
Applying propositional learning algorithms to

multi-instance data

Eibe Frank and Xin Xu

Department of Computer Science

University of Waikato

Hamilton, New Zealand

{eibe, xx5}@cs.waikato.ac.nz

June 17, 2003

Abstract

Multi-instance learning is commonly tackled using special-purpose al-
gorithms. Development of these algorithms has started because early
experiments with standard propositional learners have failed to produce
satisfactory results on multi-instance data—more specifically, the Musk
data. In this paper we present evidence that this is not necessarily the
case. We introduce a simple wrapper for applying standard propositional
learners to multi-instance problems and present empirical results for the
Musk data that are competitive with genuine multi-instance algorithms.
The key features of our new wrapper technique are: (1) it discards the
standard multi-instance assumption that there is some inherent difference
between positive and negative bags, and (2) it introduces weights to treat
instances from different bags differently. We show that these two modifi-
cations are essential for producing good results on the Musk benchmark
datasets.

1 Introduction

Despite a lack of fielded applications, multi-instance learning continues to at-
tract a good deal of interest in the machine learning community. A possible
reason is the potential for applications in the life sciences, as exemplified by
the drug activity problem that motivated the first in-depth investigation of this
type of learning problem [2]. Drug activity prediction can be viewed as a super-
vised classification problem where each molecule is an example and the class of
the example reflects whether the molecule is active or not. Each example has
only one class label but consists of a bag of instances. An instance represents
a possible conformation of the molecule. Propositional learners cannot be ap-
plied directly to this type of learning task because they require a class label for
every individual instance. A natural way of circumventing this problem is to
give the instances their bags’ label. At classification time a bag is classified as
positive if at least one of its instances is classified as positive (i.e. a molecule is
classified as active if at least one of its conformations is classified as active), and

1

negative otherwise [2]. However, results based on this wrapper method were dis-
appointing and spawned research into multi-instance learning algorithms that
are specifically designed to deal with bags of instances.

In this paper we present results suggesting that it may be premature to
abandon standard propositional learning algorithms when it comes to tackling
multi-instance problems. We present a simple wrapper that, in conjunction
with appropriate propositional learning algorithms, achieves high accuracy on
the Musk benchmark datasets. Like the wrapper described above our method
assigns every instance the class label of the bag that it pertains to. However,
it differs in two crucial aspects: (1) at training time, instances are assigned a
weight inversely proportional to the size of the bag that they belong to, and (2)
at prediction time, the class probability for a bag is estimated by averaging the
class probabilities assigned to the individual instances in the bag. This method
does not require any modification of the underlying propositional learner as long
as it generates class probability estimates and can deal with instance weights.
We present empirical results for a collection of well-known propositional learners
that are competitive with published results for multi-instance learners. Note
that this procedure does not exploit the original multi-instance assumption,
which states that a bag is positive if and only if at least one of its instances is
positive.

The paper is structured as follows. In Section 2 we describe our method in
more detail and motivate the design decisions we made. Section 3 interprets
the procedure in terms of the assumptions that it makes. Section 4 illustrates
the intuition behind it based on an artificial example problem. In Section 5 we
present empirical results for the Musk data based on applying our procedure in
conjunction with a variety of well-known propositional learning algorithms. In
Section 6 we discuss related work on multi-instance learning and in Section 7
we summarize our results.

2 A simple wrapper for multi-instance learning

In standard propositional classification problems each training example consists
of a single instance (a fixed-length vector of attribute values) and a correspond-
ing class label. The set of all possible instances is called the instance space and
the learning algorithm generates a mapping from this space to the set of possible
class labels. Usually, the aim is to find a mapping minimizing the number of
misclassifications on future data that has not been used for training.

Multi-instance learning is a generalization of this where each example con-
sists a bag of instances instead of only one, and the number of instances can
vary from one example to the next. However, there is still only one class la-
bel for each example. The difficulty of multi-instance learning arises from the
fact that it is unclear which of the instances are responsible for the bag’s class
label. The approach we take in this paper is to assume that all instances con-
tribute equally and independently to the bag’s label. This is a departure from
the standard approach, where the label of a bag is assumed to be determined
by the presence or absence of specific “key” instances. Whereas the latter ap-
proach requires a sophisticated method for identifying the key instances from
the training data, the former allows us to apply standard propositional learn-
ing algorithms by breaking a bag up into its individual instances and labeling

2

each instance with its bag’s label. The only caveat is that some examples have
more instances than others, yet they should receive equal weight in total. This
problem can be rectified by weighting the instances derived from a particular
bag so that the total weight for the bag is one. If there are n instances in a bag
we give each instance the weight 1/n (because we assume that the instances
contribute equally to the example’s class label we give them the same weight).
This weighting scheme ascertains that the learning algorithm will not be biased
towards particular examples (i.e. those with more instances). The experimental
results in Section 5 show that this is indeed important for obtaining accurate
classifications.

The question remains as to what to do at prediction time in order to generate
a classification for a new bag of instances. Because we assume that the instances
in a bag contribute independently to its class label the first step is to filter each
instance through the classification model built at training time to obtain a class
probability estimate for each of the possible classes. Then, in the second step,
these class probability estimates are combined to form a prediction for the bag
as a whole. Because we assume that all instances contribute equally to the bag’s
class label, we simply average the class probability estimates obtained from the
individual instances, giving each probability estimate equal weight. A side effect
of this is that the sum of a bag’s class probability estimates (taken over all the
classes) will be one.

This method of dealing with multiple instances is inspired by the way in
which the single-instance decision tree inducer C4.5 [10] deals with missing
attribute values. When C4.5 encounters an instance with a missing attribute
value at a particular node, the instance is cloned, once for each branch, and
each clone gets a weight proportional to the number of instances with known
values going down its branch. Thus the original example, consisting of only one
instance, is effectively replaced by a bag of instances. The only difference to our
approach is that C4.5 creates the bags on the fly, using knowledge inferred from
the data, whereas in our setting the bags are given prior to induction time (and
all the instances in a bag receive equal weight). Note also that C4.5 uses the
same method at prediction time: the class probability estimates obtained at the
leaf nodes are combined using the weights of the cloned instances arriving at
those leaves. Again, the only difference is that the bag is created on the fly and
that the instances’ weights are usually not equal. The underlying motivation is
the same: we are not sure which instantiation of the example is the correct one
and consequently compute the “expected” class probability.

3 Interpretation

In this section we interpret the above wrapper method in terms of the underlying
generative model that it assumes. Let b be a bag of instances. Then we compute
the probability of class c given that bag as follows:

Pr(c|b) = EX(Pr(c|x)|b) =

∫

X

Pr(c|x)Pr(x|b), (1)

In other words, we marginalize x out and assume that the probability of class
c is conditionally independent of b given x (i.e. knowledge of b does not affect
the class probability for a particular x). Given a concrete bag b of size n,

3

the estimated value of Pr(x|b) for each instance in the bag is 1/n, and zero
otherwise, and Pr(c|b) becomes the average of the class probability estimates
for the instances in the bag.

The question remains as to how we can estimate Pr(c|x). If we had a
single-instance version of the data available for training, we could estimate this
function using a propositional learner (e.g. a decision tree inducer) and then
apply Equation 1 for the bags observed at prediction time. However, in a
true multi-instance problem the training data is also in bag form. If we had a
class label for each individual instance in a bag, we could still use a standard
propositional learning algorithm to estimate Pr(c|x) by giving each instance the
weight 1/n. Assuming an instance-level loss function Loss(β, C) for a model
parameterized by β (e.g. the negative log-likelihood), the learner would then
minimize the following expected loss:

EB

[

EX|B [EC(Loss(β, C)|X)|B]
]

=
∑

i

1

N

∑

j

1

ni

EC(Loss(β, C)|xij), (2)

where N is the number of bags and ni the number of instances in bag i.
However, in typical multi-instance problems there is only one label for the

whole bag. Consequently our wrapper method performs a further simplification
of the problem: it assigns the bag label to each instance in the bag and uses this
as the training data for the propositional learner. This is a heuristic solution and
does not enable the propositional learner to recover the true function Pr(c|x). It
will necessarily produce a biased estimate of the class probabilities. However, as
we will see in the next section, there are special cases where the correct decision

boundary can be recovered (i.e. the classification performance is not affected),
and it is well-known that unbiased class probability estimates are not necessary
to obtain accurate classifications. Intuitively, this heuristic will work well if the
true class probabilities Pr(c|x) are “similar” for all the instances in a bag (and
the above generative model is correct). As our experimental results in Section 5
show, the method generates very accurate classifiers for the Musk benchmark
datasets.

4 An artificial example domain

To illustrate the behavior of our wrapper technique we consider an artificial
domain with two attributes. More specifically, we created bags of instances by
defining rectangular regions and sampling instances from within each region.
First, we generated coordinates for the centroids of the rectangles according to
a uniform distribution with a range of [−5, 5] for each of the two dimensions.
The size of a rectangle in each dimension was chosen from 2 to 6 with equal
probability. Each rectangle was used to create a bag of instances. To this end we
sampled n instances from within a rectangle according to a uniform distribution.
The value of n was chosen from 1 to 20 with equal probability.

It remains the question as to how we generate the class label for a bag. Our
generative model assumes that the class probability of a bag is the average class
probability of the instances within it, and this is what we used to generate the
class labels for the bags. The instance-level class probability was defined by the

4

Figure 1: An artificial dataset with 20 bags

-1

0

1

2

3

4

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

P
ar

am
et

er
 v

al
ue

Number of exemplars

Estimated coefficient 1
Estimated coefficient 2

Estimated intercept

Figure 2: Estimated parameters

-1

0

1

2

3

4

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

P
ar

am
et

er
 v

al
ue

Number of exemplars

Estimated coefficient 1
Estimated coefficient 2

Estimated intercept

Figure 3: “Unmasked” case

following linear logistic model:

Pr(y = 1|x1, x2) =
1

1 + e−3x1−3x2

Figure 1 shows a dataset with 20 bags that was generated according to this
model. The black line in the middle is the instance-level decision boundary
(i.e. where Pr(y = 1|x1, x2) = 0.5) and the sub-space on the right side has
instances with higher probability to be positive. A rectangle indicates the region
used to sample points for the corresponding bag (and a diamond indicates its
centroid). The top-left corner of each rectangle shows the bag index, followed
by the number of instances in the bag. Bags in gray belong to class “negative”
and bags in black to class “positive”. Note that bags can be on the “wrong”
side of the instance-level decision boundary because each bag was labeled by
flipping a coin based on the average class probability of the instances in it.

Because the instance-level probabilities are given by a linear logistic model,
we expect logistic regression (based on maximum likelihood) to be a good learn-
ing technique for this problem. Consequently we applied this technique in con-
junction with our wrapper method by giving each instance its bag’s class label
and weighting the instances so that the total weight of all the bags was the same.
Figure 2 plots the estimated coefficients of the linear model as the number of

5

training bags increases. The plot shows that the coefficients do not converge
to their “true” value (which is three for both coefficients and zero for the in-
tercept). However, they do converge to scaled versions of these parameters.
This means that the wrapper method finds the correct instance-level decision
boundary although the estimated value of Pr(y = 1|x1, x2) is systematically
biased (basically, the function has been “flattened”). Bag-level classification
performance is not affected because flattening Pr(y = 1|x1, x2) has no influence
on whether a bag is classified as positive or not. In fact, we found that for this
problem the wrapper achieves the same bag-level accuracy as the true model
on a collection of 10,000 independent test bags if trained on approximately 150
bags or more.

The bias in the probability estimates is introduced because the true instance-
level class labels have been “masked”: every instance receives its bag’s label.
However, because we have full control over the data generation process, we can
give each instance a class label according to Pr(y = 1|x1, x2) and run the wrap-
per method on this “unmasked” data. Figure 3 shows the resulting estimates
for the coefficients of the linear model. Note that the same weighting scheme
was used and the same bags, only the instances’ class labels were generated
differently. In this case, the method converges to the correct estimates.

Of course, in practice we only have one class label for each bag, and this will
result in biased class probability estimates. In fact, the wrapper will generally
not find the correct decision boundary either (even if we choose the correct
propositional learner as we did in this case). The above problem was carefully
constructed to be totally symmetric. For example, changing the slope of the
linear model means that the wrapper method will no longer identify it correctly.
However, it will find one that is very similar to it, resulting in a relatively small
loss in classification accuracy. This property appears to be sufficient to achieve
good performance on the Musk data as we will see in the next section.

5 Experimental results

In the following we present empirical results for the Musk drug activity data [2]
using our wrapper technique in conjunction with a number of well-known tech-
niques for propositional learning. Table 1 summarizes some properties of the
two Musk problems. Musk 1 is the smaller of the two datasets, mainly because
it contains a smaller number of instances per bag. We expect that Musk 2
presents a more challenging problem for the wrapper method because the bags
are larger and therefore more likely to exhibit instances whose “true” class la-
bel is not consistent with the bag’s class label. However, the default accuracy
is greater for Musk 2: predicting the majority class results in 61.76% correct
classifications. For the Musk 1 data the default accuracy is only 51.09%.

Table 2 shows accuracy estimates obtained using a variety of learning algo-
rithms implemented in the Weka workbench [11]. All estimates were obtained
using stratified 10-fold cross-validation repeated 10 times. The cross-validation
runs were performed at the bag level. For each run the order of the bags was
randomized and the data split into 10 subsets so that each subset had approx-
imately the same number of bags and the same class distribution. The same

6

Musk 1 Musk 2

Number of bags 92 102
Number of attributes 166 166
Number of instances 476 6598
Number of positive bags 47 39
Number of negative bags 45 63
Average bag size 5.17 64.69
Median bag size 4 12
Minimum bag size 2 1
Maximum bag size 40 1044

Table 1: Properties of the Musk 1 and Musk 2 datasets.

cross-validation runs were used for each learning scheme. The standard devia-
tion of the 10 cross-validation estimates is also shown in Table 2. The results
are sorted according to the average accuracy on the two datasets. If not ex-
plicitly stated otherwise, all learning algorithms were applied with their default
parameter settings in order to avoid introducing bias by parameter tuning.

Some of the learning schemes are sensitive to the absolute value of the in-
stance weights. For example, C4.5 stops splitting if the total weight of the
instances at a node is smaller than four.1 In our wrapper method this would
happen very early in the tree construction process if all bags received a total
weight of one each. Consequently we multiplied the weight of each instance by
a constant factor before applying the learning scheme so that the total weight
of all the instances in the data was the same as the number of instances, i.e. the
weight wij for instance i of bag j was rescaled into a new weight w′

ij as follows:

w′
ij =

m

N
× wij , (3)

where m is the total number of instances in the dataset (across all bags), and N
the total number of bags. Note that maximum likelihood methods (e.g. ordinary
logistic regression and fully grown decision trees) are not affected by this weight
rescaling step. However, techniques that perform some form of regularization
involving a trade-off between the complexity of the model and the performance
on the training data (e.g. support vector machines and Bayesian techniques)
are.

The best performance was obtained from a support vector machine with a
Gaussian kernel (“RBF Support Vector Machine”), trained using the sequen-
tial minimal optimization algorithm [8]. This algorithm is controlled by two
parameters: the complexity parameter C (bounding the coefficient of each sup-
port vector), and the width of the Gaussian kernel. Weka’s defaults for these
parameters are 1 and 0.01 respectively, and those values were left unchanged to
generate the result.

Support vector machines do not produce class probability estimates but our
wrapper method requires these. To obtain them we fit a simple linear logistic
model to the output of the support vector classifier by maximizing the likeli-
hood of the training data. Platt [9] recommends this procedure in conjunction

1If the default settings of its parameters are used.

7

Musk 1 Musk 2

RBF Support Vector Machine 89.13±1.15 87.16±2.14
Adaboost.M1 with C4.5 85.65±1.90 83.63±2.77
Bagging with PART 87.72±2.05 81.27±1.56
Adaboost.M1 with PART 85.87±2.61 82.94±1.74
Bagging with C4.5 86.41±2.13 79.61±2.44
Linear Support Vector Machine 84.35±2.36 80.69±1.73
PART 81.09±1.86 81.47±2.47
C4.5 84.13±3.21 78.24±2.39
Linear Logistic Regression 79.78±3.13 81.96±2.13
Nearest Neighbor 82.61±2.56 76.27±1.89
Naive Bayes 76.20±2.08 76.37±1.69

Table 2: Accuracy estimates from 10 runs of stratified 10-fold cross-validation.
The standard deviation of the 10 estimates is also shown.

with a cross-validation step to generate the training data for the logistic model.
However, we found that the cross-validation step was not necessary to obtain
accurate results. Another question is how the support vector machine can take
into account the instance weights that our wrapper method generates. This is
achieved by multiplying the bound C for a particular instance with its weight.

For reference, Table 2 also shows the accuracy for a linear support vector
classifier—based on the dot product kernel—applied in the same way. The
resulting drop in accuracy indicates that a non-linear estimator is essential to
obtain accurate results on this data. This is also reflected in the comparably bad
result for linear logistic regression (also shown in Table 2), where the weights
are taken into account by maximizing the weighted likelihood of the training
data.

Two other simple classifiers are naive Bayes and one nearest neighbor, and
both did not perform as well as the more sophisticated schemes (see Table 2).
Note that naive Bayes does not strictly fit into our framework because it does
not minimize an instance-level loss function based on posterior probabilities.
Also, it assumes that the attributes are independent and normally distributed
given the class, and both assumptions are likely to be incorrect in the Musk
problems. A problem with one nearest neighbor in this setting is that it cannot
take instance weights into account and that it produces very discrete probability
estimates (either 0 or 1). However, accuracy improves only slightly if more than
one neighbor is used (not shown).

Table 2 also shows results for the decision tree learner C4.5 (based on the
implementation in Weka), and for the decision list inducer PART [3]. Both
produce class probability estimates and can deal with instance weights. The
accuracy of these two methods is comparable. The former is slightly more
accurate than the latter on the Musk 1 data while the latter wins on Musk 2.
However, in both cases the accuracy is not as high as for the non-linear support
vector machine.

A possible explanation for this is that both methods can exhibit high vari-
ance, especially in large-dimensional numeric spaces like those we are consider-
ing here. A popular way to alleviate this problem is to use ensemble methods,

8

Musk 1 Musk 2

Bagging with PART 90.22±2.11 87.16±1.42
Bagging with C4.5 90.98±2.51 85.00±2.74
AdaBoost.M1 with C4.5 89.24±1.66 85.49±2.73
AdaBoost.M1 with PART 89.78±2.30 84.02±1.79
PART 84.78±2.51 87.06±2.16
C4.5 85.43±2.95 85.69±1.86

Table 3: Accuracy estimates and standard deviations for data discretized using
equal-frequency discretization (10 runs of stratified 10-fold cross-validation).

notably bagging and boosting. The latter often also reduces bias. We tried
both—in the case of bagging with unpruned decision trees and lists because
this often helps to further improve performance. Before discussing the results
we briefly explain how these techniques can generate probability estimates based
on weighted instances.

Bagging [1] can produce probability estimates simply by averaging the proba-
bilities obtained from the individual ensemble members. Instance weights can be
incorporated by modifying the sampling process used to generate the bootstrap
samples that are the basis for the committee members: instead of using equal
selection probabilities when sampling instances with replacement, the probabil-
ities can be made proportional to the corresponding instances’ weights. If this
is done, the distribution of instances in the bootstrap sample will reflect the
instance weights.

The boosting method we use, AdaBoost.M1 [5], was not originally designed
for producing class probability estimates. However, as Friedman et al. [6] show,
it can be interpreted as minimizing a loss function very similar to the binomial
likelihood commonly used for probability estimation. AdaBoost.M1 classifies
an instance as “positive” if the weighted vote of the committee members voting
“positive” for this instance is larger than the weighted vote for “negative”. The
weights are the classifier weights that AdaBoost.M1 generates at training time.
Let spos be the sum of the weights for the classifiers voting “positive”, and sneg

be the corresponding sum for the negative votes. Then the probability of the
instance belonging to the positive class is estimated by:

P̂ r(pos|x) =
espos

espos + esneg

(4)

Instance weights can be incorporated into AdaBoost.M1 in a very natural way.
The standard formulation of the algorithm starts with uniform weights. These
can simply be replaced by the weights given by our wrapper method.

Table 2 shows results based on 10 iterations for both bagging and boosting.
Bagging increases accuracy on Musk 1, especially for PART. However, there
is virtually no change on Musk 2. Boosting, on the other hand, improves the
accuracy on both problems. Increasing the number of boosting and bagging
iterations leads to further small improvements (not shown) but the accuracy
scores fall short of those obtained using the non-linear support vector machine.

In the experiments discussed so far we have not attempted to modify the at-
tribute values of the input data before applying a learning algorithm. However,

9

the Musk problems exhibit a large number of numeric attributes and global
discretization is a technique that often helps decision tree and list inducers if
this is the case. We experimented with different discretization methods and
found that simple equal-width discretization produced the best results, where
each numeric attribute was split into 10 intervals of equal size (10 is the default
in Weka), and converted into nine binary attributes by encoding the resulting
split points [4].

Table 3 shows the estimated accuracies for C4.5 and PART, and their bagged
and boosted versions (again with 10 iterations), on the discretized data. Note
that the discretization process was repeated from scratch for every individual
training set occuring in the 10 runs of 10-fold cross-validation. Compared to
the corresponding results in Table 2, the change in performance is quite strik-
ing. Discretization uniformly increases accuracy. For C4.5, PART, and their
bagged versions, the increase is more than five percent on the Musk 2 data.
On Musk 1, bagging and boosting now achieve accuracies around 90%. In fact,
bagged PART performs slightly better than the non-linear support vector ma-
chine from Table 2. Note that increasing the number bagging and boosting
iterations increases the accuracy only slightly (not shown).

So far we have not presented any evidence that the weighting scheme in
our wrapper is important. To demonstrate its effectiveness we modified the
procedure to give every instance a weight of one and ran it with C4.5 (without
discretization) on the two Musk problems. On Musk 1 the estimated accuracy
dropped from 84.13% to 77.28%, and on Musk 2 from 78.24% to 70.78%. This
demonstrates that the weighting scheme is indeed important to obtain good
results.

Another question is whether the wrapper uses an appropriate method for
prediction. In the paper that first introduced the Musk problems [2], proposi-
tional learners (more specifically, C4.5 and a multi-layer perceptron) were ap-
plied by giving each instance a weight of one at training time, and classifying
a bag as positive if at least one of its instances was classified as positive, and
negative otherwise. We repeated this experiment using ten runs of ten-fold
cross-validation and obtained 71.63% accuracy on Musk 1 and 58.73% on Musk
2. This is comparable to the results published in [2], which were 68.5% and
58.8% respectively. Introducing instance weights at training time improved the
accuracy to 77.17% and 65.78% respectively. However, this is worse than the
above results obtained by probability averaging at prediction time.

6 Related work

Most closely related to the results presented here is the work by Gärtner et al. [7].
Their paper also contains an extensive list of special-purpose multi-instance
algorithms that can be found in the literature. Gärtner et al. use a special set
kernel for support vector machines to tackle the Musk problems. The set kernel
simply takes all pairwise dot products between instances from two different bags
to compute a similarity score for the two bags. They present a proof showing
that problems for which the original multi-instance assumption holds can be
learned using this set kernel if the training data is fit closely enough. However
the learner never actually exploits the assumption and treats both classes in a
symmetric fashion (as we do in this paper). Using a Gaussian kernel on top of

10

the (normalized) set kernel, Gärtner et al. obtain 86.4% accuracy on Musk 1
and 88% accuracy on Musk 2.2 This is very similar to the results we obtained
using our wrapper technique and a support vector machine with a Gaussian
kernel (89.13% and 87.16% respectively), demonstrating that it is not necessary
to resort to a special kernel to tackle the Musk problems successfully with this
type of classifier. In addition our experiments show that similar performance
can be obtained with ensemble methods in conjunction with discretization.

Gärtner et al. also show that the Musk problems can be converted into
single-instance datasets by deriving a single instance from each bag based on
some form of summary statistics. They present experimental results obtained
by taking the minimum and maximum attribute values for each bag to form
a single instance (so that the corresponding single-instance dataset has twice
as many attributes as the original multi-instance dataset). In conjunction with
a standard support vector machine and a polynomial kernel of order five this
resulted in an estimated accuracy of 91.6% on Musk 1 and 86.3% on Musk 2.
Hence this alternative method of propositionalizing multi-instance problems is
competitive with the procedure presented in this paper, at least on the Musk
data. However, it is conceivable that the particular summary statistics used
may need to be adapted to the specific learning problem at hand, potentially
requiring some work from the end user. This is not necessary with our wrapper
technique.

7 Conclusions

We have presented a new wrapper approach for tackling multi-instance problems
with propositional learning algorithms and showed that it produces competitive
results on the Musk benchmark problems (if used in conjunction with an ap-
propriate propositional base learner). The wrapper can be employed with any
base learner that can (a) deal with instance weights and (b) produce probability
estimates, and most algorithms fall into this category.

We have shown that the wrapper can be viewed as a heuristic approach
for minimizing an expected instance-level loss, where the expectation is taken
over the bags, if we assume a certain generative model. However, this approach
leads to biased probability estimates. In future work we will attempt to create
a bag-level loss function that can be minimized directly.

Acknowledgments

Many thanks to Nils Weidmann, Bernhard Pfahringer, and Mark Hall for their
comments. This research was supported by Marsden Grant 01-UOW-019.

References

[1] L. Breiman. Bagging predictors. Machine Learning, 24(2):123–140, 1996.

2This was estimated using leave 10 out, which gives approximately the same results as

10-fold cross-validation on this data.

11

[2] T.G. Dietterich, R.H. Lathrop, and T. Lozano-Pérez. Solving the multiple-
instance problem with axis-parallel rectangles. Artificial Intelligence, 89(1-
2):31–71, 1997.

[3] E. Frank and I.H. Witten. Generating accurate rule sets without global op-
timization. In Proc Int Conf on Machine Learning, pages 144–151. Morgan
Kaufmann, 1998.

[4] E. Frank and I.H. Witten. Making better use of global discretization. In
Proc Int Conf on Machine Learning, pages 115–123. Morgan Kaufmann,
1999.

[5] Y. Freund and R.E. Schapire. Experiments with a new boosting algorithm.
In Proc Int Conf on Machine Learning, pages 148–156. Morgan Kauffman,
1996.

[6] J. Friedman, T. Hastie, and R. Tibshirani. Additive logistic regression: A
statistical view of boosting (with discussion). Annals of Statistics, 28:307–
337, 2000.

[7] T. Gärtner, P.A. Flach, A. Kowalczyk, and A.J. Smola. Multi-instance
kernels. In Proc Int Conf on Machine Learning, pages 179–186. Morgan
Kaufmann, 2002.

[8] J. Platt. Fast training of support vector machines using sequential minimal
optimization. In B. Schölkopf, C. Burges, and A. Smola, editors, Advances

in Kernel Methods—Support Vector Learning. MIT Press, 1998.

[9] J. Platt. Probabilistic outputs for support vector machines and comparisons
to regularized likelihood methods. In A. Smola, P. Bartlett, B. Schölkopf,
and D. Schuurmans, editors, Advances in Large Margin Classifiers. MIT
Press, 1999.

[10] J.R. Quinlan. C4.5: Programs for Machine Learning. Morgan Kaufmann,
1993.

[11] I.H. Witten and E. Frank. Data Mining: practical machine learning tools

and techniques with Java implementations. Morgan Kaufmann, 1999.

12

