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Abstract. Many applications require the ability to identify data that
is anomalous with respect to a target group of observations, in the sense
of belonging to a new, previously unseen ‘attacker’ class. One possible
approach to this kind of verification problem is one-class classification,
learning a description of the target class concerned based solely on data
from this class. However, if known non-target classes are available at
training time, it is also possible to use standard multi-class or two-class
classification, exploiting the negative data to infer a description of the
target class. In this paper we assume that this scenario holds and inves-
tigate under what conditions multi-class and two-class Naive Bayes clas-
sifiers are preferable to the corresponding one-class model when the aim
is to identify examples from a new ‘attacker’ class. To this end we first
identify a way of performing a fair comparison between the techniques
concerned and present an adaptation of standard cross-validation. This
is one of the main contributions of the paper. Based on the experimental
results obtained, we then show under what conditions which group of
techniques is likely to be preferable. Our main finding is that multi-class
and two-class classification becomes preferable to one-class classification
when a sufficiently large number of non-target classes is available.

1 Introduction

Verification problems in machine learning involve identifying a single class label
as a ‘target’ class during the training process, and at prediction time make a
judgement as to whether or not an instance is a member of the target class.
One-class classifiers seem ideal for this kind of problem; they require nothing
other than the target data during training, and make a judgement of target or
unknown for new instances. However, if non-target data is present in the training
dataset, it may be beneficial to instead use a multi-class classifier that is able
to utilise the negative data in its judgements. A potential disadvantage of this
approach in the context of verification is that we are primarily interested in
identifying occurrences of completely novel classes at prediction time and multi-
class classifiers may not accurately discriminate against these.

In many cases, a one-class classifier is used in preference to a multi-class
classifiers simply because it is inappropriate to collect or use non-target data
for the given situation. Password hardening—a biometric problem that only has



data about one class—is a task where one-class classifiers have been applied
to great success [6], and similar research areas including typist recognition [3]
and authorship verification [2] have also successfully used one-class classification
techniques. One-class classification is often called outlier detection (or novelty
detection) because it attempts to differentiate between data that appears nor-
mal and abnormal with respect to the training data. One-class classifiers have
also been applied to medical problems, such as tumor detection [4], where a
limited quantity of negative data is available during the training process. In
contrast, multi-class classifiers have been applied to a huge range of learning
problems, including some verification problems where one-class classifiers can
also be applied.

With so many techniques available for verification, it is difficult to decide
which one will be most effective for discriminating against new ‘attacker’ classes
because it is not obvious how to perform a fair comparison of one-class and
multi-class classifiers in this context. We show how it is possible to conduct
such a comparison, focusing on a two-class setup as well as a standard multi-
class one. Using our method of comparison in conjunction with Naive Bayes
and a corresponding one-class model, we are then able to provide guidelines
for choosing a classifier for a given verification problem, where the aim is to
discriminate against previously unseen classes of observations.

The next section explores how a fair comparison of the classifiers can be per-
formed. Following this, in Section 3 we describe our experimental setup for test-
ing the different classification techniques, and provide empirical results in Sec-
tion 4; we also explore situations where one-class classification may be favourable
over a multi-class setup, even when negative data is available during the training
process. Finally, we conclude the paper in Section 5.

2 Comparing Classifiers Fairly

A standard method for evaluating one-class classifiers is to split a multi-class
dataset into a set of smaller one-class datasets, with one dataset per class con-
taining all the instances for the corresponding class. The one-class classifier can
then be trained on each dataset in turn, with a small amount of data heldout
from the training set and all the other datasets used for testing. Depending on
the number of instances available for each class, this generally means that there
is a large amount of negative (or ‘attacker’) data for testing, and a relatively
small amount of positive data for both testing and training. In contrast, multi-
class classifiers are often evaluated using stratified 10-fold cross-validation, where
the data is split into 10 equal-sized subsets, each with the same distribution of
classes. The classifier is trained 10 times, using a different fold for testing and
the other 9 folds combined for training. These two different evaluation methods
are not comparable. In each one the classifier is trained on a different proportion
of data for a given class, and is tested on different quantities of data.

In fact, it is not straightforward to perform a fair comparison of one-class
classifiers and multi-class ones: one-class classifiers are designed to deal with
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Fig. 1. Standard cross-validation for two-class classification (with relabelling), A is the
target class and O is the outlier class.
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Fig. 2. Standard cross-validation for one-class classification (with relabelling), A is the
target class and O is the outlier class.

classes that are unseen at training time, but multi-class classifiers typically han-
dle only classes that they have been trained on. A naive approach to comparing
a one-class classifier to a multi-class (more specifically, two-class) classifier® is
to identify a target class, T, relabel all the data that does not belong to that
target class to the label ‘outlier’, O, and then perform cross-validation on the re-
labelled dataset—effectively turning a multi-class problem into a two-class one.
As shown in Figure 1, this approach is biased in favour of the two-class classifier:
a normal cross-validation run will not take into account that O is composed of
several classes—meaning that there is a high chance that the test set will con-
tain a class (albeit relabelled) that also occurs in the training set. For one-class
classification, we can perform the same cross-validation run, but we delete O
from the training set because we only need to train on the target class—as in
Figure 2. In all figures missing data is indicated by a dashed line/box.

The practical applications that we are considering in this paper, namely
verification problems, have the key feature that entirely new classes are what
we want to discriminate against. As we will usually not have training data for

! In this paper we generally refer to multi-class classification whenever there is more
than one class involved during the training phase.
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Fig. 3. Cross-validation for unbiased two-class classification (with relabelling), A is the
target class, B is the heldout class and O is the outlier class.

these new attacker classes, it is inappropriate to use the setup in Figure 1 for
evaluating the performance of multi-class techniques: the results will generally
be optimistically biased. To remove the bias due to the fact that the multi-class
classifier has seen instances of the outlier class previously, the simple answer
is to place a heldout class—corresponding to the ‘attacker’ class—directly into
the test set. The training set contains the target class, and all other classes but
the heldout class. The test set contains a portion of the target class, and all of
the heldout class. All of the non-target classes, including the heldout class, are
relabelled to O in both the training and test sets. This is demonstrated in Figure
3. We can use these same datasets for one-class classification, since the one-class
classifier does not care about the outlier data in the training set. A drawback
of this approach is that we cannot compare the results directly to the biased
classifier, since the unbiased classifier is tested with different data. It would be
advantageous to be able to perform such a comparison so that the potential
benefit of obtaining attacker data for training can be measured—even if this is
of mainly academic interest.

Fortunately, there is a way to compare all three types of classification—multi-
class biased, multi-class unbiased and one-class—to each other. Let us consider
the biased multi-class case first. A target and heldout ‘attacker’ class are identi-
fied. Then, we perform a normal stratified cross-validation fold, which maintains
the class distributions. However, before we relabel the non-target classes, in-
stances from the test set that do not belong to either the target or heldout class
are deleted. Finally all non-target classes are relabelled to O, and the evaluation
can be performed.

Figure 4 shows the resulting datasets used for multi-class classification. Let us
now consider the evaluation of a one-class classifier: it simply ignores all outlier
training data, as shown in Figure 5. Lastly, let us consider unbiased multi-class
classification. In this case, before the final relabelling is performed the heldout
class is removed from the training set, as demonstrated in Figure 6.

The advantage of this approach is that the test set and the target data
in the training set is identical for all of the classification techniques, and it is
now possible to compare results. Furthermore, as an additional benefit, it is
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Fig. 4. Cross-validation for biased two-class classification (with relabelling), A is the
target class, B is the heldout class and O is the outlier class.
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Fig. 5. Cross-validation for one-class classification (with relabelling), A is the target
class, B is the heldout class and O is the outlier class.
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Fig. 6. Cross-validation for unbiased two-class classification (with relabelling), A is the
target class, B is the heldout class and O is the outlier class.

also possible to compare true multi-class classification based on more than two
classes with two-class and one-class classifiers by omitting the relabelling step
where the non-target classes become class O.

Evaluation of a single target class using different classification techniques
(multi-class, two-class and one-class) can be performed by accumulating all pre-
dictions for each possible target-heldout class combination. The area under the



ROC curve (AUC) is then calculated for each target class. We use the AUC
for comparisons because it is independent of any threshold used by the learning
algorithm. To compare classifier performance on an entire multi-class dataset,
we use the weighted average AUC, where each target class is weighted according
to its prevalence:

AUCweighted = Z AUC(Cl) X p(cl) (1)

Ve, €C

Using a weighted average rather than an unweighted one prevents target classes
with smaller instance counts from adversely affecting the results.

3 Evaluation Method

For the experimental comparison, we set up 5 different classification techniques
and tested each on UCI datasets [1] with nominal classes. For each dataset 10-
fold cross-validation is repeated 10 times. The learning techniques we used are:

1. Biased multi-class classification using Naive Bayes. No relabelling was per-
formed, data from the heldout class was not removed from the training
dataset (as in Figure 4, but without relabelling the non-target classes to
0). The test set contained only the target and heldout class.

2. Unbiased multi-class classification using Naive Bayes. No relabelling was
performed, but data from the heldout class was removed from the training
dataset (as in Figure 6, but without relabelling the non-target classes to O).
The test set contained only the target and heldout class.

3. Biased two-class classification using Naive Bayes. All non-target classes were
relabelled to ‘outlier’, and the test set contained only the target and (rela-
belled) heldout class, as in Figure 4.

4. Unbiased two-class classification using Naive Bayes. All non-target classes
were relabelled to ‘outlier’, the test set contained only the target and (rela-
belled) heldout class, and instances of the heldout class were removed from
the training set, as in Figure 6.

5. Onme-class classification using a Gaussian density estimate for numeric at-
tributes and a discrete distribution for each nominal one, assuming attribute
independence (i.e. ‘Naive Bayes’ with only one class). All non-target classes
were relabelled to ‘outlier’ and the test set contained only the target and
(relabelled) heldout class, as in Figure 5.

We used Weka’s [5] implementation of Naive Bayes with default parameters
for all multi-class and two-class tasks; it is the classifier in Weka that is directly
comparable to the one-class classifier we use. The one-class classifier fits a single
Gaussian to each numeric attribute and a discrete distribution to each nominal
one: a prediction for an instance, X, is made by assuming the attributes are
independent. The same happens in Naive Bayes, but on a per-class basis. In both
Naive Bayes and the one-class classifier missing attribute values are ignored.



4 Results

Using the methodology discussed above, we now present experimental results
for UCI datasets. First, we show results obtained by comparing the 5 different
classification techniques discussed above. Then we examine some of the results
in greater detail, focusing on unbiased two-class classification versus one-class
classification.

4.1 Comparison on UCI Datasets

In Table 2 we provide empirical results for all five different classifiers, compared
using the weighted average AUC described in Section 2. Only UCI datasets with
three or more class labels were used because our evaluation technique requires
at least three classes. Table 1 shows some properties of the datasets used in the
experiments.

Table 2 has some noteworthy results, aside from the expected outcome that
the biased classification techniques (columns 1 and 3) outperform the unbiased
and one-class methods. Of the two biased techniques, one might naively expect
the two-class approach to perform better: there are less labels and the outlier
class contains many of them. However, on all but three of the 27 datasets (glass,
lymphography and vehicle), the multi-class classifier either performs the same or
better than the two-class classifier—and the difference for these three datasets
is not significant. This can be explained by the fact the multi-class Naive Bayes
classifier is able to form a more complex model, with as many mixture com-
ponents as there are classes. These results suggest that if one does not expect
any novel class labels at testing time, one should not merge classes to form a
two-class verification problem if Naive Bayes is used as the classification method.

In situations where the attacker class is not present in the training set (i.e.
considering the unbiased classifiers), the picture is different. The multi-class clas-
sifier (column 2) scores three wins, six draws and 18 losses against its two-class
counterpart (column 4). This result is consistent with intuition: when expecting
novel classes during testing, it is safer to compare to a combined outlier class
because the multi-class model may overfit the training data. By combining the
non-target classes into one class we can provide a more general single bound-
ary against the target class, and increase the chance that a novel class will be
classified correctly.

The one-class classifier (column 5) is best compared against the unbiased
two-class classifier (column 4) because the latter has been shown to work best
in situations where novel classes occur at testing time. As described earlier,
one-class classification is intended to deal with novel classes, and learns only
the target class during training. One would expect that the two-class classifier
could potentially have an advantage because it has seen negative data during
training. However, as highlighted in Table 2, the two-class classifier wins on only
16 datasets and the one-class classifier wins on the other 11. On closer inspection,
most of the datasets where the two-class classifier wins have a large number of
class labels; 12 of those winning datasets have 10 or more original class labels.



Number of

Features Percentage of
Datasets Classes|Instances| Nominal | Numeric|Missing Values
anneal 6 898 33 6 -
arrhythmia 16 452 74 206 0.32
audiology 24 226 70 0 2.00
autos 7 205 11 15 1.11
balance-scale 3 625 4 -
ecoli 8 336 1 7 -
glass 7 214 1 9 -
hypothyroid 4 3772 23 7 5.36
iris 3 150 1 4 -
letter 26 20000 1 16 -
lymph 4 148 16 3 -
mfeat-factors 10 2000 1 216 -
mfeat-fourier 10 2000 1 76 -
mfeat-karhunen 10 2000 1 64 -
mfeat-morph 10 2000 1 6 -
mfeat-pixel 10 2000 241 0 -
mfeat-zernike 10 2000 1 47 -
optdigits 10 5620 1 64 -
pendigits 10 10992 1 16 -
primary-tumor 22 339 18 0 3.69
segment 7 2310 1 19 -
soybean 19 683 36 0 9.50
splice 3 3190 62 0 -
vehicle 4 846 1 18 -
vowel 11 990 4 10 -
waveform-5000 3 5000 1 40 -
Z0O 7 101 17 1 -

Table 1. Properties of the UCI datasets used in the experiments.

In contrast, the one-class classifier wins on only two datasets with many class
labels—mfeat-morph and pendigits.

4.2 Defining a Domain for One-class Classification

In order to clarify in which situations one-class classification should be applied,
it is instructive to investigate the relationship between the number of class la-
bels available at training time and the accuracy of the two candidate classifiers:
the one-class classifier and the unbiased two-class classifier. The number of in-
stances for each class is also relevant; classes with a large number of instances
will generally result in a more accurate classifier. However, our primary concern
is whether a classifier is capable of identifying novel classes, so it is more appro-
priate to investigate the effect on accuracy obtained by reducing the dataset size
by removing all instances for a particular class label rather than by performing
a random selection of instances.



Classification Techniques

Number ||Multi-class| Multi-class | Two-class| Two-class |One-class
Datasets of Classes|| Biased (1) [Unbiased (2)|Biased (3)|Unbiased (4)| (5)
anneal 6 0.957 0.575 0.948 0.605 0.788
arrhythmia 16 0.801 0.724 0.775 0.723 0.576
audiology 24 0.960 0.883 0.946 0.897 0.881
autos 7 0.831 0.722 0.807 0.736 0.567
balance-scale 3 0.970 0.851 0.941 0.851 0.806
ecoli 8 0.958 0.855 0.947 0.889 0.927
glass 7 0.760 0.680 0.763 0.605 0.702
hypothyroid 4 0.931 0.576 0.915 0.587 0.648
iris 3 0.994 0.671 0.990 0.671 0.977
letter 26 0.957 0.932 0.941 0.935 0.887
lymphography 4 0.911 0.432 0.914 0.425 0.739
mfeat-factors 10 0.992 0.946 0.975 0.964 0.948
mfeat-fourier 10 0.966 0.917 0.949 0.930 0.909
mfeat-karhunen 10 0.996 0.969 0.983 0.976 0.955
mfeat-morph 10 0.952 0.890 0.948 0.928 0.941
mfeat-pixel 10 0.995 0.961 0.981 0.965 0.954
mfeat-zernike 10 0.960 0.906 0.946 0.912 0.897
optdigits 10 0.986 0.948 0.978 0.969 0.959
pendigits 10 0.980 0.915 0.962 0.942 0.953
primary-tumor 22 0.839 0.778 0.834 0.784 0.732
segment 7 0.971 0.863 0.952 0.863 0.937
soybean 19 0.994 0.966 0.988 0.973 0.961
splice 3 0.993 0.831 0.983 0.831 0.720
vehicle 4 0.767 0.671 0.768 0.696 0.658
vowel 11 0.956 0.907 0.926 0.909 0.865
waveform 3 0.956 0.692 0.927 0.692 0.864
700 7 0.999 0.963 0.984 0.963 0.984

Table 2. Weighted AUC results on UCI datasets, for multi-class, two-class and one-
class classifiers. Bold font indicates wins for two-class unbiased classification vs. one-
class classification and vice versa.

For each of the datasets with 10 or more labels where the unbiased two-class
classifier won against the one-class method, we repeated the experimental pro-
cedure from Section 3, but on each run we removed a different combination of
class labels (and all associated instances) from the training dataset. We gradu-
ally increased the number of labels removed, but for each number of labels we
considered all possible combinations and calculated the weighted AUC from the
accumulated statistics. This was repeated until only two classes remained: the
target class, and one original—but relabelled—class. Since we are also remov-
ing the heldout attacker class before training, reducing the datasets any further
results in no non-target instances present in the training set. The process for pro-
ducing the test set remains the same—ensuring that the dataset used to obtain
the AUC is identical for each method. These results are presented in Table 3;
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Original | Total | Two-class | One-class Wins
Dataset One-class| Two-class| Removals|Final AUC|After x Removals
arrhythmia 0.576 0.723 13 0.606 -
audiology 0.881 0.897 21 0.736 7
letter 0.887 0.935 23 0.876 23
mfeat-factors 0.948 0.975 8 0.736 5
mfeat-fourier 0.909 0.949 8 0.726 5
mfeat-karhunen 0.955 0.983 8 0.836 7
mfeat-pixel 0.954 0.965 8 0.876 5
mfeat-zernike 0.897 0.946 8 0.728 4
optdigits 0.959 0.969 7 0.855 4
primary-tumor 0.732 0.784 19 0.740 -
soybean 0.961 0.973 16 0.954 10
vowel 0.865 0.909 8 0.827 8

Table 3. Weighted AUC results obtained by reducing the number of non-target classes
in the training set.

for brevity we show in the final column the number of classes that were removed
before the one-class classifier became better than the two-class one.

For all but two of the datasets shown in Table 3, there exists a point where it
is better to use the one-class classifier over the two-class one. This is not unex-
pected: as the number of non-target classes is reduced, their coverage diminishes
until it is no longer worthwhile to use them to define a boundary around the
target class. For the two datasets where this is not the case, arrhythmia and
primary-tumor, the density estimate does not appear to form a good model of
the data for either classifier and the AUC is relatively low in both cases.

Graphing the results for an individual dataset, such as shown for the audiol-
ogy dataset in Figure 7, we find that the weighted AUC continually decays as we
remove classes from the training data. Of course, the one-class classifier main-
tains a constant AUC because it does not use non-target data during training.
The shape of decay shown in Figure 7 is typical of the datasets in Table 3.

From the results in this section we can say that where there are limited
non-target classes available at training time, thus increasing the potential for a
novel class to appear that is dissimilar from any existing non-target class, one-
class classification should be used in preference to two-class classification. Note
that in this situation it may also be beneficial to combine the classifiers in an
ensemble—so available outlier training data can be utilised—but we have not
investigated this option yet.

5 Conclusions

In this paper we have described how multi-class, two-class and one-class classi-
fiers can be compared to each other by setting up identical test sets and employ-
ing the weighted AUC to compare their predictive performance in verification
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Fig. 7. Number of classes removed versus weighted AUC for the audiology dataset.

problems with novel classes. We have provided empirical data for each classifica-
tion technique—Naive Bayes and the corresponding one-class model—using 27
UCI datasets. Using the results of our experiments, we are able to provide the
following advice for use of each classifier in verification problems:

— If no novel classes are expected after the classifier has been trained one
should use multi-class classification without relabelling.

If novel classes are expected, then the training data should be relabelled to
‘target’ and ‘outlier’, where the former is the single class we are attempting to
verify, and the latter contains all other classes relabelled to a single combined
class. If there is a limited number of non-target classes, or they do not
sufficiently cover possible novel cases for some other reason, then one should
use one-class classification. Otherwise, one should use two-class classification.

In situations where it is unclear whether to use one-class or two-class clas-
sification, it may be possible to combine the two classification methods in an
ensemble. However, we have not performed any tests regarding this approach,
and leave it as a possible avenue for future work. Future work could also include
extending empirical results to other learning algorithms. Moreover, we feel it
would be interesting to explore further the relationship between the number of
non-target instances (rather than the number of classes) and the accuracy of the
two-class classifier relative to the one-class classifier.
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