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Abstract. One-class classification has important applications such as
outlier and novelty detection. It is commonly tackled using density es-
timation techniques or by adapting a standard classification algorithm
to the problem of carving out a decision boundary that describes the
location of the target data. In this paper we investigate a simple method
for one-class classification that combines the application of a density es-
timator, used to form a reference distribution, with the induction of a
standard model for class probability estimation. In this method, the ref-
erence distribution is used to generate artificial data that is employed
to form a second, artificial class. In conjunction with the target class,
this artificial class is the basis for a standard two-class learning problem.
We explain how the density function of the reference distribution can be
combined with the class probability estimates obtained in this way to
form an adjusted estimate of the density function of the target class. Us-
ing UCI datasets, and data from a typist recognition problem, we show
that the combined model, consisting of both a density estimator and a
class probability estimator, can improve on using either component tech-
nique alone when used for one-class classification. We also compare the
method to one-class classification using support vector machines.

1 Introduction

In most classification problems, training data is available for all classes of in-
stances that can occur at prediction time. In this case, the learning algorithm
can use the training data for the different classes to determine decision bound-
aries that discriminate between these classes. However, there are some problems
that are suited to machine learning, but exhibit only a single class of instances
at training time. At prediction time, new instances with unknown class labels
can either belong to this target class or a new class that was not available during
training. In this scenario, two different predictions are possible: target, meaning
an instance belongs to the class learned during training, and unknown, where
the instance does not appear to belong to the previously learned class. This type
of learning problem is known as one-class classification.

In many cases, it may seem sensible to suggest that one-class problems should
be reformulated into two-class ones because there is actually data from other
classes that can be used for training. However, there are genuine one-class appli-
cations where it is inappropriate to make use of negative data during training.
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For example, consider password hardening, which is a biometric system that
strengthens the login process on a computer by not only requiring the correct
password to be typed, but also requiring it to be typed with the correct rhythm.
Password hardening is clearly a one-class problem; a single user must be verified
and during training time only data from that user is available—we cannot ask
anyone else to provide data without supplying them with the password.

Even in applications where instances from multiple classes are available at
training time, it may be opportune to focus solely on the target class under con-
sideration and contemplate a one-class set-up. In these applications, new classes
may occur at prediction time that are different from all classes available during
the training process. This is the case in the continuous typist recognition problem
that motivated the work presented in this paper. Continuous typist recognition
is similar to password hardening, only the text underlying the patterns is not
fixed: the current typist is verified on a block of free text. In this situation we
rely on one-class classification because we need to be able to refuse an attacker
the system has never seen before.

One-class classification is often called outlier (or novelty) detection because
the learning algorithm is being used to differentiate between data that appears
normal and abnormal with respect to the distribution of the training data. A
common statistical approach to this view on one-class classification is to identify
outliers as instances that are greater than a distance, d, to a percentage, p, of
the training data [2, 9]. Machine learning techniques that have been employed
include clustering the data and determining a suitable boundary that encloses all
the clusters [16], adapting kernel-based support vector machine classifiers [12],
and utilising densities to estimate target class membership [13].

In this paper we investigate a principled approach for applying two-class
classification algorithms to one-class classification. The only requirement is that
these algorithms can produce class probability estimates at prediction time. This
is not an impediment in general because most algorithms either provide these
estimates directly or can be modified to do so. The basic method we use to
apply a supervised approach to an unsupervised learning problem is not new: it
is described by Hastie et al. [6] in the context of association rule learning. They
also mention that “Although this approach... seems to have been part of the
statistics folklore for some time, it does not appear to have had much impact
despite its potential”.

The technique we explore is based on the generation of artificial data that
comes from a known reference distribution such as a multi-variate normal dis-
tribution, which can be estimated from the training data for the target class.
This artificial data takes the role of a second class in the construction of a two-
class classification model. Using Bayes’ rule, we show how the density function
of the reference distribution can be combined with the class probability esti-
mates of this classification model to yield a description of the target class. We
show that the combined model, which employs both the density function and the
classification model, can yield improved performance when compared to using
the density function alone for one-class classification; the latter being a stan-
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dard technique that has been used for one-class classification in the past [13, 14].
It also improves on using the classification model alone. The resulting method
yields numeric membership scores that can be used to rank test instances accord-
ing to their predicted likelihood of belonging to the target class. This property
can be an advantage when compared to techniques that provide a single deci-
sion boundary, because it makes it possible to adjust the trade-off between false
positives and false negatives at prediction time.

The next section discusses previous approaches to one-class classification.
Following this, we explain the approach to one-class classification that we evalu-
ate in this paper. In Sections 4 and 5 we present the evaluation of this technique,
on both standard UCI datasets and our continuous typist recognition data, and
compare it to existing approaches. The final section concludes the paper and
proposes some future work.

2 Related Work

Existing models for one-class classification either extend current methods for
multi-class classification or are based on density estimation. In the latter ap-
proach, density estimation is performed by fitting a statistical distribution, such
as a Gaussian, to the target data; any instances with a low probability of ap-
pearing (more precisely, low density value) can be marked as outliers [9]. This
is a sensible approach in cases where the target data follows the selected dis-
tribution very closely. The challenge is to identify an appropriate distribution
for the data at hand. Alternatively one can use a non-parametric approach,
such as kernel density estimation, but this can be problematic because of the
curse-of-dimensionality and the resulting computational complexity.

Extensions of current multi-class classifiers to one-class classification involve
fitting a boundary around the target data, such that instances that fall out-
side the boundary are considered outliers. The boundary can be generated by
adapting the inner workings of an existing multi-class classifier [12], or by us-
ing artificial data as a second class, in conjunction with a standard multi-class
learning technique [1]. Methods in the former category generally rely heavily on
a parameter that defines how much of the target data is likely to be classified as
outlier [14]. This parameter defines how conservative the boundary around the
target class will be. If it is chosen too liberally, then the model will overfit and
we risk identifying too much legitimate target data as outliers. A drawback of
these techniques is that an appropriate parameter value needs to be manually
chosen at training time.

In contrast, when density estimation is used for one-class classification, a
threshold on the density can be adjusted at prediction time to obtain a suit-
able rate of outliers. In some situations, where parametric density estimation
fails, using classification-based methods may be favourable; these techniques are
generally able to define boundaries on data that cannot be tightly modelled by
a standard statistical distribution. In some cases there is a close link between
classification-based techniques and density estimators: for example, it has been
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shown that one-class kernel Fisher discriminant classifiers can be used to per-
form non-parametric density estimation [11]. However, this only applies to very
specific learning techniques.

The method presented in this paper is based on the generation of artificial
data from a reference distribution to form a two-class classification problem.
However, unlike earlier work on using artificial data for one-class classification
(see [1] and references therein), it is based on using a two-class probability esti-
mator, and combines the estimated reference density function with the resulting
class probability estimator to form an overall prediction.

The method is generic in the sense that it is applicable in conjunction with an
arbitrary density estimator and an arbitrary class probability estimation tech-
nique. An alternative generic approach is ensemble learning, where the predic-
tions of different one-class classifiers are combined in an ensemble [15]. In con-
trast, we combine a density estimator and a class probability estimator to form a
single one-class classifier, along the lines of the generic approach to unsupervised
learning outlined in [6].

3 Combining Density Functions and Class Probability
Estimators

Given the large number of classification algorithms that have been developed,
it would be useful to be able to utilize them for one-class problems. A possible
approach for doing this is to generate artificial data to take the role of the sec-
ond class. The most straightforward method for implementing this is to generate
uniformly distributed data and learn a classifier that can discriminate this data
from the target. A problem with this method is that different decision boundaries
are obtained for different amounts of artificial data: if too much artificial data
is generated, then the target class will be overwhelmed by it, and, assuming the
learning algorithm aims to minimize classification error, it will learn to always
predict the artificial class. However, this problem can be avoided when the ob-
jective of learning is viewed as accurate class probability estimation rather than
minimization of classification error, and a suitable configuration of the learning
algorithm is chosen. An example of a suitable inductive approach is bagging of
unpruned decision trees, which has been shown to yield good class probability
estimators [10].

Once a class probability estimation model has been obtained in this fashion,
different thresholds on the resulting class probability estimates for the target
class correspond to different decision boundaries surrounding the instances of
the target class. This means that, as in the density estimation approach to one-
class classification, the rate of obtaining “outliers” can be adjusted at prediction
time to yield an outcome appropriate for the application at hand.

There is one significant problem with the approach that we have just de-
scribed: as the number of attributes in the learning problem increases (i.e. as
the dimensionality of the instance space grows), it quickly becomes infeasible to
generate enough artificial data to obtain sufficient coverage of the instance space,
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and the probability that a particular artificial instance occurs inside or close to
the target class diminishes to a point that makes any kind of discrimination
impossible.

The solution to this problem is to generate artificial data that is as close as
possible to the target class. In this case, because the data is no longer uniformly
distributed, it becomes necessary to take the distribution of this artificial data
into account when computing the membership scores for the resulting one-class
model. As in [6], we call the distribution that is used to generate the artificial
data the “reference” distribution. In the following we explain how the class
probability estimates of the two-class classifier are combined with the values of
the density function of this reference distribution to obtain membership scores
for the target class.

Let T denote the target class for which we want to build a one-class model.
We have training data for this class. Let A be the artificial class, for which we
generate artificial data using a known reference distribution. Let X denote an
instance and let P (X|A) denote the density function of the reference distribution.

What we would like to obtain is P (X|T ), the density function for the target
class. If we had this density function, we could use it for one-class classification
by imposing a threshold on its values. Let us assume for the moment that we
know the true class probability function P (T |X). In practice, we need to estimate
this function using a class probability estimator learned from the training data.

The following shows how we can compute the density function for T , namely
P (X|T ), given the class probability function P (T |X), the reference density
P (X|A), and P (T ), which is the prior probability of observing an instance of
the target class. We start with Bayes’ theorem:

P (T |X) =
P (X|T )P (T )

P (X)

For a two-class situation, the probability of X is the probability of seeing an
instance of X with either class label, so the equation becomes:

P (T |X) =
P (X|T )P (T )

P (X|T )P (T ) + P (X|A)P (A)

Now we solve for P (X|T ), the density function for the target class, which we
want to use for one-class classification. We first bring the denominator on the
right to the left:

(P (X|T )P (T ) + P (X|A)P (A))P (T |X) = P (X|T )P (T )

Now we expand the product on the left, and bring the term involving P (X|T )
to the right:

P (X|T )P (T )P (T |X) + P (X|A)P (A)P (T |X) = P (X|T )P (T )

P (X|A)P (A)P (T |X) = P (X|T )P (T )− P (X|T )P (T )P (T |X)
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Then we extract out P (X|T ) and bring the remainder to the left:

P (X|A)P (A)P (T |X) = P (X|T )(P (T )− P (T )P (T |X))

P (X|A)P (A)P (T |X)
P (T )− P (T )P (T |X)

= P (X|T )

We swap the two sides and extract P (T ) in the denominator:

P (X|T ) =
P (X|A)P (A)P (T |X)

P (T )(1− P (T |X)

Now we make use of the fact that P (A) = 1−P (T ), because there are only two
classes, and rearrange:

P (X|T ) =
(1− P (T ))P (T |X)
P (T )(1− P (T |X))

P (X|A) (1)

This equation relates the density of the artificial class P (X|A) to the density of
the target class P (X|T ) via the class probability function P (T |X) and the prior
probability of the target class P (T ).

To use this equation in practice, we choose P (X|A) and generate a user-
specified amount of artificial data from it. Each instance in this data receives the
class label A. Each instance in the training set for the target class receives class
label T . Those two sets of labeled instances are then combined. The proportion
of instances belonging to T in this combined dataset is an estimate of P (T ),
and we can apply a learning algorithm to this two-class dataset to obtain a class
probability estimator that takes the role of P (T |X). Assuming we know how
to compute the value for P (X|A) given any particular instance X—and we can
make sure that this is the case by choosing an appropriate function—we then
have all the components to compute an estimate of the target density function
P̂ (X|T ) for any instance X.

Note that, because we are using estimates for P (T |X) and P (T ), the func-
tion P̂ (X|T ) will not normally integrate to one and is thus not a proper density.
However, this is not a problem for one-class classification because we can empir-
ically choose an appropriate threshold on P̂ (X|T ) to perform classification, and
we can adjust this threshold to tune the probability of an instance being iden-
tified as an outlier. Obviously, we can also use this function to rank instances.
Note that this also means the prior odds ratio (1−P (T ))

P (T ) is irrelevant in practice,
because it corresponds to a constant factor, and it is sufficient to use an estimate
of the posterior odds P (T |X)

1−P (T |X) in conjunction with P (X|A).
It is instructive to relate this method to the simple approach discussed at the

beginning of this section, which was based on generating uniformly distributed
data for the artificial class. This corresponds to using the uniform distribution as
the reference distribution, i.e. using the uniform density for P (X|A). Based on
Equation 1, this means that P (X|T ) becomes proportional to the posterior odds
ratio P (T |X)/(1−P (T |X))—which is monotonic in P (T |X)—meaning that test
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cases can simply be ranked according to the class probability function P (T |X),
and classification can be performed based on an appropriately chosen threshold
for this function. This means the two-class classification model that is learned
from the target data and the uniformly distributed data can directly be used
for one-class classification; for the reason given above, this is only a worthwhile
option to consider for very low-dimensional learning problems.

One question remains, namely how to choose the reference density P (X|A).
Essential requirements for this function are that (a) we need to be able to gener-
ate artificial data from it and (b) we need to be able to compute its value for any
instance X. Another requirement, as indicated at the beginning of this section,
is that the data generated based on this distribution is close to the target class.
In fact, based on Equation 1 we now know that, ideally, the reference density is
identical to the target density, in which case P (T |X) becomes a constant func-
tion that any well-behaved learning algorithm should be able to induce (i.e. the
resulting two-class learning problem would become trivial). This is obviously not
realistic because it would essentially require us to know (or somehow obtain) the
density of the target class. However, this observation gives us a clue as to how we
can go about getting a useful density function P (X|A) for the problem at hand:
we can apply any density estimation technique to the target data for class T
and use the resulting density function to model the artificial class A. The more
accurately this initial density estimate models P (X|T ), i.e. the better the match
between P (X|A) and P (X|T ), the easier the resulting two-class class probability
estimation task should become. This discussion implies that Equation 1 can also
be viewed as a mechanism for improving an initial density estimate for a dataset
using a class probability estimation technique.

In practice, given the availability of powerful methods for class probability
estimation, and the relative lack of such techniques for density estimation, it
makes sense to apply a simple density estimation technique to the target data
first, to obtain P (X|A), and then employ a state-of-the-art class probability
estimation method to the two-class problem that is obtained by joining the
artificial data generated using P (X|A) and the data from the target class. This
is the strategy that we evaluate in this paper.

Because Equation 1 is used to estimate a density function for the target
class, the method presented here is most closely related to the standard density-
estimation-based approach to one-class classification. However, given that a class
probability estimation model is used as part of the estimation process, which is
obtained from a standard technique for classification learning, the method is also
related to approaches that adapt standard two-class learning techniques to the
one-class learning task: in a sense, it straddles the boundary between these two
groups of approaches to one-class classification.

4 Evaluation Method

Our primary motivation for exploring the one-class learning technique presented
in this paper was our interest in the domain of continuous typist recognition.
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In the next section we present empirical results on datasets from this domain.
However, we also present results for standard multi-class UCI datasets.

Evaluating one-class classifiers on datasets with multiple classes is straight-
forward. Each class in turn is treated as the target class and the other classes are
joined into an “outlier” class. In our experiments, we ran a standard stratified
10-fold cross-validation, repeated 10 times, to estimate the AUC for a particular
target class. The one-class learning methods simply ignore the data for the out-
lier class that occurs in the training sets. The instances in the test sets are ranked
according to their predicted density values so that the AUC can be computed.
In this fashion we obtain one AUC value for each class in a dataset. To sum-
marize performance for a particular UCI dataset, we report a weighted average
of these AUC values. For the weighted AUC, each two-class AUC is calculated,
then weighted by the prevalence of the target class and summed. The formula
for the weighted AUC is:

AUCweighted =
∑
∀ci∈C

AUC(ci)× p(ci) (2)

where C is the full set of classes in the dataset, p(ci) is the prevalence of the
target class ci in the full dataset, and AUC(ci) is the AUC value for target class
ci. Using a weighted average rather than an unweighted one prevents target
classes with smaller instance counts from adversely affecting the results.

The one-class method presented in this paper combines the output of a den-
sity estimator with that of a class probability estimator. In our evaluation we
used bagged unpruned C4.5 decision trees with Laplace smoothing as the prob-
ability estimator P (T |X). Ten bagging iterations were used throughout. We
evaluated two different simple density estimation models: a Gaussian density
with a diagonal co-variance matrix containing the observed variance of each at-
tribute in the target class, and a product of mixture of Gaussian distributions
with one mixture per attribute. Each mixture is fitted to the target data for
its corresponding attribute using the EM algorithm. The amount of artificial
data generated using the reference distribution, which determines the estimate
of P (T ) in Equation 1, was set to the size of the target class. Hence the data
used to build the bagged unpruned decision trees was exactly balanced.

One of the main objectives of our empirical study was to ascertain that the
combined model can indeed improve on its components in terms of predictive
performance. Hence we also evaluated one-class classification using the Gaussian
density and the EM-based density directly, with the same cross-validation-based
experimental set-up described above. This means we use the reference density
P (X|A) from Equation 1 to rank test instances, rather than P̂ (X|T ). Addi-
tionally, we also measured the performance obtained when using only the class
probability estimator from Equation 1, i.e. the bagged unpruned decision trees
in our experiments. This means we only use the estimate for P (T |X) from Equa-
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tion 1 for ranking. Note that in this case the reference density is still used to
generate the data for the artificial second class.1

As an optimistic baseline we also show the performance obtained on the UCI
datasets when treating the learning problem as a standard classification problem,
using the data for all classes at training time, by building a one-vs-rest model
using bagged decision trees.

For completeness, we also compare to the one-class support vector machine
described by [12], as it is implemented in libSVM [3]. We used RBF kernels and
set the value of ν to 0.1. The parameter ν determines how much of the target
data is likely to be classified as outlier. We adjusted the γ value for the RBF
kernel for each dataset to obtain a false alarm rate (FAR) as close as possible to
0.1. The false alarm rate is the number of legitimate target instances incorrectly
identified as outliers (also known as the false negative rate).

When comparing libSVM to the combined one-class classifier we cannot use
AUC because the one-class implementation in libSVM does not return member-
ship scores, just a yes/no decision. Hence our comparison is based on attempting
to achieve a fixed FAR, namely 0.1, for both techniques, by choosing an appro-
priate threshold for our model, and evaluating the corresponding impostor pass
rate (IPR). The impostor pass rate is the number of outlier instances that are
wrongly classified as belonging to the target class (also known as the false posi-
tive rate). FAR and IPR are often used in domains such as biometrics. A higher
FAR results in a lower IPR and vice versa. Note that, to calculate FAR and IPR
in our experiments, false negatives and false positives were simply accumulated
across all one-class learning problems that resulted from processing a multi-class
dataset. As in the case of AUC, 10-fold cross-validation, repeated 10 times, was
used for a single one-class learning problem.

5 Results

In the following we present the experimental results obtained using the methodol-
ogy described above. We first discuss the performance of the combined classifier,
its components, and the baseline multi-class classifier on standard multi-class
UCI datasets. In the second subsection we introduce the typist dataset, which
motivated this work, and use it to show the performance of the combined classi-
fier on individual classes. Finally, we present a comparison between the combined
one-class classifier and the one-class support vector machine [3, 12].

5.1 UCI Datasets

Table 1 contains the results we obtained for the UCI datasets, comparing weighted
AUC values for the baseline multi-class classifier, in the left-most column, and
the variants of one-class classifiers discussed above, excluding the SVM. More

1 We also tried using uniformly distributed data as the artificial class, but the results
were poor, so they are not shown in what follows.
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specifically, there are two groups of three columns for the one-class classifiers.
The first group is based on using the Gaussian density as the reference density
and the second one based on using the EM method. Each group of three columns
has results for (a) the combined classifier, consisting of both the reference density
and the class probability estimation model (i.e. bagged trees), (b) the reference
density P (X|A) used directly, and (c) the class probability estimator P (T |X)
used directly.

From the results presented in Table 1 it is clear that the combined classi-
fier performs much better than its component probability estimator—i.e. the
estimate of P (T |X)—for all of the UCI datasets. Hence it is essential to take
the reference density into account when making a prediction. It is not sufficient
to simply generate artificial data based on the reference density, build a class
probability estimator, and then use that for prediction.

The picture is not so clear when comparing the combined classifier to the
reference density. Considering the Gaussian case, there are four datasets where
the latter produces better results: diabetes, ecoli, iris, and waveform-5000. This
indicates that the combined model is too complex in those cases; the simple
reference distribution is sufficient to model the distribution of the target class
for those datasets, and adding bagged trees into the model is detrimental. On the
other hand, there are six datasets where the combined model performs better:
heart-statlog, letter, mfeat-karhunen, pendigits, sonar, and vehicle. In the case
of the vehicle and letter datasets the difference is substantial—and is so even for
the AUC values of every individual class label occurring in these datasets (for
brevity these results are not shown here).

Considering the case of using the EM-based density estimate as the reference
density, the overall picture is similar, but there is only one tie in this case (sonar).
There are eight wins for the combined classifier (heart-statlog, letter, the three
mfeat datasets, pendigits, vehicle, and waveform-5000) and six losses (diabetes,
ecoli, glass, ionosphere, iris, and pendigits). The biggest wins in absolute terms
for the combined method occur again on the vehicle and letter datasets.

It is instructive to compare the performance of the two different combined
models. The EM-based model wins on nine datasets and loses on only five. Hence
the combined model often receives a boost when the more powerful EM-based
density estimator is used to obtain the reference density. Note also that the EM-
based density often has an edge compared to using the Gaussian density when
both are used in stand-alone mode: the former wins nine times and loses six
times.

Not surprisingly, standard bagged decision trees outperform all one-class clas-
sifier variants on all datasets, often by a significant margin. The reason for this
is that this learner actually gets to see data for the outlier class (i.e. the union
of the non-target classes) at training time. It can thus focus on discriminating
the target class against all those specific non-target classes, and its performance
can be considered an optimistic target for that of corresponding one-class classi-
fiers. We would like to emphasize here that in practical applications of one-class
classifiers this kind of data is not available. Even if there is some negative data
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Bagged One-class Classifier Gaussian One-class Classifier EM
Dataset Trees Combined P (X|A) P (T |X) Combined P (X|A) P (T |X)

diabetes 0.818 0.626 0.653 0.511 0.639 0.669 0.510
ecoli 0.953 0.928 0.930 0.516 0.928 0.931 0.542
glass 0.878 0.698 0.698 0.624 0.731 0.735 0.593
heart-statlog 0.880 0.796 0.790 0.671 0.768 0.751 0.629
ionosphere 0.965 0.697 0.697 0.587 0.726 0.727 0.580
iris 0.985 0.974 0.977 0.628 0.972 0.976 0.662
letter 0.996 0.904 0.887 0.701 0.931 0.921 0.783
mfeat-karhunen 0.984 0.957 0.955 0.524 0.960 0.959 0.577
mfeat-morphological 0.959 0.941 0.941 0.804 0.940 0.939 0.836
mfeat-zernike 0.959 0.898 0.898 0.418 0.904 0.902 0.622
optdigits 0.995 0.959 0.959 0.562 0.954 0.955 0.645
pendigits 0.998 0.958 0.953 0.845 0.938 0.933 0.821
sonar 0.867 0.588 0.587 0.484 0.612 0.612 0.501
vehicle 0.919 0.705 0.657 0.656 0.781 0.765 0.700
waveform-5000 0.951 0.863 0.864 0.415 0.864 0.863 0.466
Table 1. Weighted AUC results on UCI data, for standard bagged decision trees, the
combined one-class classifier, and its components

available at training time, the expectation is that completely new classes of data
will be encountered at prediction time.

5.2 Typist Dataset

The work in this paper was motivated by the need to find an appropriate clas-
sification method for a continuous typist recognition problem. As mentioned
previously, continuous typist recognition is akin to password hardening, only the
patterns presented to the system may contain any number of characters and
sample lengths may vary. During our search for a method for improving the
state-of-the-art in this research area, we investigated several different one-class
classifiers—all of which were customised to the task of typist recognition [4, 5, 7,
8]. We felt that this problem would benefit from the extensive research performed
on multi-class classifiers and directed our efforts towards creating a dataset that
could be used by standard machine learning algorithms.

Unfortunately, with the ethical issues surrounding key logging data, and the
omission of key release events from one of the datasets we had access to, we
were unable to transform an existing dataset for use in our experiments. Instead,
we recorded 3000 emails from 19 people in the Computer Science Department
at the University of Waikato over a period of 3 months. After technical and
ethical issues were addressed, a dataset of 15 emails for each of 10 participants
was created. This dataset only contained the raw sequences of input from the
recordings. Each sample was broken down further into blocks of 400 events—a
size that roughly equates to a small paragraph of text and is similar in size to
other typist datasets [5]—resulting in between 24 and 75 samples per user. Every
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Bagged One-class Classifier Gaussian One-class Classifier EM
Participant Trees Combined P (X|A) P (T |X) Combined P (X|A) P (T |X)

A 0.938 0.924 0.932 0.312 0.923 0.931 0.326
B 0.970 0.934 0.931 0.365 0.929 0.930 0.433
C 0.915 0.707 0.665 0.677 0.786 0.788 0.594
D 0.958 0.924 0.928 0.335 0.902 0.916 0.456
E 0.994 0.973 0.974 0.795 0.971 0.971 0.793
F 0.913 0.852 0.843 0.619 0.867 0.862 0.636
G 0.962 0.942 0.943 0.367 0.952 0.951 0.418
H 0.892 0.909 0.909 0.613 0.914 0.913 0.618
I 0.939 0.956 0.958 0.591 0.950 0.949 0.449
J 0.975 1.000 1.000 0.792 1.000 1.000 0.747

Weighted Avg. 0.941 0.897 0.891 0.540 0.908 0.910 0.547
Table 2. AUC results for the typist dataset, for standard bagged decision trees, the
combined one-class classifier, and its components

400-event sample had a number of attributes calculated; these attributes formed
the dataset for use with a standard machine learning algorithm.

In total, there are 8 attributes in our typist dataset.2 Most of the attributes
are based around the typist speed (average words-per-minute (WPM) rate, peak
WPM, trough WPM) or error rate (backspaces, paired backspaces, average
backspace block length). There are also two attributes that relate to the slur-
ring of key press and release events (press/release ordering, press/release rate).
The final typist dataset used here contains these 8 attributes and 10 class labels
(Participants A–J).3

Table 2 shows the results obtained for the 10 different typist classes, in each
case treating one of these classes as the target class, and the union of the other
classes as the outlier class. Each row states AUC values for one particular target
class. The bottom row has the weighted AUC value, calculated according to
Equation 2.

The results from the typist dataset are similar to those from the UCI datasets:
using only the class probability estimator, P (T |X), results in poor performance,
whereas using just the reference density, P (X|A), sometimes performs better
than the combined model. More specifically, considering the case of the Gaussian
reference density, the win/loss ratio for the combined model vs. the reference
density is 3/5; considering the case of the EM-based density it is 4/4. According
to overall weighted AUC, the combined model has an edge in the Gaussian case,
but is outperformed slightly in the case of EM.

Considering performance relative to the baseline multi-class classifier, the
overall picture is similar as in the case of the UCI datasets: multi-class classi-
fication outperforms one-class classification. However, surprisingly, for three of
the user classes—H, I and J—the combined one-class classifier and the reference
densities have a higher AUC than the baseline classifier. This is not unusual;
2 This number is likely to change in future for the purposes of typist recognition.
3 Available for download at http://www.cs.waikato.ac.nz/ml/data/typist.arff
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libSVM OCC OCC
Gaussian EM

Dataset γ FAR IPR FAR IPR FAR IPR

diabetes 0.00005 0.111 0.514 0.098 0.857 0.109 0.779
ecoli 0.1 0.137 0.068 0.129 0.088 0.136 0.083
glass 0.005 0.154 0.412 0.147 0.434 0.180 0.331
heart-statlog 0.0001 0.122 0.624 0.140 0.507 0.141 0.504
ionosphere 0.00005 0.128 0.738 0.150 0.732 0.169 0.697
iris 0.0005 0.120 0.073 0.125 0.076 0.137 0.077
letter 0.000005 0.101 0.516 0.100 0.291 0.105 0.215
mfeat-karhunen 0.0001 0.131 0.034 0.094 0.114 0.105 0.092
mfeat-morphological 0.0000001 0.110 0.206 0.068 0.128 0.075 0.134
mfeat-zernike 0.000001 0.116 0.253 0.085 0.324 0.099 0.276
optdigits 0.00005 0.106 0.087 0.107 0.084 0.122 0.087
pendigits 0.000001 0.103 0.203 0.100 0.116 0.102 0.137
sonar 0.001 0.120 0.705 0.123 0.815 0.163 0.751
vehicle 0.00005 0.103 0.629 0.109 0.645 0.130 0.494
waveform-5000 0.001 0.103 0.307 0.075 0.411 0.110 0.354

typist 0.00005 0.113 0.331 0.113 0.204 0.147 0.157

Table 3. Results for one-class support vector machines (obtained with libSVM) versus
the combined one-class classifier (OCC)

we experienced similar results on individual class labels on many of the UCI
datasets. In the context of our target application, typist recognition, this is
exciting because it demonstrates that one-class classification can be a very sat-
isfactory substitute for multi-class classifiers, and one that is better suited to
solving the problem at hand because it does not require any training data from
the outlier classes in order to achieve good results: when using typist recognition
for computer security we simply do not have access to training data for new
classes of typists that correspond to impostors (or “attackers”).

5.3 LibSVM

To compare the method presented in this paper—again, using bagged unpruned
decision trees—to an established one-class classifier, we now discuss results ob-
tained in a comparison to the one-class classifier in libSVM [3]. The results are
shown in Table 3. As mentioned in Section 4, we could not use AUC for compar-
ison, and instead resort to reporting FAR and IPR. For each dataset, the table
reports the value of the γ parameter for the RBF kernel that was used to obtain
the results shown.

Although we were generally unable to match FAR exactly for the methods
compared, the results nevertheless enable us to make a qualitative statement
about their relative performance. In particular, we can consider cases where both
FAR and IPR are lower for one method in a pair of methods being compared.
Doing this for libSVM and the Gaussian-based combined classifier, we see that
there are two datasets where both FAR and IPR are lower for the latter method
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(letter and pendigits) and two cases where they are both lower for libSVM (sonar
and vehicle). Repeating this exercise for libSVM and the combined model with
the EM-based density, we find that there is one dataset where the latter method
is better for both statistics (pendigits) and three datasets where this is the case
for libSVM (iris, sonar, and waveform-5000). Overall, we can say that there are
datasets where the SVM appears to be the better approach and other datasets
where the combined method appears to perform better. Note that, in contrast to
the SVM, FAR and IPR can be adjusted at prediction time with the approach
presented here, and it does not require parameter tuning to return satisfactory
results.

6 Conclusion

In this paper we have combined density estimation with class probability esti-
mation for the purpose of one-class classification. We applied a density estimator
to build a reference density for the target class, then used this reference density
to generate artificial data for a two-class learning problem suitable for a class
probability estimation technique, and finally combined the predictions of the
reference density and the class probability model to form predictions for new
test cases.

Using experimental results obtained on UCI datasets and a continuous typist
recognition problem, and using bagged unpruned decision trees as the underlying
class probability estimator, we have shown that the combined model can indeed
improve on both component techniques: the density estimator used to obtain the
reference density and the class probability estimator trained on the semi-artificial
two-class learning problem.

We have also compared the combined model to a one-class support vector
machine with a RBF kernel. The results show that there are datasets where the
former method is superior and other datasets where the one-class SVM performs
better. The combined method has the advantage that—like in standard density
estimation techniques for one-class classification— there is no need to specify a
target rejection rate at training time.

A significant feature of the method explored here is that it is generic, and
hence can be used in conjunction with arbitrary density estimators and class
probability estimation techniques. We believe that this is the primary advantage
of this technique, given the availability of large collections of suitable candidate
base learners in machine learning workbenches (see also the relevant discussion
in [6]).

An interesting avenue for future work is the experimental comparison of
variants of the combined technique that can be obtained by plugging in differ-
ent types of base learners. Another important question is how the quantity of
artificial data that is generated using the reference distribution influences the
result. There must clearly be diminishing returns, but one would expect that,
in general, more data leads to a more accurate combined model. On a more
fundamental level, it would be interesting to investigate whether it is possible to
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avoid the artificial data generation step by adapting class probability estimators
to take advantage of information in a reference distribution directly. However, it
is obvious that this cannot be achieved without changing the learning algorithm
involved; thus the generic aspect of the method would be lost.
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