ORD C4.5 C4.5-1PC

Abalone 48.08±0.48 46.34±0.73 • 49.55±0.65 ◦
Ailerons 59.24±0.30 56.97±0.35 • 55.58±0.34 •
Delta Ailerons 56.00±0.33 55.54±0.50 • 56.77±0.15 ◦
Elevators 50.34±0.28 47.76±0.29 • 50.72±0.33 ◦
Delta Elevators 50.01±0.38 47.63±0.42 • 50.34±0.29
2D Planes 75.37±0.11 75.37±0.06 75.29±0.07
Pole Telecom 95.05±0.12 95.05±0.10 94.94±0.07
Friedman Artificial 66.49±0.18 64.83±0.18 • 64.01±0.13 •
MV Artificial 99.19±0.04 99.20±0.04 99.19±0.02
Kinematics of Robot Arm 47.23±0.39 43.69±0.41 • 42.58±0.70 •
Computer Activity (1) 65.93±0.40 63.75±0.32 • 65.03±0.32 •
Computer Activity (2) 68.69±0.47 66.80±0.47 • 66.76±0.44 •
Census Domain (1) 53.30±0.20 50.20±0.36 • 51.46±0.34 •
Census Domain (2) 51.51±0.26 48.96±0.33 • 50.97±0.21 •
Auto MPG 59.74±0.98 59.58±1.86 59.46±1.25
Auto Price 66.80±2.20 62.39±2.71 • 63.50±1.43 •
Boston Housing 61.01±1.39 59.34±1.49 • 59.70±1.65
Diabetes 28.95±2.87 26.55±5.21 33.80 ±2.63 ◦
Pyrimidines 43.27±2.85 42.27±3.51 42.68±2.78
Triazines 40.03±2.51 38.90±3.07 37.14±2.40 •
Machine CPU 58.10±1.32 56.78±2.78 56.62±2.43
Servo 52.63±1.57 55.16±2.09 49.82±1.65 •
Wisconsin Breast Cancer 21.46±1.89 22.92±3.48 21.71±1.40
Pumadyn Domain (1) 50.01±0.33 46.04±0.43 • 48.28±0.34 •
Pumadyn Domain (2) 65.73±0.33 62.67±0.42 • 63.51±0.37 •
Bank Domain (1) 74.04±0.24 73.14±0.31 • 73.27±0.36 •
Bank Domain (2) 38.67±0.52 37.37±0.59 • 36.01±0.22 •
California Housing 64.78±0.23 63.30±0.18 • 64.36±0.18 •
Stocks Domain 86.85±0.67 87.05±0.88 85.19±0.53 •

◦, • statistically significant improvement or degradation

Table 3. Pair-wise comparison for target value discretized into five bins: number in-
dicates how often method in column (significantly) outperforms method in row

C4.5-ORD C4.5 C4.5-1PC

C4.5-ORD – 4 (0) 6 (4)
C4.5 23 (18) – 15 (11)
C4.5-1PC 22 (16) 14 (7) –

An interesting question is whether the difference in accuracy depends on the
number of class values in the problem. A reasonable hypothesis is that the perfor-
mance difference increases as the number of classes increases. To investigate this
we also ran the three schemes on the same datasets with different discretizations
of the target value.

Tables 4 and 5 summarize the results for the three-bin discretization. They
show that there is relatively little to be gained by exploiting the ordering infor-
mation in the class. Compared to C4.5, C4.5-ORD is significantly more accurate
on 15 datasets, and significantly worse on none. However, C4.5-ORD does not
perform markedly better than C4.5-1PC: it is significantly more accurate on
10 datasets, and significantly worse on seven. It is interesting to see that the
one-per-class encoding outperforms plain C4.5 on these three-class datasets.

If the significance of the individual differences is not taken into account and
ignoring the smaller version of each pair of datasets from the same domain,
C4.5-ORD wins against C4.5 on 21 datasets, and looses on three. This difference
is statistically significant according to a two-sided sign test: the corresponding
p-value is smaller than 0.0002. However, compared to C4.5-1PC, the win/loss-
ratio for C4.5-ORD is 15/9, with a corresponding p-value of 0.1537. Thus there
is only very weak evidence that the ordinal classification method improves on
the standard one-per-class encoding.

For the ten-bin case we expect a more significant difference, in particular
when compared to the one-per-class method. This is confirmed in the experimen-
tal results summarized in Tables 6 and 7. The difference in performance between
C4.5-ORD and C4.5 remains high but increases only slightly when moving from
five to ten bins. C4.5-ORD outperforms C4.5 on all but six of the datasets. It
is significantly more accurate on 22 datasets, and significantly less accurate on
only two. Compared to C4.5-1PC, C4.5-ORD is significantly more accurate on
25 datasets, and significantly worse on two. This is a marked improvement over
the five-bin case and suggests that ordering information becomes more useful as
the number of classes increases.

Not considering the significance of individual differences and ignoring the
smaller version of each pair of datasets from the same domain, C4.5-ORD wins
against C4.5 on 19 datasets, and looses on six. According to a two-sided sign
test this ratio is significant at the 0.01%-level. Thus there is strong evidence that
C4.5-ORD outperforms C4.5 on a collection of datasets of this type. Compared
to C4.5-1PC, the win/loss-ratio for C4.5-ORD is 22/3, with a corresponding
p-value that is smaller than 0.0001. Consequently there is very strong evidence
that the ordinal classification method improves on the standard one-per-class
encoding.

4 Related Work

The ordinal classification method discussed in this paper is applicable in conjunc-
tion with any base learner that can output class probability estimates. Kramer
et al. [5] investigate the use of a learning algorithm for regression tasks—more

Table 4. Experimental results for target value discretized into three bins: percentage
of correct classifications, and standard deviation

Dataset C4.5-ORD C4.5 C4.5-1PC

Abalone 66.04±0.29 63.90±0.24 • 65.91±0.34
Ailerons 75.37±0.31 74.78±0.37 • 73.79±0.34 •
Delta Ailerons 80.52±0.25 80.34±0.17 80.90±0.17 ◦
Elevators 64.45±0.18 62.22±0.25 • 63.63±0.36 •
Delta Elevators 70.87±0.29 69.89±0.26 • 70.73±0.27
2D Planes 86.61±0.04 86.61±0.05 86.52±0.09 •
Pole Telecomm 95.90±0.12 95.64±0.10 • 95.58±0.10 •
Friedman Artificial 80.78±0.09 80.23±0.14 • 80.30±0.18 •
MV Artificial 99.51±0.02 99.53±0.02 99.55±0.03 ◦
Kinematics of Robot Arm 64.43±0.41 63.76±0.24 • 64.88±0.38 ◦
Computer Activity (1) 79.05±0.39 78.44±0.43 • 78.38±0.31 •
Computer Activity (2) 81.03±0.42 80.76±0.31 80.21±0.40 •
Census Domain (1) 70.49±0.18 69.58±0.27 • 70.95±0.18 ◦
Census Domain (2) 69.54±0.20 68.19±0.28 • 69.61±0.23
Auto MPG 78.81±1.26 78.12±1.14 79.16±1.32
Auto Price 86.25±1.38 85.36±1.60 85.87±1.27
Boston Housing 75.52±1.07 74.83±1.72 74.79±1.18
Diabetes 54.45±2.61 51.00±3.91 54.45±2.61
Pyrimidines 56.89±3.98 50.11±2.95 • 55.13±3.31
Triazines 54.42±3.24 54.18±3.20 54.11±2.84
Machine CPU 73.88±2.39 71.85±2.44 74.26±2.77
Servo 77.24±1.16 75.56±1.26 • 79.22±1.27 ◦
Wisconsin Breast Cancer 35.87±2.28 37.40±3.23 35.71±2.11
Pumadyn Domain (1) 66.81±0.45 66.02±0.28 • 67.37±0.32 ◦
Pumadyn Domain (2) 78.84±0.15 77.65±0.41 • 77.64±0.30 •
Bank Domain (1) 85.89±0.28 86.02±0.28 85.61±0.11 •
Bank Domain (2) 57.16±0.45 55.84±0.38 • 53.94±0.26 •
California Housing 78.94±0.11 79.02±0.17 79.42±0.16 ◦
Stocks Domain 91.74±0.53 91.24±0.53 91.77±0.45

◦, • statistically significant improvement or degradation

Table 5. Pair-wise comparison for target value discretized into three bins: number
indicates how often method in column (significantly) outperforms method in row

C4.5-ORD C4.5 C4.5-1PC

C4.5-ORD – 4 (0) 11 (7)
C4.5 24 (15) – 18 (11)
C4.5-1PC 17 (10) 11 (4) –

Table 6. Experimental results for target value discretized into ten bins: percentage of
correct classifications, and standard deviation

Dataset C4.5-ORD C4.5 C4.5-1PC

Abalone 29.44±0.36 26.68±0.61 • 27.43±0.58 •
Ailerons 39.36±0.32 36.64±0.37 • 35.76±0.32 •
Delta Ailerons 43.39±0.35 41.31±0.61 • 43.30±0.30
Elevators 31.39±0.33 28.58±0.35 • 29.77±0.38 •
Delta Elevators 40.60±0.25 36.90±0.44 • 41.44±0.23 ◦
2D Planes 54.93±0.14 53.00±0.14 • 51.25±0.32 •
Pole Telecom 91.18±0.09 90.85±0.14 • 89.34±0.15 •
Friedman Artificial 44.52±0.19 41.06±0.10 • 32.79±0.38 •
MV Artificial 98.11±0.03 98.17±0.05 97.36±0.06 •
Kinematics of Robot Arm 25.95±0.38 24.39±0.28 • 20.37±0.38 •
Computer Activity (1) 45.54±0.37 42.20±0.46 • 42.12±0.34 •
Computer Activity (2) 48.76±0.55 45.58±0.65 • 45.60±0.48 •
Census Domain (1) 33.04±0.17 30.50±0.23 • 29.00±0.21 •
Census Domain (2) 31.68±0.28 29.33±0.22 • 28.95±0.19 •
Auto MPG 36.43±1.27 39.63±1.70 ◦ 24.65±1.09 •
Auto Price 48.27±1.89 36.82±2.40 • 34.37±3.01 •
Boston Housing 42.40±1.05 38.61±1.25 • 35.93±1.65 •
Diabetes 14.85±3.27 23.00±3.12 ◦ 19.80±2.06 ◦
Pyrimidines 19.39±2.95 23.89±2.69 15.93±1.83 •
Triazines 20.30±1.49 16.50±1.94 • 12.22±1.74 •
Machine CPU 36.54±2.46 36.23±1.48 30.59±1.93 •
Servo 34.57±0.98 34.60±1.47 13.18±0.03 •
Wisconsin Breast Cancer 10.63±1.76 11.24±3.15 11.33±1.24
Pumadyn Domain (1) 26.46±0.32 23.69±0.61 • 16.60±0.43 •
Pumadyn Domain (2) 45.77±0.46 41.87±0.42 • 41.21±0.54 •
Bank Domain (1) 52.75±0.37 49.57±0.44 • 43.58±0.82 •
Bank Domain (2) 25.51±0.42 24.20±0.33 • 24.06±0.39 •
California Housing 44.68±0.28 42.67±0.32 • 39.47±0.27 •
Stocks Domain 74.84±1.32 72.69±0.76 • 72.09±0.70 •

◦, • statistically significant improvement or degradation

Table 7. Pair-wise comparison for target value discretized into ten bins: number indi-
cates how often method in column (significantly) outperforms method in row

C4.5-ORD C4.5 C4.5-1PC

C4.5-ORD – 6 (2) 3 (2)
C4.5 23 (22) – 6 (3)
C4.5-1PC 26 (25) 23 (17) –

specifically, a regression tree learner—to solve ordinal classification problems. In
this case each class needs to be mapped to a numeric value. Kramer et al. [5]
compare several different methods for doing this. However, if the class attribute
represents a truly ordinal quantity—which, by definition, cannot be represented
as a number in a meaningful way—there is no principled way of devising an
appropriate mapping and this procedure is necessarily ad hoc.

Herbrich et al. [3] propose a strategy for ordinal classification that is based on
a loss function between pairs of true ranks and predicted ranks. They present a
corresponding algorithm similar to a support vector machine, and mention that
their approach can be extended to other types of linear classifiers.

Potharst and Bioch [6] present a decision tree learning algorithm for mono-

tone learning problems. In a monotone learning problem both the input at-
tributes and the class attribute are assumed to be ordered. This is different from
the setting considered in this paper because we do not assume that the input is
ordered.

Although machine learning algorithms for ordinal classification are rare, there
are many statistical approaches to this problem. However, they all rely on specific
distributional assumptions for modeling the class variable and also assume a
stochastic ordering of the input space [3].

The technique of generating binary “dummy” attributes to replace an ordered
attribute can also be applied to the attributes making up the input space. Frank
and Witten [2] show that this often improves performance compared to treating
ordered attributes as nominal quantities. In cases where both the input and the
output are ordered, this technique can be applied in addition to the method
discussed in this paper to obtain further performance improvements.

The method presented in this paper is also related to the use of error-
correcting output codes for (unordered) multi-class problems [1]. Instead of using
error-correcting bit vectors to represent each class, we use bit vectors that reflect
the ordering of the class values. As opposed to choosing the bit vector with the
closest Hamming distance when making a prediction, our method selects the
vector which corresponds to the largest estimated class probability (computed
according to the procedure discussed in Section 2).

5 Conclusions

This paper presents a simple method that enables standard classification al-
gorithms to make use of ordering information in ordinal class attributes. The
method converts the original ordinal class problem into a series of binary class
problems that encode the ordering of the original classes. Empirical results based
on C4.5 show that this procedure is significantly more accurate than plain C4.5,
and C4.5 used in conjunction with the standard one-per-class method. They also
show that the performance gap increases with the number of classes. Our find-
ings demonstrate that the improvement in performance is a result of exploiting
ordering information and not simply as a side effect of transforming the problem
into a series of binary-class problems.

References

1. T. G. Dietterich and G. Bakiri. Solving multiclass learning problems via error-
correcting output codes. Journal of Artificial Intelligence Research, 2:263–286, 1995.

2. E. Frank and I. H. Witten. Making better use of global discretization. In Proceed-

ings of the Sixteenth International Conference on Machine Learning, Bled, Slovenia,
1999. Morgan Kaufmann.

3. R. Herbrich, T. Graepel, and K. Obermayer. Regression models for ordinal data: A
machine learning approach. Technical report, TU Berlin, 1999.

4. R. Kohavi. Wrappers for Performance Enhancement and Oblivious Decision Graphs.
PhD thesis, Stanford University, Department of Computer Science, 1995.

5. S. Kramer, G. Widmer, B. Pfahringer, and M. DeGroeve. Prediction of ordinal
classes using regression trees. Fundamenta Informaticae, 2001.

6. R. Potharst and J.C. Bioch. Decision trees for ordinal classification. Intelligent

Data Analysis, 4(2):97–112, 2000.
7. R. Quinlan. C4.5: Programs for Machine Learning. Morgan Kaufmann, San Fran-

cisco, 1993.
8. L. Torgo. Regression Data Sets. University of Porto, Faculty of Economics, Porto,

Portugal, 2001. [http://www.ncc.up.pt/∼ltorgo/Regression/DataSets.html].
9. I. H. Witten and E. Frank. Data Mining: Practical Machine Learning Tools and

Techniques with Java Implemenations. Morgan Kaufmann, San Francisco, 2000.

