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Abstract

This paper addresses the problem of automatically assigning a Library of
Congress  Classification  (LCC)  to  a  work  given  its  set  of  Library  of
Congress Subject Headings (LCSH). LCC are organized in a tree: the root
node  of  this  hierarchy  comprises  all  possible  topics,  and  leaf  nodes
correspond  to  the  most  specialized  topic  areas  defined.  We  describe  a
procedure  that,  given  a  resource  identified  by  its  LCSH,  automatically
places  that  resource in  the LCC hierarchy.  The procedure uses  machine
learning techniques and training data from a large library catalog to learn a
model which maps from sets of LCSH to classifications from the LCC tree.
We present empirical results for our technique showing its accuracy on an
independent collection of 50,000 LCSH/LCC pairs. 

1 Introduction 
The Library of Congress Classification (LCC) is a hierarchical set  of topic descriptors
used to categorize the intellectual content of a work, to situate the work relative to others
in the tree of knowledge, and (more prosaically) to place books on shelves. Because LCC1

are media-independent, they can be assigned to resources in digital and virtual libraries,
providing  compatibility  with  traditional  resources  and  an  access  method  familiar  to
librarians from the United States and around the world. 

INFOMINE (http://infomine.ucr.edu/) is a virtual library of over 20,000 scholarly Internet
resources  maintained  cooperatively  by  and  for  librarians.  Each  record  was  manually
created by a librarian, and describes a resource with standard library cataloging techniques,

1 Throughout this document we use the acronym LCC to refer both to the classification framework as
a whole, and to specific classifications within the framework. 
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including controlled terms from the Library of Congress Subject Headings (LCSH). The
INFOMINE  Project  requires  a  hierarchical  classification  for  each  resource,  but  in  a
collection this large (and growing) it is logistically impossible to assign such metadata
manually. 

This  lack  defines  our  problem:  we  wish  to  automatically  assign  a  hierarchical
classification to each INFOMINE record based on its extant metadata. Specifically, we
will learn to assign a classification from the LCC Outline to a resource based on a set of
LCSH  that  describe  that  resource.  The  solution  we  describe  uses  machine  learning
techniques  and training data  from an academic library catalog to  learn a classification
model that maps from sets of LCSH to nodes in the LCC tree. 

The problem is complicated by the large number of potential classifications: most machine
learning problems deal with hundreds of classes at most, but there are thousands of LCC.
For  this  reason,  prior  work  treats  LCC classification  as  an  information  retrieval  task:
virtual documents are created representing each class, and new examples are classified by
using similarity  measures  to  find the most  similar  “documents”  (Larson,  1991;  Dolin,
1998; Thompson et al., 1997). The hierarchical nature of the LCC is largely ignored. 

Our solution addresses the problem by exploiting its hierarchical nature. A pairwise linear
classifier is learned for every node in the LCC hierarchy that classifies an example as
belonging to that node or belonging to one of its child nodes. Each new record is first
classified by the root node classifier into one of the 21 top-level LCC nodes. The classifier
at that node is then used to classify it into a child node. This process repeats until a leaf
node is reached or an internal node classifier chooses itself ahead of any of its children. 

We provide an implementation that  assigns classifications  from the LCC Outline.  The
LCC Outline is a hierarchy of over four thousand nodes from the top of the LCC tree that
summarizes the full topic space. The Outline is only part of the LCC; we chose it because
it offers sufficient detail, is electronically available, and has been used in earlier studies
(Dolin, 1998). The implementation described is extensible to larger subsets of the LCC,
and to other hierarchical classifications such as the Dewey Decimal Classification (DDC). 

The hierarchical classifier is evaluated by training it on up to 800,000 records from the
library catalog of the University of California at Riverside, and testing it on a further set of
50,000 records. The classification accuracy is 55% when the classifier is trained on the full
training set, though this measure ignores “partial successes” like records that are assigned
a classification that is too general or too specific, so we report additional statistics that
measure partial success. We also extend the method to output multiple LCC classifications
with  corresponding  confidence  scores  and  evaluate  the  resulting  ranked  lists  of
predictions. 

The paper is arranged as follows. Section 2 summarizes the INFOMINE requirement that
motivated this work, and reviews related work on inferring LCC classifications from other
data. Section 3 explains how machine learning techniques are used to build a hierarchical
classifier for predicting LCC from LCSH. This method is evaluated in Section 4. The final
sections discuss the method and evaluation, compares the results to the previous studies,
and summarizes the work presented in this paper. 
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2 Background 
The INFOMINE Project (http://infomine.ucr.edu/) maintains an continuously expanding
database of over 20,000 scholarly Internet resources; each has LCSH metadata but lacks
LCC metadata, a lack this research aims to remedy. This section provides background on
the concepts and terminology used in the paper, describes the classification requirements
of the INFOMINE Project, and reviews the previous work in this area. 

2.1 Library of Congress Classifications and Subject
Headings 

Both  the  LCC and LCSH are sets  of  topic  descriptors  created and maintained by the
Library  of  Congress  (Library  of  Congress,1986-2001;  Library  of  Congress  Subject
Cataloging  Division,  2001).  The  LCC  are  arranged  hierarchically  and  are  typically
assigned singly, while the LCSH have little hierarchical structure but are assigned in sets
to each resource. There are approximately 100,000 LCC and 257,000 LCSH (Library of
Congress Subject Cataloging Division, 2001) but the exact number is indeterminate as
catalogers  can  establish  by  pattern descriptors  pertaining  to  new authors,  entities,  and
geographic regions. 

The LCC are divided into 21 Schedules, or top-level classifications. A specific descriptor
is identified by a key like  DA25.5. This example identifies a work in Schedule D (i.e.
History: General and Old World),  in  the subclass  DA  (i.e.  DA1-995 History  of  Great
Britain),  in  the  interval  DA20-690 (England)  and  the  narrower  interval  DA20-27.5
(General). The LCC are organized in a strict hierarchy where the root node encompasses
all possible topics, and leaf nodes correspond to the most specialized topic areas. LCC are
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Figure 1: A (very small) part of the LCC tree
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frequently used to assign “call  numbers” to books for shelving purposes,  consequently
most  resources  are  assigned  only  one  LCC.  They  are  typically  extended  with  cutter
numbers  to  expand  the  classification  and  create  a  unique  call  number.  We  are  not
interested  in  this  level  of  detail,  however,  and  will  focus  on  the  LCC  Outline:  4214
classifications selected from the top levels of all 21 schedules by the Library of Congress
for use by catalogers (Library of Congress, 1990). Figure 1 shows part of the LCC Outline.
Classifications are shown as large circles, with child nodes connected to their parents with
lines. Ellipses indicate the parts of the hierarchy that are not shown. For example, JC51-93
Ancient state is a leaf node, and is a child of JC Political theory. 

LCSH descriptors consist of English words or phrases like HISTORY  or BOTANY . The
specification includes some hierarchical structure, but the hierarchy is incomplete so we
treat  the  LCSH  as  flat.  However,  the  descriptors  can  be  refined  through  the  use  of
subdivisions: for example BOTANY  - PUERTO RICO - NOMENCLATURE describes a
book about the naming of plants in Puerto Rico. The first descriptor is referred to as the
subject  heading,  and  the  latter  are  topical,  form,  chronological,  geographical or  free-
floating subdivisions. 

There is an explicit correlation between the two schemes: approximately 36% of LCSH
headings  have  an  associated  LCC  (Library  of  Congress  Subject  Cataloging  Division,
2001).  In most library catalogs where they are employed, a single LCC is assigned in
conjunction with several LCSH. The LC rules of classification state that the LCC is based
on the first LCSH, but in practice this rule is often ignored (Larson, 1992). Consequently
there is no comprehensive crosswalk from LCSH to LCC. 

2.2 The classification goals of the INFOMINE Project 

Table 1 shows a typical INFOMINE record: as for all INFOMINE records, a librarian has
assigned  it  a  broad  INFOMINE  category  and  a  set  of  LCSH,  but  no  hierarchical
classification. As the INFOMINE collection has grown, it has become difficult to browse
with non-hierarchical structures: for example, browsing a list of thousands of keywords
alphabetically  is  awkward  and  unrewarding,  and  further  growth  will  exacerbate  the
problem. A more scalable approach is to let the user navigate a topic-based hierarchy from
broad top-level subject areas down to specialized topics and the documents pertaining to
them.  To  implement  this  solution,  the  collection  requires  hierarchical  subject-area
metadata. Specifically, each INFOMINE record will be classified into the LCC Outline. 

The LCC Outline has many advantages to recommend it. Although many categorization
schemes  have  been  proposed  for  Web  resources,  most  are  “lacking  the  rigorous
hierarchical structure and careful conceptual structure found in established schemes” like
the LCC and DDC (Chan, 2001). The LCC hierarchy, on the other hand, is maintained by
the Library of Congress, and refined as new topic areas are discovered; consequently it has
high-quality descriptors and great depth of coverage, and carries institutional authority.
Additionally, it is used in most US research libraries, as well as the Library of Congress,
so is well known to most librarians, and example classifications are easily found. 
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2.3 Related work: Automatically assigning LCC 

Previous examples of automatic LCC assignment differ from the present work in that they
are based on information retrieval techniques, that they attempt to  assign LCC to new
documents using other types of metadata, and in the extent to which the hierarchical nature
of the LCC is exploited. Like the present work, all rely on large training datasets drawn
from existing catalogs and can be adapted to other hierarchies. 

The earliest comparable research is Larson's study of the automatic selection of LCC for
Schedule Z (Bibliography and Library Science) (Larson, 1992). Larson's approach is to
create 8,435 clusters of documents with similar LCC, then to create virtual  documents
representing each LCC cluster using Title and LCSH metadata from 30,000 library catalog
records. New documents are classified by extracting their metadata, using an Information
Retrieval  similarity  measure  (Salton,  1971)  to  find  the  closest  virtual  document,  and
assigning that virtual document's LCC to the new document. 

5

Field Value 
Record 26396

Title AmphibiaWeb
URL http://elib.cs.berkeley.edu/aw/index.html

Category Biological, Agricultural and Medical Sciences
LCSH Amphibians;  Amphibians  -  Ecology;  Amphibians  -  Identification;

Amphibians - Taxonomy; Herpetology

Keywords Amphibia;  Databases;  Distribution  map;  Frogs;  Images;  Nature
conservation;  Reference  resources;  Salamanders;  Searchable;
Wildlife conservation

Authors Wake,  David;  Museum  of  Vertebrate  Zoology;  University  of
California, Berkeley;

Description “AmphibiaWeb, a site inspired by global amphibian declines, is an
online system that allows free access to information on amphibian
biology  and  conservation.  AmphibiaWeb  offers  ready  access  to
taxonomic information for every recognized species of amphibian in
the  world.  Species  descriptions,  life  history  information,
conservation status, literature references, photos and range maps are
available  for  many  species  and  are  being  added  to  regularly  by
specialists  and  volunteers  from  around  the  world.  In  addition,
AmphibiaWeb provides easy and fast access to museum specimen
data from large herpetological collections. We hope AmphibiaWeb
will encourage a shared vision for the study of amphibian declines
and the conservation of remaining amphibians.”

Created 2001-10-11 by SFM
Last modified 2001-10-11 by SFM

Table 1: An INFOMINE record from the “Biological, Agricultural and Medical
Sciences” category.
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Larson considered many parameters in his experiments (60 sets of results are presented).
The most interesting parameter is the metadata chosen to create the virtual documents. Of
the  five  combinations  tested—title  and all subject  headings,  title  and first  subject,  all
subject headings, first subject only and title only— the third (all subject headings) is almost
identical  to  the  data  considered  here.  Another  parameter  is  whether  complete  subject
headings should be treated as attributes, or broken down into their constituent words. Of
the 60 combinations of parameters tested, the best overall performance (first subject only)
was correct for 46.6% of 283 new books from Schedule Z. The accuracy when all subject
headings are considered and treated as terms was approximately 38%.2 However, the large
number of parameter combinations and the small amount of test data suggest these results
are optimistic. It is unclear how they generalize to the more realistic setting where all top-
level Schedules are considered. 

Scorpion is a program developed by the OCLC Project to assign DDC to Web resources
and other full-text documents that has been adapted to use the LCC (Thompson et  al.,
1997;  Godby  &  Stuler,  2001).  Like  Larson's  system,  it  works  by  creating  virtual
documents representing each of the possible classifications and using information retrieval
measures to compare new examples to the virtual documents. 

Scorpion  differs  from  Larson  in  two  important  respects.  First,  the  virtual  documents
representing  possible  classifications  are  not  created  by  clustering  similarly  classified
documents together, instead they are generated from the LCC hierarchy. Starting with the
full  LCC,  those  classifications  whose  textual  descriptions  contain  country  names  or
generic names,  or cross-references to other classifications are removed: in experiments
with the Q, R, S and T schedules 91% of the classifications are eliminated, leaving 6,314
classifications  (Godby  & Stuler,  2001).  Second,  virtual  documents  for  each  LCC are
derived  by  selecting  co-occuring  terms  from  OCLC's  World  Cat  (a  database  of
bibliographic records) and from the Library of Congress Subject Authority (a database of
canonical names and terms). Although the virtual documents are based on the hierarchical
LCC, they are (as in Larson) treated as flat by the similarity measure when classes are
assigned to new documents. No evaluation of Scorpion on independent data is reported. 

Pharos is a system for selecting information sources, such as newsgroups, by querying
their automatically assigned LCC (Dolin et al., 1998; Dolin, 1998). Underlying the system
is  a  mechanism for  automatically  classifying  documents  into  a  hierarchy  in  a  similar
manner to Larson and Scorpion. 

Pharos classifies documents into the LCC Outline. Virtual documents are created for each
classification using words from the title of the classification and from Title and  Subject
Heading fields drawn from a library catalog. Unlike Larson and Scorpion, which use the
SMART  information  retrieval  system  (Salton,  1971),  Pharos  uses  Latent  Semantic
Indexing (Dumais, 1991) to calculate similarity measures (in principle, any information
retrieval system, including SMART, can be used). 

Pharos was trained on 1.5 million records from the UCSB library, and evaluated on a

2 Estimated from Larson (1992), Figure 3. 
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subset  of  these  records3 and  on  a  set  of  newsgroup  documents  (this  experiment  was
inconclusive)  (Dolin,  1998).  The former resembles  our  own task,  and  classified  7214
records from all parts of the LCC hierarchy to an accuracy of around 14%. 

2.4 Related work: Hierarchical classification 

In the machine learning literature, Greiner et  al.'s work (1997) is most closely related to
what is presented in this paper. It investigates the effect of using a hierarchy of classes in
the context of a document categorization problem with 48 possible classifications. When
using pairwise classification  in  combination with a  linear  classifier4 (as  we do in  this
paper),  they  find  that  exploiting  the  class  hierarchy  is  beneficial  both  in  terms  of
computational complexity and predictive accuracy. 

Also  closely  related  is  Dumais  and  Chen's  work (2000).  They use  the  support  vector
machine algorithm to learn linear classifiers (as we do in this paper). However, instead of
using pairwise classification to solve the multi-class classification problems that occur in
the hierarchy, they employ the one-against-all technique, which is known to be inferior
both  in  terms  of  computational  complexity  and  in  terms  of  generalization  accuracy
(Fürnkranz, 2002). They evaluate their method on a hierarchy with 13 top-level categories
and 150 second-level categories, and find a significant improvement compared to using a
“flat”  classifier  that  is  trained  on  the  150  second-level  classes  alone.  A  very  similar
approach is used by Sun et al. (2001, 2002), and evaluated on hierarchies with up to eight
categories. D'Alessio et  al. (1998) use a heuristic linear classifier in conjunction with a
hierarchical  feature selection scheme in a similar fashion and find an improvement in
performance compared to a flat classifier based on experiments with a dataset containing
27 categories. 

Ng et  al. (1997) apply a hierarchical classifier to a text categorization problem with 93
categories  but  do  not  take  advantage  of  the  hierarchy  at  training  time.  Once a  linear
classifier based on the perceptron algorithm has been built for each category, the resulting
set  of  classifiers  is  organized  into  a  hierarchy,  which  is  traversed  recursively  at
classification  time.  Ruiz  and  Srinivasan  (2002)  extend  this  method  by  incorporating
feature and training set selection and non-linear multi-layer perceptrons instead of linear
perceptrons, testing it on a problem with 103 categories. 

Weigend et al. (1999) propose a hierarchical classifier that learns a multi-layer perceptron
to distinguish between a set of “meta”-categories and a multi-layer perceptron for each
individual category within a meta-category. Only data within a particular meta-category is
used to train the corresponding second level classifiers, making use of the hierarchy at
training time. The approach is evaluated on a dataset with 92 topics and shown to improve
on a flat multi-layer perceptron. 

Koller and Sahami (1997) hierarchically also demonstrate that using hierarchical structure

3 It is not clear that the testing set is distinct from the training set. 
4 Note that they explicitly omit details of the learning algorithm that is used to generate the linear
classifiers. 
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can improve classification  performance in  the context  of  two document categorization
problems with four and six classes respectively. They use a Bayesian classifier at each
node of the classification hierarchy and employ a feature selection method to find a set of
discriminating features (i.e. words) for each node. Mladenic and Grobelnik (1999) use this
approach to automatically place web documents into several large hierarchies extracted
from the real-world Yahoo hierarchy of web sites. Our method does not require a feature
selection step because we use the support vector machine learning algorithm (Cristianini &
Shaw-Taylor,  2000),  which  implicitly  determines  the  features  that  are  important  for
classification (Taira & Haruno, 1999). 

McCallum et al. (1998) show that a hierarchical class structure can be used to improve the
probability  estimates  of  a  Bayesian  classifier  by  shrinkage-based  smoothing  of  the
estimates obtained along a path through the hierarchy. The EM algorithm is used to find
good  parameter  values  for  smoothing.  Experimental  results  show  that  the  smoothing
procedure improves classification performance in three document categorization problems
with 71, 20, and 264 possible classifications respectively (compared to a flat  Bayesian
classifier that does not exploit the hierarchical structure). 

3 Predicting LCC from LCSH 
The goal of the present work is to classify resources into the LCC Outline based on the
metadata available in INFOMINE records. The problem exhibits two interesting features:
it  is  very  sparse,  and  has  a  hierarchical  class.  Our  method  takes  advantage  of  both
properties. 

To avoid the costs of manually classifying example records, we will draw examples from
library catalogs and use them to train a classification model based on the support vector
machine learning algorithm (Cristianini & Shaw-Taylor, 2000). Although both Title and
LCSH metadata are available in INFOMINE and library catalog records, we ignore Title
metadata  because  it  is  not  drawn  from  a  controlled  vocabulary  and  in  prior  work  it
provides little additional benefit (Larson, 1992). 

Our application essentially poses a text categorization problem, where the “text” of the
document consists of the LCSH, and the category to predict is the corresponding LCC
range.  Text  categorization  problems  are  generally  sparse  problems,  and  our  data  is
particularly sparse because there are few LCSH per document. Support vector machines
are the  state-of-the-art  machine learning method for  sparse classification,  and they are
known  to  be  more  accurate  than  other  machine  learning  and  information  retrieval
techniques on text categorization problems  (Joachims, 1998; Dumais, 1998). 

3.1 Preparing the data 

The classifier is trained on example records that have both an LCC and a set of LCSH
assigned. Most research library catalogs in the United States incorporate this metadata and
can be exported in Machine-Readable Cataloging (MARC) format (Library of Congress,
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1999). 

In our experiments, LCC data is extracted from MARC fields 050 or 090 (subfield $a),
and LCSH data from fields 650 and 651 (when the second indicator tag has value 0). Only
records that have both LCSH and LCC metadata are considered, and both the LCC and
LCSH are normalized. Individual LCC are converted to the most specific matching LCC
interval from the LCC Outline. This is usually a leaf node, but can be an internal node.
LCSH are converted to lowercase, all text appearing in parentheses is removed, and all
subdivisions (of all types) are removed. Table 2 shows some examples of normalized LCC
and LCSH with the raw versions that appear in the MARC records. 

The LCC Outline is available in book form from the Library of Congress (1990), but we
require  an  electronic  reproduction.  For  consistency,  we  used  the  same  version  as  the
Pharos project; see Dolin (1998) for a description of how it was assembled. This version
differs  in  some ways from the printed editions,  from recent  electronic versions in the
Classification  Web subscription  service5,  and  from the  on-line  version  currently  (June
2003)  provided  by  the  Library  of  Congress6,  (apparently  an update  of  the  6th printed
edition). As the full LCC is continually being improved, all of these versions provide only
a snapshot of the top of the LCC tree at a specific time. The work described in this paper is
applicable to any of these versions of the Outline, or any other hierarchical, electronically-
available  classification  scheme,  so  these  differences  are  not  material  to  the  results
presented below. An electronic copy of the LCC Outline used in this work can be obtained
from  the  Pharos  Web  site7,  the  INFOMINE  Web  site8,  or  by  contacting  the  authors
directly. 

Propositional machine learning methods require a very restricted form of input consisting
of a single table of data. The rows—properly called instances or examples—correspond to
the individual records. In our application each row corresponds to a single MARC record.
The  columns—called  attributes—encode  the  information  in  each  record.  In  our
application, the first attribute corresponds to the normalized LCC. This attribute is called
the  class attribute. The other attributes encode the normalized LCSH set. The classifier
will learn to predict the value of the class attribute from the values of the other attributes
by performing a statistical analysis of the dependencies in the data. 

Each row, or instance, must have the same set of attributes. This is achieved by creating a
binary attribute for every LCSH in the training data. The value of an attribute representing
a subject heading is “1” if the corresponding MARC record contains this subject heading,
and “0” otherwise. Table 3 shows a simple example training dataset with three records and
Table 4 shows the converted dataset. Note that in practice the vector of binary attribute
values for each instance is extremely sparse because most records are assigned fewer than
ten of the thousands of possible LCSH. 

5 http://lcweb.loc.gov/cds/classweb.html 
6 http://lcweb.loc.gov/catdir/cpso/lcco/lcco.html 
7 http://pharos.alexandria.ucsb.edu/data/ 
8 http://infoine.ucr.edu/projects/lcc_classification/ 

9



Frank and Paynter (2004) “Predicting Library of Congress Classifications From Library of Congress Subject Headings.”
To appear in the Journal of The American Society for Information Science and Technology.

3.2 Building a hierarchical classifier 

The objective of the classifier is to predict the most specific LCC range corresponding to
any set of one or more LCSH. There are a large number of possible nodes—4214 in the
LCC Outline—and this makes the learning problem computationally complex. Fortunately
the tree structure of the LCC Outline allows a hierarchical approach to learning, where the
learning task is decomposed into a series of feasible sub-problems. 

The key insight is that each node of the LCC tree poses a separate classification problem
by itself. At each node we have to decide which branch to follow—or whether to stop at
that node—for the set of LCSH that we want to classify. This means that we can apply the
learning algorithm at each node of the tree to generate a classifier that will tell us the most
likely branch for an instance with an unknown LCC. If there are N possible branches at a
node, the corresponding learning problem is an (N + 1)-class problem. To train a classifier
at a particular node we can extract all the instances in the training data that pertain to that
node by looking at their LCC. 

By filtering an instance down the tree according to the predictions of the classifiers that it
encounters along the way, it  will  finally arrive at  a node that corresponds to the most
specific LCC interval that can be assigned to it. This approach to hierarchical classification
is also known as the Pachinko Machine (McCallum et al., 1998). A crucial feature of the

10

Initial form Normalized LCC 
HE559.A5 HE380.8-560
NE642.T9 NE1-978
BJ37 BJ1-219

Initial form Normalized LCSH 
Harbors harbors
Harbors - Great Britain harbors
Ethics - Methodology ethics

Table 2: Examples of normalized LCC and LCSH and the raw version from the
SCOTTY catalog.

LCC LCSH 
HE380.8-560 harbors; pilot guides
NE1-978 harbors
BJ1-219 judgment; duty; ethics

Table 3: Example training dataset with three records.

LCC harbors pilot guides judgment duty ethics 
HE380.8-560 1 1 0 0 0
TP1142 1 0 0 0 0
BJ37 0 0 1 1 1

Table 4: Dataset from Table 3 converted into attribute-value format.
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problem considered in this paper is that an instance may not be filtered down all the way
to a leaf because the classifier at an internal node may decide that it is most appropriate for
the instance to stay at that node instead of being propagated further down. 

As well as making the learning problem more tractable, the hierarchical approach has the
advantage that it naturally captures the structure of the domain. The predictions at the root
node of the hierarchy are the most accurate but least specific ones, predictions become less
reliable (but more specific) further down the tree. Accurate high-level metadata can be
generated by looking at the predictions at the top level of the hierarchy. 

3.3 Learning the classification model 

Linear support vector machines are used to generate the individual classifiers at each node
of  the  hierarchy  because  they  are  known to  perform very  well  in  text  categorization
problems (Joachims, 1998; Dumais, 1998), and are computationally very efficient with
sparse data. The data is only used in terms of dot products between pairs of instances and
these  dot  products  can  be  implemented  as  sparse  dot  products  (Platt,  1999),  which
effectively means that only “1” values in the data incur a computational cost. Since our
data is extremely sparse—even compared to other text categorization problems—linear
support vector machines enable us to process large collections of training instances. They
also make the classification process for new instances very efficient. 

A linear support vector machine is a linear discriminant for separating instances belonging
to two classes. (We explain below how it can be applied to multi-class problems.) It differs
from standard statistical techniques for finding linear discriminants in that it generates a
very special discriminant function: the one that is maximally distant from the two classes
involved.  This  function  is  called  the  maximum  margin hyperplane.  Figure  2  shows a
maximum margin hyperplane for an artificial learning problem with two classes (because
there  are  only  two dimensions  the  hyperplane  is  a  line).  The  fact  that  this  particular
discriminant  is  used  is  a  key  factor  for  the  excellent  generalization  performance  that
support vector machines exhibit in practice. The solution typically depends on only a few
training  instances—the  ones  closest  to  the  decision  boundary—and  these  are  called
“support vectors”. Discarding any of the other instances does not change the position of
the boundary. 

Finding  the maximum margin hyperplane is  a  quadratic  optimization problem and the
underlying  mathematical  theory  is  complex.  Fortunately  there  is  a  relatively  simple
algorithm,  Sequential  Minimal  Optimization,  for  solving  this  optimization  task  (Platt,
1999).  This  algorithm is  computationally  efficient  in  terms  of  both  running  time  and
memory requirements. We used the implementation from the WEKA machine learning
workbench  (Witten  &  Frank,  2000)  which  is  efficient  and  incorporates  other
optimizations. 

The concept of a maximum margin hyperplane is only applicable if the data is perfectly
separable by a linear discriminant—otherwise this hyperplane is not defined. Fortunately
the  support  vector  machine  algorithm can  be  extended  to  a  soft  margin  classifier by
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allowing some instances to lie on the “wrong” side of the hyperplane (Cristianini & Shaw-
Taylor, 2000). This is achieved by introducing an upper bound on the influence of the
support vectors. The larger this upper bound the more closely the classifier can fit the
training data. Too large a value may lead to overfitting. In preliminary experiments we
tried two settings for this parameter. First we set the upper bound to 1000, allowing the
classifier to fit the training data very closely. Then we tried an upper bound of 1. We found
that both settings resulted in very similar accuracy. However, using a value of 1 made
learning much faster.  Consequently we adopted this  value for the experimental  results
reported in Section 4. 

The basic support vector machine performs binary (i.e. two-class) classifications; it is not
directly applicable to multi-class problems. However, the LCC hierarchy poses multi-class
problems at every node. It has been found experimentally that pairwise classification is an
efficient  and  effective  method  of  solving  multi-class  problems  with  binary  classifiers
(Fürnkranz, 2002). In this method a binary classifier is learned to distinguish between each
pair of classes using only instances from those two classes. If there are  m classes that
means  m  × (m – 1)/2 classifiers will be built. Only the instances pertaining to the two
classes involved are used to build a particular classifier, so pairwise classification scales
well with the number of classes. 

3.4 Making predictions 

Once the hierarchical classifier has been built by placing support vector machines at every
internal node of the tree, it can be used to classify a new instance for which the LCSH are
known but not the LCC. The first step is to convert the data into the appropriate format so
that it can be processed by the support vector machine classifiers. To this end the LCSH
are matched against the dictionary of headings that has been built up from the training
data.  If  a  particular  heading  from the  training  data  is  present  in  the  new record,  the
corresponding attribute's value is set to “1”, otherwise it is set to “0”. 
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Figure 2: A small two-class dataset with nine instances and the corresponding maximum
margin hyperplane
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The resulting sparse feature vector is used to filter the instance down the classification
hierarchy. This process starts by applying the support vector machine classifiers at  the
tree's root node, where there are 21 possible classifications. A child node is chosen using
the procedure for pairwise classification described above: the instance is processed by each
of the 210 (21 × (21 – 1)/2) binary classifiers and the class that receives the most votes in
total is predicted. Based on this prediction the instance is propagated down to one of the
21  possible  top-level  LCC  classifications.  The  classification  process  is  repeated
recursively within this category, and increasingly specific classifications are made. The
process  stops  when a  leaf  node is  reached,  or  when the  classifier  at  an internal  node
decides that the current node is more likely then any of its children. 

3.5 Predicting multiple LCC 

A  disadvantage  of  this  procedure  is  that  it  only  returns  one  path  through  the  LCC
hierarchy for a given set of LCSH. However, in practice it may be desirable to obtain a
ranked list of possible classifications because many documents cover more than one topic,
and in some applications it is preferable to allow for inaccuracies in the first classification. 

A ranked list can be established by associating a confidence score with each possible path
through the hierarchy in the following way. First we compute a score for every possible
prediction for every node of the hierarchy. Assume that there are m possible classes at a
node. Let ni be the number of votes associated with class i, and nbest the number of votes
for the “winner”. Then we assign a confidence of ni/nbest to class i. This means the “best”
candidate  at  a  particular  node  receives  a  score  of  one.  Then,  given  these  individual
confidence  scores  for  every  possible  classification  in  the  tree,  we  can  calculate  a
confidence score for every path by computing the product of the individual confidence
scores along it. 

The top-ranked path will always have a score of one. If there is no tie for first this will be
the same LCC as is output by the single-classification method above. In case of ties the
LCC classifications are output in the order in which they are encountered in a depth-first
search through the tree structure. Ties for first do not occur very frequently because in
most cases  nbest   is greater than the number of votes for the next-best class. Using the
classifier generated from the largest  amount of training data that we considered in our
experiments resulted in a tie for 3% of the records in the test data. 

3.6 Implementation 

Our implementation of the LCC classifier is Free Software distributed under the terms of
the GNU General Public License and is available from the INFOMINE Project.9

LCSHtoLCC is implemented in Java, and exploits two existing projects:  MARC4J and
WEKA . The MARC4J record parser10 is used to extract LCC and LCSH data from the

9 http://infomine.ucr.edu/download/ 
10 http://marc4j.tigris.org/
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MARC records. Any library catalog with LCSH and LCC metadata that can be exported as
MARC  records  can  be  used  to  train  and  test  LCSHtoLCC.  The  text  processing  and
learning components are drawn from the WEKA machine learning workbench (Witten &
Frank, 2000).11 

4 Empirical results 
This section provides empirical results to evaluate the method described in the previous
section. Our dataset is drawn from the library catalog of the University of California at
Riverside. It contains 868,836 examples, distributed among the 4214 classifications of the
LCC Outline. After shuffling the data randomly, we set the last 50,000 instances aside for
testing purposes, and trained the classifier on six separate training datasets, comprised of
the first 10,000; 50,000; 100,000; 200,000; 400,000; and 800,000 instances. 

4.1 Absolute accuracy 

Figure 3 shows the accuracy (in terms of percent correct) of the classifier on the test data
as the amount of training data increases. As a baseline it also shows the performance of a
simple, flat lookup-table classifier—called the “strawman”. The strawman classifier counts

11 http://www.cs.waikato.ac.nz/ml/weka 
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Figure 3: Accuracy on test data for given amount of training data
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the number of times the sequence of normalized LCSH from a test instance co-occurs with
each LCC Outline classification in the training data, and predicts the classification with the
highest co-occurrence. In the case of a tie it chooses randomly, and for LCSH records that
do not occur in the training data it predicts the LCC classification that is most frequent
overall in the training data. 

Table 5 summarizes the results in tabular form. It also shows, as an upper bound for the
strawman classifier, the percentage of the sequences of normalized LCSH in the test data
that occur at least once in the training data. Interestingly this percentage is much larger
than the accuracy of the strawman classifier. This implies that there are a large number of
records with contradictory LCC classifications (partly because we discard subdivisions in
the LCSH normalization process). This ambiguity means that no learning algorithm can
predict the test data perfectly. 

Classification accuracy increases as the amount of training data increases but the returns
diminish. The largest increase in accuracy occurs after processing the first 50,000 training
instances, demonstrating that at this point the main branches of the hierarchy are already
sufficiently populated for the learning algorithm to obtain accurate estimates. However, by
moving from 400,000 to 800,000 instances the accuracy still improves by more than two
percent.  This  indicates  that  adding  even  more  training  data  would  result  in  further
accuracy gains (although it appears that exponential growth in the training data is required
to achieve significant gains). Approximately 1% of the test instances do not exhibit any
LCSH occuring in the 800,000 training instances. For these instances the machine learning
algorithm  cannot  make  reliable  predictions,  though  we  have  included  them when  we
calculated the performance statistics.  When the hierarchical classifier is applied in real
applications, these records should be referred to a librarian for manual classification. 

4.2 Partial successes 

Straightforward accuracy is not the only performance measure that makes sense in this
application because it does not reward partially correct predictions (i.e. whether parts of
the  predicted  path  through  the  LCC  hierarchy  are  correct).  Table  6  contains  some
additional  performance  statistics  that  take  the  hierarchical  nature  of  the  problem into
account. 

Percent  too  specific measures  the  proportion  of  assigned  LCC  intervals  that  are  too
specific (i.e. where the correct path is a prefix of the predicted path). Percent too general
measures the proportion of assigned LCC intervals that are too general (i.e.  where the
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Number of training instances
10,000 50,000 100,000 200,000 400,000 800,000

Hierarchical classifier 32.53 43.47 47.63 50.76 53.11 55.32 
Strawman 17.82 27.08 31.13 35.19 38.74 42.54 
LCSH seen (%) 30.88 44.56 50.41 56.23 61.48 66.61 

Table 5: Accuracy on test data and percentage of test data seen in training data for given
amount of training data
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predicted path is a prefix of the correct path). These two criteria tell us which errors are
due to cases where the classifier  decides to  stop too late or too early respectively (as
opposed to cases where the predicted and the correct path diverge). As can be seen from
Table 6 the values of these statistics change very little as the amount of training increases,
although the percentage of predictions that are too general appears to drop slightly. We
conclude that these errors are either due to an inherent limitation of our method or the
result of true ambiguity among the possible classifications. Either way, only a minority of
the classification errors (less than 7% of the test instances for the largest model) fall into
one of these two categories. 

The average overlap measures the overlap between the predicted path and the correct path
(Table 6). The overlap is computed in the following way. Let m be the maximum of the
length of the predicted path and the length of the correct path. Let  k be the number of
matching nodes in the correct path and the predicted path (i.e. the length of the common
prefix). Then the overlap is given by k/m . Consequently the overlap is one if a prediction
is correct. It is greater than zero as long as parts of the predicted path are correct. The
average overlap is simply the average of this quantity with respect to all test instances. As
can be seen from Table 6, the value of this statistic increases as the amount of training data
increases,  again  with  diminishing  returns.  By  definition  it  is  always  larger  than  the
percentage of correct predictions from Table 5. The difference is approximately 14% at
50,000 training instances and 12% at 800,000 training instances, suggesting that a large
number of the test instances that are not correctly predicted are at least partially correct. 

These partially-correct instances are quantified in the  accuracy at level rows of Table 6.
For each level of the LCC hierarchy this is the proportion of instances that are correctly
classified at that level among all the instances that reach it—either by exhibiting a correct
classification at that level or by getting a prediction assigned at that level (this implies that
the classification is counted as an error if either one of the two is missing). For example,
level 1 shows the accuracy in assigning records at the top level of the LCC (i.e. as, A, B,
C, etc.) and that with 800,000 training instances, 80.27% of the test instances are classified
correctly at the top level. With the same number of training instances only 16.12% of the
test instances are correctly classified at level 7. 484 test instances reach this level, of which
56 have no predicted classification and 329 have no correct classification (at this level). In
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Number of training instances
10,000 50,000 100,000 200,000 400,000 800,000 

Percent too specific 3.53 3.83 3.84 3.76 3.78 3.77
Percent too general 3.77 3.33 3.21 3.16 3.19 2.93
Average overlap 46.71 57.15 60.95 63.75 65.83 67.61
Percent correct at level 1 62.39 71.66 74.76 77.33 78.94 80.27
Percent correct at level 2 48.45 59.15 63.07 65.73 67.78 69.54
Percent correct at level 3 35.05 45.79 49.92 53 55.39 57.55
Percent correct at level 4 24.89 34.54 38.68 41.4 43.71 46.24
Percent correct at level 5 21.34 31.96 35.83 38 40.38 42.22
Percent correct at level 6 14 21.13 24.48 26.15 28.23 30.08
Percent correct at level 7 8.44 11.16 12.5 13.66 14.39 16.12

Table 6: Additional performance statistics for test data



Frank and Paynter (2004) “Predicting Library of Congress Classifications From Library of Congress Subject Headings.”
To appear in the Journal of The American Society for Information Science and Technology.

21 cases both are present but do not match. Hence (56 + 329 + 21)/484 = 83.88% of the
instances that reach this level are classified incorrectly. 

The  percentage  of  correct  predictions  decreases  as  the  number  of  intermediate
classification steps  increases  because errors made at  higher  levels  of  the classification
hierarchy cannot be rectified at lower levels. This is compounded by the fact that less and
less data is available the deeper in the hierarchy a classifier is formed by the machine
learning algorithm. 

The accuracy at level 1 row of Table 6 shows that even when 800,000 instances are used
for training, almost 20% of the test records are incorrectly classified at the root of the
hierarchy. This is perhaps not too surprising given that there are 21 possible classifications
at the root. Table 7 sheds some light on this issue. It contains a confusion matrix for the
predictions at the schedule level: the leftmost column contains the correct value of each
instance, the second column contains the number of test instances in that schedule, and the
remaining columns show the proportion of these test instances that were classified to each
of the possible schedules. Correct classifications appear along the leading diagonal. For
example, of the 208 test instances in Schedule A, 21% were classified into Schedule A,
7% into Schedule B, 11% into Schedule D, and so on. The matrix shows that many of the
errors are due to records from the less populous schedules being classified into the more
populous branches, particularly into Schedule Q, which contains the most common class,
QA1-43. 
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total A B C D E F G H J K L M N P Q R S T U V Z 
A 208 21 7 11 2 3 7 2 3 3 17 11 3 
B 3512 81 3 1 2 2 3 
C 370 3 49 15 6 5 2 9 1 2 2 
D 4484 1 84 1 3 1 1 1 
E 1620 3 76 5 1 3 2 1 1 
F 2496 1 4 78 1 3 1 3 
G 1781 1 5 3 3 65 5 1 6 1 
H 7951 5 1 3 80 1 1 1 
J 1713 13 3 6 8 60 1 2 
K 694 1 2 2 1 16 8 55 1 5 1 
L 1619 1 1 3 86 1 2 
M 2486 95 3 
N 2333 1 1 89 2 
P 6430 1 4 1 1 1 84 2 
Q 6365 91 1 1 2 
R 1380 2 4 11 76 
S 950 7 11 77 1 
T 1985 1 5 1 10 76 
U 312 19 9 3 2 5 3 54 
V 49 20 2 2 6 10 6 53 
Z 1262 1 8 3 3 2 12 1 1 2 13 3 1 41 

Table 7: Confusion matrix for top-level (LCC Schedule) classifications. Columns A  to Z
show percentages of the total; rows may not add to 100% due to rounding.
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4.3 Multiple predictions 

Section 3.5 describes how a list of the top N predictions can be generated. Figure 4 shows
the  percentage  of  times  the  correct  LCC appears  among the  top  N  predictions.  This
measure is equivalent to the average recall,  though (like Larson) we think this label is
misleading because there can only be one correct classification per document regardless of
the size of N. Results are shown for the models described above with  N set to 1, 2, 5, 10,
and 15. 

Accuracy  increases  as  N  increases,  but  with  diminishing  returns,  indicating  that  the
ranking  method  described  in  Section  3 produces  useful  confidence  scores.  Using  the
800,000 instances model the correct classification appears among the top 15 predictions
82.2% of the time, but the gain compared to using the top 10 predictions (79.2% percent
correct) is small. 

4.4 Running time 

Figure  5 shows the  running  time of  the  learning  algorithm as  the  number  of  training
instances increases. With 800,000 instances, training took approximately 27,000 minutes,
or 19 days. These estimates were generated using the IBM Java Runtime Environment for
Linux, Version 1.3.1, on an AMD Athlon XP 1600+ processor with 512 KB of RAM.
Plotting this data on a log/log scale results in a line with slope 1.7. This means the learning
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Figure 4: Accuracy on test data using top N predictions
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algorithm scales at the order of n1.7, where n is the number of training instances. 

The time that is required for classifying a test record is also important when applying our
method  in  practice.  As  the  size  of  the  model  increases,  the  classification  time  also
increases.  To  produce  a  ranked  list  of  classifications  (as  described  in  Section  3)  our
method has to invoke an support vector machine classifier at every internal node of the
LCC hierarchy. Using the largest model we observed a throughput of approximately 21
test instances per second, making the method sufficiently responsive even for interactive
use by a librarian. 

5 Discussion 
The hierarchical classifier has been used to assign LCC to every INFOMINE record based
on their LCSH metadata. Figure 6 shows the hierarchy at its root node; users can click on
topic names to browse more specific subjects.12 The figures to the right are the number of
records beneath each child node; for example, INFOMINE contains 5,648 records that
have been assigned an LCC in Schedule Q, more than any other Schedule. 

To  assess  the  quality  of  the  classifications  we  have  measured  the  accuracy  of  the
hierarchical  classifier  on catalog data using information retrieval  and machine learning
metrics. The related projects described in Section 2.3 have different goals and have elected

12 http://infomine.ucr.edu/dbase/cache/LCC/ 
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Figure 5: Running time for given amount of training data
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to report different evaluation metrics; however, some comparisons are still possible. 

5.1 Evaluation methodology 

The primary evaluation metric in this paper is classification accuracy, or the proportion of
times the classifier's best prediction for an example exactly matches its actual LCC. This is
appropriate because the hierarchical classifier is optimized to assign a single LCC to each
new record,  because it  is  the standard for machine learning research,  and because our
applications call for a single classification. 

When more than one classification is made, we have reported the number of times the
correct class appears in the top N predictions. This is equivalent to recall. Larson (1991)
argues  that  “with  a  single  relevant  class  in  a  fairly  large  collection  of  classes,  the
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Figure 6: The INFOMINE LCC Browsing Interface.
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conventional retrieval effectiveness measures (such as recall and precision) are not very
illuminating”, particularly given the hierarchical nature of this problem. Instead, he reports
the mean and median rank of the correct classification when all potential classifications are
sorted in order of predicted likelihood. It is not clear whether this is an improvement. 

A problem with all these accuracy measures in a hierarchical setting is that they do not
account  for classifications  that  are  partially  correct.  Partially  correct  classifications are
more general or more specific than the true classification; for example, an instance may be
assigned  DA1-995: History of  Great Britain instead of its sub-classification  DA20-690
England.  To  account  for  the  hierarchical  class  variable,  we  have  also  reported  the
proportion of too-specific and too-general classifications and the overlap measure. 

5.2 Related work 

Of the related work in Section 2.3, Pharos is the most comparable as it uses the LCC
Outline  and  considers  data  from all  21  Schedules  of  the  LCC (Dolin,  1998).  Pharos
accuracy  for  a  single  prediction  is  approximately  14%,13 much lower  than  the  55.3%
reported  for  the  hierarchical  classifier,  and  lower  even  than  our  strawman  classifier
(Section  4.1).  This  performance is  satisfactory in  Pharos  because  of  the nature of  the
application, and because multiple LCC are assigned to each document. However,  even
when the best 10 phrases are chosen, Pharos' recall (less than 50%) trails the hierarchical
classifier (79.2%). 

Larson  (1991)  conducted  a  range  of  experiments,  but  his  results  are  generally  not
comparable because he considers only Schedule Z, hierarchy is ignored, more classes are
considered overall, and no LCSH normalization is attempted. Further, the test dataset was
small:  though  sufficient  catalog  data  was  available  (30,000  MARC  records)  for
comprehensive training and testing, Larson evaluates his system on a small collection of
283 new books, 50 of which matched none of the 8,435 classifications derived from the
training data. 

When using similar training data to the hierarchical classifier (all subject headings treated
as  terms)  the  accuracy  is  approximately  38% for  a  single  prediction,  or  63% for  10
phrases14;  for  the  first  subject  only training  data  the  figures  are  46.6%  and  74.4%
respectively.  The  hierarchical  classifier  appears  to  perform  better,  especially  as  these
figures assume the best possible values for all other parameters of Larson's experiments,
and in the 50 cases where no class was available, the nearest classification is considered
correct. However, a direct comparison of the two approaches is impossible. 

The hierarchical classifier ignores the order in which the LCSH are stored in the MARC
records and ignores Title metadata. Larson's work suggests LCSH order is a significant
predictor of LCC and could improve performance, but that the Title can be ignored. 

13 Estimated from Dolin (1998), Figure 7.5a. 
14 Estimated from Larson (1992), Figure 3. 
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5.3 Data ambiguity 

The  most  fundamental  problem with  the  classification  problem is  that  LCSH are  not
always  consistently  applied  by  human  experts.  This  phenomenon  is  well-documented
(Chan,  1989),  and  we have observed it  in  practice  in  experiments  with  the  combined
University of California library catalog. Such inconsistencies in the training and testing
datasets suggest the problem cannot be perfectly solved. 

A further evaluation issue is raised by instances in the test data whose LCSH do not appear
at all in the training data. The hierarchical classifier follows the machine learning practice
of defaulting to the most likely child of each node, resulting in a hierarchical classification
of QA1-43 Science / Mathematics / General in our datasets. This bias is evident in column
Q of Table 7. When they appear in a browsing interface, these cases are not classified at
all; instead they are labeled “unknown” so as not to mislead the librarians and other people
who  use  the  classifications.  Approximately  1000  INFOMINE  records,  or  4%  of  the
collection, fall into this category, compared to 1% for the test set drawn from the library
catalog. Though we have not explored this area further, the relative benefits and costs of
correct, incorrect and partial classifications is an interesting avenue for research. 

A more subtle problem is caused by LCSH that are used only once in the training data, and
then as non-primary descriptors that are only tangentially related to the LCC they purport
to describe. Test instances that contain these LCSH will be assigned the incorrect class
from the training data. This problem may be solved by increasing the size and internal
consistency of the training dataset. 

Another difficulty is caused by very general LCSH headings like “History” and “United
States”.  These  occur  frequently  in  library  catalogs  but  usually  have  subdivisions.
However,  our  normalization  process  removes  these  subdivisions  and  the  potentially
important  context  they  provide.  It  may  be  possible  to  address  this  problem  using  a
normalization process that only removes rare subdivisions from LCSH headings. 

6 Conclusions 
We have presented a  machine-learning-based system for  assigning  LCC to documents
based on LCSH sets that exploits the hierarchical nature of the problem and outperforms
similar work on LCC assignment. Although this is a specialized problem, the techniques
are generally applicable to hierarchical classification problems, particularly those using
very large hierarchies. The solution presented has been applied to the INFOMINE virtual
library, where it  is used to assign LCC to tens of thousands of records and supports a
hierarchical browsing interface. 
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