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Abstract. This paper presents an unsupervised discretization method
that performs density estimation for univariate data. The subintervals
that the discretization produces can be used as the bins of a histogram.
Histograms are a very simple and broadly understood means for display-
ing data, and our method automatically adapts bin widths to the data.
It uses the log-likelihood as the scoring function to select cut points and
the cross-validated log-likelihood to select the number of intervals. We
compare this method with equal-width discretization where we also se-
lect the number of bins using the cross-validated log-likelihood and with
equal-frequency discretization.

1 Introduction

Discretization is applied whenever continuous data needs to be transformed into
discrete data. We consider data that is organized into instances with a fixed
number of attributes. Some or all of the attributes might be continuous. To
discretize a continuous attribute the range of its values is divided into intervals.
The attribute values are substituted by an identifier for each bin. Note that
the new attribute is actually not categorical but ordered [1]. In this paper we
consider the problem of unsupervised discretization, where the discretization is
based on the distribution of attribute values alone and there are no class labels.
Moreover, we consider univariate discretization: our method only considers the
attribute to be discretized, not the values of other attributes.

Our algorithm treats unsupervised discretization as piece-wise constant den-
sity estimation. The intervals gained from the discretization can be used to draw
a histogram or used to pre-process the data for another data mining scheme. In
the former case, the height of each bin h is the density that is computed from
the bin width wi, the number of instances ni that fall into that bin, and the
total number of instances N in the dataset:

h =
ni

wi ∗ N
(1)

The paper is organized as follows. In Section 2 we discuss non-parametric
density estimation, of which our histogram estimator is a special case. We com-
pare our discretization method to equal-width discretization (and variants) and



equal-frequency discretization. These methods are summarized in Section 3. In
Section 4 we discuss the cross-validated log-likelihood, which we use as the model
selection criterion to choose an appropriate number of bins. Our method is ex-
plained in detail in Section 5. An experimental comparison is presented in Sec-
tion 6. Section 7 has some concluding remarks.

2 Non-parametric Density Estimation

Density estimation, parametric or non-parametric, is about constructing an es-
timated density function from some given data. Parametric density estimation
assumes that the data has a density function that is of a known family of distri-
butions. For example, the distributions of the normal or Gaussian model have the
parameters µ for the mean and σ2 for the variance. The parametric method has
to find the parameters for the best fit to the data. However, practical applications
showed that there is often data that cannot be fit well enough with parametric
methods, so non-parametric methods have been developed that work without
the assumption of one of these specific distributions and fit more complex and
flexible models to the data [2].

Non-parametric density estimation suffers from two major problems: the
curse of dimensionality and finding a good smoothing parameter [3]. Since we
work in the univariate case the curse of dimensionality does not matter in our
application. What still remains is the problem of finding a good smoothing pa-
rameter. The smoothing parameter for histograms is the number of bins. If the
histogram has many bins, the density curve will show many details; if the bins
get fewer, the density curve will appear smoother. The question is how much is
enough detail. Our method automatically finds an appropriate bin width based
on cross-validation and the width is not constant for the whole range but adapts
to the data (i.e. the bin width varies locally).

Histograms have been widely used because they generate an easily under-
standable representation of the data. They represent the density function as
a piece-wise constant function. Alternative methods of non-parametric density
estimation are kernel estimators, which represent the data with a smooth func-
tion [2]. Although kernel density estimators avoid the discontinuities present in
histograms, they cannot be used to summarize the data in a concise form and
are more difficult to explain to the non-expert.

A further disadvantage of the kernel method is its computational complexity.
Assuming all kernels contribute to the density, computing the density for a test
instance requires time linear in the number of training instances. In contrast a
binary search on the bins is sufficient in a histogram, and the time complexity is
logarithmic in the number of bins. This is particular relevant for large datasets.
Kernel density estimation is a lazy method. Our method is an eager method that
requires more effort at training time.



3 Existing Unsupervised Discretization Methods

We compare our method with two well-known unsupervised discretization meth-
ods: equal-width discretization and equal-frequency discretization. Equal-width
discretization divides the range of the attribute into a fixed number of intervals
of equal length. The user specifies the number of intervals as a parameter. A
variant of this method, which we also compare against, selects the number of
intervals using the cross-validated log-likelihood. This variant is implemented in
Weka [4].

For equal-width histograms it is not only important to select the number
of intervals but also the origin of the bins [2]. The origin is found by shifting
the grid by a part of the actual bin width (e.g. one 10th of it), and selecting
the best one of these shifts. We implemented this by using the cross-validated
log-likelihood to select the origin and the number of bins.

Equal-frequency discretization also has a fixed number of intervals, but the
intervals are chosen so that each one has the same or approximately the same
number of instances in it. The number of intervals is determined by the user.

4 Cross-validating the Log-likelihood

Cross-validation is used in machine learning to evaluate the fit of a model to the
real distribution. It is generally applied to classification or regression problems
but it can also be applied to clustering [5]. The idea is to split the dataset into
n equal-sized folds and repeat the training process n times using n− 1 folds for
training and the remainder for testing. This is done with every parameter value
and the best value is chosen to build the final model based on the full training
set. Various scoring functions are used to decide which parameter value is the
best. We use the log-likelihood of the histogram, which is also used for fitting
mixtures of normal distributions for clusters.

The log-likelihood is a commonly used measurement to evaluate density es-
timators [2]. It measures how likely the model is, given the data. Choosing the
model that maximizes the likelihood on the training data results in overfitting,
analogue to the classification or regression case. Cross-validation gives an (al-
most) unbiased estimate of performance on the true distribution and is a more
suitable criterion for determining model complexity.

Leave-one-out cross-validation can be applied in the case of equal-width dis-
cretization because the log-likelihood on each test instance can be easily com-
puted as the bins stay fixed. In our new discretization method the location of
each cut point can change with one instance removed, making the leave-one-out
method too expensive. Hence we use 10-fold cross-validation instead.

Let ni be the number of training instances in bin i, ni−test the number of
instances of the test set that fall into this bin, wi the bin width, and N the total
number of training instances. Then the log-likelihood L on the test data is:

L =
∑

i

ni−test ∗ log
ni

wi ∗ N
(2)
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Fig. 1. Equal-width method with 20
bins.
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Fig. 2. Our TUBE-Method chose 5
bins of varying length.

There is one problem: empty bins. If ni equals zero the logarithm is undefined.
To solve this problem we spread a single instance over the whole range of the data
by adding a part of the instance to each bin that is equivalent to the relative
width of the bin. Assume W denotes the total length of the range. Then the
above formula becomes:

L =
∑

i

ni−test ∗ log
ni + wi

W

wi ∗ (N + 1)
(3)

5 Tree-based Unsupervised Discretization

The most common and simplest way of making histograms is the equal-width
method. The range is divided into subranges or bins of equal-width. In contrast
to this, our new algorithm divides the range of an attribute into intervals of
varying length. The goal is to cut the range in such a way that intervals are
defined that exhibit uniform density. Of course, in practical problems the true
underlying density will not really be uniform in any subrange but the most
significant changes in density should be picked up and result in separate intervals.
Figure 1 shows an equal-width estimator for a simple artificial dataset. Figure 2
shows the density function generated with our discretization method. In both
figures the “true” density (the density function that was used to generate the
data) is plotted with a dotted line. The training data is shown as vertical bars
at the bottom.

We call our method TUBE (Tree-based Unsupervised Bin Estimator), be-
cause it uses a tree-based algorithm to determine the cut points. More specifi-
cally, it builds a density estimation tree in a top-down fashion. Each node defines
one split point. In the following we describe how a locally optimum split point
can be found for a subset of data. Then we describe how the tree is built and
pruned and what can be done about the problem of “small” cuts.
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Fig. 3. The log-likelihood is minimized between instances.

5.1 Where to Cut

The quality of the density estimation is measured by the log-likelihood. We
choose the split point that maximizes the likelihood based on the training data
and the ranges at the current node of our density estimation tree:

L = nleft ∗ log
nleft

wleft ∗ N
+ nright ∗ log

nright

wright ∗ N
(4)

Here, nleft is the number of instances in the left subrange and wleft its
width. The quantities for the right subrange are defined accordingly. In contrast
to decision tree learning [6], every training instance defines two potential maxi-
mum likelihood cut points. The cut is made at the instance (and not in-between
instances as in the case of classification or regression trees) and includes the
instance in either (a) the left or (b) the right subset. This is because the log-
likelihood of a division into two bins has a local minimum if the cut point is set
in-between two points. It attains a local maximum at the points. The diagram
in Figure 3 shows the log-likelihood of cut points at two values of an attribute
(circles) and at nine points in-between the values (crosses). The log-likelihood
is maximized at the instance values. Hence we cut at the values of the training
instances and consider including a point in either the right or the left subset—i.e.
we consider the interval boundaries .., x)[x, .. and ..x](x, .. for an instance x.

Note that this causes problems when the data is very discontinuous and has
a “spike” in its range (i.e. several identical training instances at the minimum or
maximum). The estimated density would be infinity because the range would be
zero. Therefore our implementation does not actually cut at the instance value
itself but add, or substract, a small value (we used 10−4 in our experiments).

5.2 Building the Tree

The selection of k cut points can be seen as a search through a resolution space
for the optimal solution. A well-known search method is the divide-and-conquer
method that decision trees use. On numeric attributes this method finds the
locally optimal binary split and repeats the process recursively in all subranges
until a stopping criterion is met. This is a greedy search that does not find



Fig. 4. Pseudo code for the tree building algorithm.
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Fig. 5. Tree after the first cut.

an optimal global division but a division that is a computational inexpensive
estimate. We apply this method to unsupervised discretization using best-first
node expansion. The pseudo code of our algorithm is shown in Figure 4.

In the following we present an example using the dataset from Figures 1
and 2. First the best cut point is found in the whole range and two new bins
are formed. Within the two subranges two new locally optimal cut points are
searched for. Both splits are evaluated and a log-likelihood for the division into
the resulting three bins is computed for both possible splits. Figure 5 shows the
discretization tree corresponding to this situation. The root node represents the
first cut and the two leaf nodes represent the next two possible cuts.1

Each node represents a subrange, the root node the whole range. The vari-
ables written to the left and right side of the square corresponding to a node
represent the minimum and maximum of the subrange. The overall minimum
and maximum of this example dataset are 1.0 and 10.0. Each leaf node repre-
sents a bin and the minimum exhibits a “[” if the minimum value itself is part

1 All values are rounded.
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Fig. 6. Tree after the second cut.
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Fig. 7. Finalized tree.

of the bin and a “(” if it is part of the next bin. The notation for the maximum
is analogue. The variable written in the middle of the node represents the cut
point.

The whole range is first cut at the value 4.0. The next possible cut point
is either 2.0 or 8.0. These would split the dataset into the subranges [1.0:2.0]
[2.0:4.0] [4.0:10.0] or [1.0:4.0] [4.0:8.0] [8.0:10.0] respectively. The gain in log-
likelihood for each of the two possible divisions is written in the half-circle over
the not-yet-exercised cuts. The cut at 2.0 results in a log-likelihood gain of 38.5
computed based on Formula 4, the cut at 8.0 has a log-likelihood gain of 44.6.
Among the possible cuts the one with the largest gain in log-likelihood is selected,
which in this case is the cut at 8.0. Figure 6 shows the state of the dicretization
tree after two cuts.

After the cut at 8.0 is performed, two new bins are generated, and in each
of them a new possible cut is searched for. These cuts are 5.5 and 9.9, with
log-likelihood gains of 100.3 and 9.5 respectively. So for the third cut there is
a choice between three cuts (including the cut at 2.0) and the next one chosen
would be 5.5.
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Fig. 8. Distorted histogram due to
small cuts.
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Fig. 9. Small cuts eliminated with
heuristic.

After four cuts our discretization tree learning algorithm decides to stop.
The stopping criterion will be explained in Section 5.3. Figure 7 shows the final
discretization tree. The resulting histogram is the one shown at the beginning of
this section in Figure 2. In the final tree each leaf node represents a bin of the
histogram. Each internal node represents a cut.

5.3 The Stopping Criterion

The third and last part of our algorithm is the stopping criterion. Based on the
likelihood on the training data, the algorithm would not stop cutting until all
subranges contain a single value (i.e. it would overfit). The stopping criterion
sets the maximal number of cut points and prevents overfitting.

We use the 10-fold cross-validated log-likelihood to find an appropriate num-
ber. We start with zero and increase the maximal number of cut points in in-
crements of one. This can be implemented efficiently: to find k cut points, one
can use the division into k − 1 cut points and add one more. By default the
algorithm iterates up to N − 1 as the maximal number of cut points (i.e. the
cross-validated log-likelihood is computed for all trees with 1 up to N − 1 cut
points). For each of the N − 1 iterations the algorithm computes the average
log-likelihood over the test folds and from this the number of splits that exhibits
the maximum value is chosen.

In our above example the cross-validated log-likelihood curve has its maxi-
mum at four cut points and therefore four cuts have been performed. Note that
this method involves growing a density estimation tree eleven times: first once
for each of the ten training folds, and finally for the full dataset based on the
chosen number of cut points. The time complexity of the discretization algorithm
is O(NlogN).

5.4 A Problem: Small Cuts

The log-likelihood criterion used to find the cut point in a range can be unstable.
Sometimes a cut is found at the border of a subrange that contains very few



Table 1. 464 numeric attributes from UCI datasets and their levels of uniqueness.

Dataset [ 0-20) [20-40) [40-60) [60-80) [80-100] num inst

anneal 6 - - - - 898
arrythmia 182 7 14 3 - 452
autos 13 - - 1 1 205
balance-scale 4 - - - - 625
winsconsin-breast-cancer 9 - - - - 699
horse-colic 7 - - - - 368
german-credit 6 - - - 1 1000
ecoli 7 - - - - 336
glass 3 3 2 1 - 214
heart-statlog 12 1 - - - 270
hepatitis 4 1 1 - - 155
hypothyroid 7 - - - - 3772
ionosphere 2 - 2 31 - 351
iris 4 - - - - 150
labor 8 - - - - 57
lymphography 3 - - - - 148
segment 14 3 - 2 - 2310
sick 7 - - - - 3772
sonar - 7 4 - 46 208
vehicle 17 1 5 - 846
vowel - - 4 8 - 990

Sum 315 23 27 51 48
In percent 68 5 6 11 10

instances and is very small. This can lead to a very high density value and the
criterion decides to cut.

Hence we implemented a heuristic that avoids these small cuts in most cases.
More specifically, we disallow cuts that are smaller than 0.1 percent of the whole
range of the data and set the minimum number of instances to

√
0.1 ∗ N . Figure 8

shows a strongly distorted histogram of a normal density that is due to two small
cuts that have very high density. This was created by our method without using
the heuristic. The same dataset is used in Figure 9, where the small cuts have
been avoided using the heuristic.

6 Evaluation

We evaluated the TUBE discretization method using numeric attributes from
21 UCI datasets [7]. The algorithm works on univariate numeric data, and thus
the numeric attributes of the UCI datasets have been extracted and converted
into 464 one-attribute datasets.

A surprising finding was that many of these numeric attributes have a low
uniqueness in their values. Low uniqueness means that they have many instances
with the same value. Table 1 lists the number of attributes sorted into columns
according to their level of uniqueness (e.g. [0− 20) means that the percentage of



unique values is between 0 and 20). The table also shows the UCI datasets the
attributes have been extracted from and the number of instances.

These datasets are used to test how well TUBE discretization estimates the
true density. The density estimates that are generated are evaluated using 10x10-
fold cross-validation, measuring the log-likelihood on the test data. Note that
this “outer” cross-validation was performed in addition to the “inner” cross-
validation used to select the number of cut points.

Our new discretization method (TUBE) is compared against equal-width
discretization with 10 bins (EW-10), equal-width with cross-validation for the
number of bins (EWcvB), equal-width with cross-validation for the origin of the
bins and the number of bins (EWcvBO), and equal-frequency discretization with
10 bins (EF-10). The equal-frequency method could not produce useful models
for the attributes with uniqueness lower than 20 and has therefore been left out
in that category. TUBE, EWcvB and EWcvBO were all run with the maximum
bin number set to 100.

6.1 Evaluating the Fit to the True Distribution

Table 2 lists the summary of the comparison. Each value in the table is the
percentage of all attributes in that uniqueness category for which TUBE was
significantly better, equal or worse respectively based on the corrected resampled
t-test [8]. In almost all cases our method is at least as good as the other methods
and shows especially good results in cases with low uniqueness and some cases of
high uniqueness. We have analyzed the corresponding attributes and they show
that TUBE is generally better when attributes exhibit discontinuities in their
distributions.

It is difficult to split the datasets precisely into attributes with continuous
distributions and attributes with discontinuous distributions. Datasets below 20
percent uniqueness can be considered discontinuous but there are some datasets
in the higher uniqueness category that showed discontinuities.

Attributes with low uniqueness exhibit discontinuous distributions of differ-
ent kinds. Some of the attributes are very discrete and have only integer values
(e.g. vehicle-9) or a low precision (e.g.iris-4), some have irregularly distributed
data spikes (e.g. segment-7) and some have data spikes in regular intervals (e.g.
balance-scale-1). In the category of (0-20) uniqueness TUBE outperforms all
other methods on almost all of the datasets.

In the category [60-80) half of the attributes have a distribution that is a
mixture between continuous data and discrete data (most of the ionosphere at-
tributes in this category have a mixed distribution). TUBE’s density estimation
was better for all these attributes.

6.2 Comparing the Number of Bins

Table 3 shows a comparison of the number of bins generated by the different
methods. A smaller number of bins gives histograms that are easier to under-



Table 2. Comparison of the density estimation results. Result of paired t-test based
on cross-validated log-likelihood.

EW-10 EWcvB EWcvBO EF-10

(0-20)

TUBE significantly better 99 100 100 -
TUBE equal 1 0 0 -
TUBE significantly worse 0 0 0 -

[20-40)

TUBE significantly better 48 43 43 48
TUBE equal 52 57 57 52
TUBE significantly worse 0 0 0 0

[40-60)

TUBE significantly better 8 8 8 37
TUBE equal 92 92 92 63
TUBE significantly worse 0 0 0 0

[60-80)

TUBE significantly better 53 56 56 67
TUBE equal 44 40 42 30
TUBE significantly worse 3 3 2 3

[80-100]

TUBE significantly better 13 17 15 13
TUBE equal 85 81 81 85
TUBE significantly worse 2 2 4 2

Total

TUBE significantly better 76 77 77 43
TUBE equal 23 22 22 55
TUBE significantly worse 1 1 1 2

stand and analyze. In the category 80 percent and higher the TUBE discretiza-
tion generates a significantly smaller number of bins than the other methods.
Whenever it produces more bins this appears to result in a better fit to the data.

7 Conclusion

TUBE discretization provides a good algorithm for density estimation with his-
tograms. The density estimation of very discontinuous data is often difficult.
Our results show that TUBE outperforms equal-width and equal-frequency dis-
cretization on discontinuous attributes. It finds and can represent “spikes” in
the density function that are caused by discrete data (many instances with the
same value) and can reliably detect empty areas present in the value range.

On truly continuous data the method provides a discretization that represents
the data as well as the other methods but with fewer bins and hence gives a
clearer picture of areas of different density. A possible application of our method
would be density estimation for classification in Naive Bayes [9]. We plan to
investigate this application in future work.



Table 3. Comparison of the number of bins.

EW-10 EWcvB EWcvBO EF-10

(0-20)

TUBE significantly fewer 14 62 62 -
TUBE equal 2 8 7 -
TUBE significantly more 84 30 31 -

[20-40)

TUBE significantly fewer 31 13 26 31
TUBE equal 4 30 17 4
TUBE significantly more 65 57 57 65

[40-60)

TUBE significantly fewer 29 46 54 29
TUBE equal 38 42 38 38
TUBE significantly more 33 12 8 33

[60-80)

TUBE significantly fewer 44 94 97 44
TUBE equal 14 6 3 14
TUBE significantly more 42 0 0 42

[80-100]

TUBE significantly fewer 96 85 92 96
TUBE equal 2 15 8 2
TUBE significantly more 2 0 0 2

Total

TUBE significantly fewer 29 65 68 56
TUBE equal 5 12 9 12
TUBE significantly more 66 23 23 32
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