
Conditional Density Estimation with Class
Probability Estimators

Eibe Frank and Remco R. Bouckaert

Department of Computer Science, University of Waikato, New Zealand
{eibe,remco}@cs.waikato.ac.nz

Abstract. Many regression schemes deliver a point estimate only, but
often it is useful or even essential to quantify the uncertainty inherent in
a prediction. If a conditional density estimate is available, then prediction
intervals can be derived from it. In this paper we compare three tech-
niques for computing conditional density estimates using a class proba-
bility estimator, where this estimator is applied to the discretized target
variable and used to derive instance weights for an underlying univariate
density estimator; this yields a conditional density estimate. The three
density estimators we compare are: a histogram estimator that has been
used previously in this context, a normal density estimator, and a kernel
estimator. In our experiments, the latter two deliver better performance,
both in terms of cross-validated log-likelihood and in terms of quality of
the resulting prediction intervals. The empirical coverage of the intervals
is close to the desired confidence level in most cases. We also include
results for point estimation, as well as a comparison to Gaussian process
regression and nonparametric quantile estimation.

1 Introduction

In this paper we investigate methods for performing conditional density estima-
tion using class probability estimators. Conditional density estimation makes it
possible to quantify and visualize the uncertainty associated with the prediction
of a continuous target variable. Given an observed vector of attribute values, a
conditional density estimator provides an entire density function for the target
variable, rather than a point estimate consisting of a single value. This func-
tion can then be visualized, or it can be summarized in prediction intervals that
contain the true target value with a certain pre-specified probability.

As an example, consider the artificial data shown in Figure 1, consisting of
two superimposed Mexican hats, each with Gaussian noise that exhibits constant
variance. In this problem, there is a single attribute (shown on the x axis) that
is used to predict the target variable (shown on the y axis). For each attribute
value x, there is a conditional density function f(y|x). Figure 2 shows conditional
density functions for three values of x, namely 0, 3, and 8. These density functions
are obviously unknown for real-world data. However, if they were available, we
could use them to quantify predictive uncertainty, e.g. in the form of prediction

-1

-0.5

 0

 0.5

 1

 1.5

 2

 2.5

-10 -8 -6 -4 -2 0 2 4 6 8 10

Ta
rg

et
 v

al
ue

Attribute value

Two superimposed Mexican hats

Fig. 1. Example data used to illustrate the output of CDE

 0

 1

 2

 3

 4

 5

 6

 7

 8

-1 -0.5 0 0.5 1 1.5 2 2.5 3

D
en

si
ty

Target value

Conditional density functions for three locations

Conditional density function at attribute value 0
Conditional density function at attribute value 3
Conditional density function at attribute value 8

Fig. 2. Three conditional density functions for superimposed Mexican hats

intervals. The aim of conditional density estimation is to accurately estimate
conditional density functions like these.

Although information on predictive uncertainty is very useful in interactive
applications of prediction methods, there has been comparatively little work on
conditional density estimation in statistics [1] and machine learning [2] outside
the area of Bayesian models for regression, e.g. Gaussian process regression [3].
A significant amount of related material can be found in the economics litera-
ture [4], but this work has a focus on time series problems. In machine learning,
a number of publications discuss conditional density estimation for particular
types of neural networks, see e.g. [5–12]. Excluding Bayesian regression and
neural networks, work on conditional density estimation in machine learning ap-
pears to be rare. One exception is [13], which investigates methods for learning
conditional density trees in the context of Bayesian networks. Another is [2],

which describes a computationally efficient version of kernel conditional density
estimation—a popular method in statistics [1].

The aim of this paper is to investigate a generic discretization-based tech-
nique for conditional density estimation that wraps around an existing machine
learning algorithm—more specifically, a class probability estimator. A key ad-
vantage of generic techniques is that they can leverage existing implementations
of machine learning algorithms in software suites like the Weka workbench [14].
It is well known that the most accurate algorithm for a particular prediction
problem cannot in general be determined a priori and that experimentation
with a collection of algorithms is necessary. Thus it is useful to have access to
generic techniques that can be used to generate conditional density estimates in
conjunction with existing class probability estimation techniques.

The idea of using class probability estimation for conditional density esti-
mation is not new, and has been used in the context of modeling auction price
uncertainty using boosting [15]. The contribution of this paper is that we show
how to combine class probability estimation with univariate normal and kernel
density estimators to improve on the histogram-based estimator used in [15].
Empirical evaluation is used to ascertain that progress has been made. We use
two approaches for evaluation, both based on computing performance measures
on independent test data. First, we compute log-likelihood values based on the
predicted density estimates [9]. Second, we compute prediction intervals from
the conditional density estimates based on pre-specified confidence levels, and
measure their size and coverage [2]. The aim is to achieve small intervals with
empirical coverage that is close to the desired confidence level.

The paper is structured is follows. In the next section, we discuss how class
probability estimation can be combined with univariate density estimators to
obtain conditional density estimates. Section 3 presents experimental results
comparing the performance of histogram-based estimation with that obtained
from normal and kernel estimators, based on two underlying class probability
estimators. We also include results for point estimation, as well as a comparison
to Gaussian process regression and nonparametric quantile estimation. Section 4
summarizes our findings and concludes the paper.

2 Conditional Density Estimation via Class Probabilities

We assume access to a class probability estimation scheme—e.g. an ensemble of
class probability estimation trees—that can provide class probabilities p(c|X)
based on some labeled training data, where c is a class value and X an instance
described by some attribute values. The basic idea is to discretize the continuous
target values y into intervals that can be treated as class values c and use p(c|X)
to obtain a weight for each y, conditioned on X. A univariate density estimate—
e.g. a normal density—constructed from these weighted target values in the
training data, constitutes a conditional density estimate.

2.1 Three Density Estimators based on Weighted Target Values

For the discussion that follows, we assume that the target variable has been
discretized into non-overlapping intervals (“bins”), for example, by applying
equal-frequency discretization to the target values in the training data.1 Re-
gardless of which discretization method is applied, once the target values have
been discretized, a class probability estimator can be used to estimate p(c|X).
Note that the class values created in this fashion exhibit a natural order, and
it may be advantageous to exploit this by choosing an appropriate underlying
class probability estimator.

Let cy be the bin (i.e. class) that contains the target value y and let p(cy|X)
be the predicted probability of that class given X, which is obtained from the
class probability estimator. Let n be the total number of target values in the
training data and nc be the number of target values in bin c.

We compute a conditional density estimate by weighting the target values
in the training data and then using these weights in a standard univariate den-
sity estimator to obtain a conditional density estimate. A weight w(yi|X) for a
particular target value yi given an instance X is computed by “spreading” the
predicted class probability for bin cyi across all ncyi

target values in that bin:

w(yi|X) = n
p(cyi

|X)
ncyi

,

where the multiplier n ensures that the sum of weights is n.
The weight w(yi|X) can be viewed as an estimate of how likely it is that a

future observed target value associated with X will be close to yi, based on the
class probability estimation model that has been inferred from the discretized
training data. Given weights for all target values in the training data, we can
then use a univariate density estimator, applied to these weighted values, to
obtain a conditional density estimate f(y|X).

The simplest estimator is the standard univariate normal estimator:

fnormal(y|X) = N (y;µX , σ2
X),

where µX and σ2
X are the mean and variance respectively, computed based on

the weighted target values; i.e. the mean is defined as µX = 1
n

∑n
i=0 w(yi|X)yi

and the variance as σ2
X = 1

n

∑n
i=0 w(yi|X)(yi − µX)2.

Although the normal estimator is useful when the data is approximately
normal, it is not flexible. A popular non-parametric alternative is a kernel density
estimator. Using Gaussian kernels with kernel bandwidth σkernel, the weighted
kernel estimator is:

fkernel(y|X) =
1
n

n∑
i=0

w(yi|X)N (y; yi, σ
2
kernel)

1 Note that it is also possible to create a bin for each unique target value that occurs
in the training data, assuming this is feasible given the computational resources that
are available, and assuming an appropriate class probability estimator is applied.

The bandwidth parameter determines how closely the estimator fits the (weighted)
data points. We use a data-dependent value based on the global (weighted) stan-
dard deviation and the number of data points, namely σkernel = σX

n1/4 This is
based on [16], which advocates a bandwidth chosen at O(n−1/4).

Note that the kernel estimator is a “lazy” estimator and requires more com-
putational effort than the normal estimator. However, the procedure for com-
puting fkernel(y|X) can be sped up significantly using a binary search for the
kernel closest to y and scanning the sorted list of kernels in both directions un-
til the overall contribution from visiting additional kernels becomes negligible.
Hence, the number of kernels that have to be evaluated to compute fkernel(y|X)
is usually much smaller than n.

Another possible univariate density estimator, and perhaps the most obvious
one in this context, is a histogram estimator based on the bins provided by the
discretization. In this case, the density is assumed to be constant in each bin c
and based on the bin’s width rc —the difference between the upper and lower
boundary of the bin—and the class probability assigned to it:

fbins(y|X) =
p(cy|X)

rcy

This estimator has been used for conditional density estimation in [15].
It is instructive to write the histogram estimator in a form analogous to the

kernel estimator, based on weighted target values:

fbins(y|X) =
1
n

n∑
i=0

w(yi|X)
I(cyi = cy)

rcy

,

where I(a) takes on value 1 if the proposition a is true and 0 otherwise. This
formulation shows that the histogram estimator can be viewed as a kernel esti-
mator where the kernel function is identical for all target values in a bin, with
kernel value 1

rcy
inside the bin, and value 0 outside. Note that this means that

potentially valuable information about the relative position of y with respect to
the individual yi in a bin is discarded.

Another drawback of the histogram estimator is that it can return density
0 if y falls into a bin that receives weight 0 or if it is located outside the range
of all bins. To circumvent this problem we use the following adjusted version in
our experiments:

f ′bins(y|X) =
1

n + 2

nfbins(y|X) +

1

max−min : y ∈ [min,max]
N (y;max, σ2

kernel) : y > max
N (y;min, σ2

kernel) : y < min

 ,

where min is the smallest bin boundary of all bins, and max the largest one.
This means one data point is notionally spread out across the full [min,max]
range, and half a kernel function from the kernel estimator is attached to the
left- and right-most bin respectively. Appropriate normalization ensures that the
overall estimate integrates to one.

2.2 Examples

The Mexican hat data from Figure 1 can be used to illustrate the behavior of the
three estimators discussed above. To this end, we discretized the 2,000 target
values in Figure 1 into 20 bins using equal-frequency discretization and then
applied a random-forest-based method, described in more detail in Section 3, to
estimate class probabilities for the 20 discretization intervals.

The true conditional density function at attribute value 0 exhibits two well-
separated peaks at target values 1 and 2 respectively (cf. Figure 2). Figure 3
shows the three different conditional density estimates for attribute value 0. It
also shows an (unconditional) density estimate that was generated by applying
a kernel density estimator to the unweighted target values. This latter estimate
is labeled “prior kernel” in the figure and has a peak close to target value 0
because that is where most of the data in Figure 1 is located.

The figure shows that both the histogram estimator and the (conditional)
kernel estimator reflect the two peaks in the true conditional density function
quite accurately—as a unimodal estimator, the normal estimator is obviously
not able to do so. However, a visual comparison of the estimates to the true
conditional density shows that they do not model the height of the two peaks
perfectly: they should be of the same height. This is due to the influence of
discretization: the histogram estimate shows that the first peak is represented
by two bars (corresponding to two discretization intervals) that together cover
a wider range of target values than the single bar corresponding to the second
peak. Thus the predicted class probability is spread across a wider range of target
values and the height of the peak is reduced.

Let us now consider a situation where the two peaks in the true conditional
density function are closer together. This is the case for attribute value 8 (cf.
Figure 2). Figure 4 shows the conditional density estimates for this value. As
before, the normal estimator is problematic, but less so as in the previous ex-
ample. The kernel estimator models the two peaks quite well. The histogram
estimator also has two main peaks, but additionally a third narrow peak that is
a consequence of under-smoothing.

The data also exhibits attribute values where the normal estimator is appro-
priate, e.g. attribute value 3. The two Mexican hats intersect in the vicinity of
this value, giving rise to a unimodal conditional density (cf. Figure 2). Figure 5
shows that the normal estimator yields the most accurate representation of the
true density in this case. Both the histogram estimator and the kernel estimator
overfit; however, the kernel estimator exhibits less under-smoothing.

2.3 Computing Prediction Intervals

An important application of conditional density estimation is the generation of
prediction intervals. For a given confidence level α and an instance X, we would
like to obtain an α% prediction interval that contains the target value for X
with probability α.

 0

 0.5

 1

 1.5

 2

 2.5

 3

-1 -0.5 0 0.5 1 1.5 2 2.5 3

D
en

si
ty

Target value

Density estimates conditioned on value 0

conditional histogram
conditional kernel

conditional normal
prior kernel

Fig. 3. Conditional density estimates for attribute value 0; prior estimate also included

 0

 2

 4

 6

 8

 10

 12

 14

-1 -0.5 0 0.5 1 1.5 2 2.5 3

D
en

si
ty

Target value

Density estimates conditioned on value 8

conditional histogram
conditional kernel

conditional normal
prior kernel

Fig. 4. Conditional density estimates for attribute value 8; prior estimate also included

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

-1 -0.5 0 0.5 1 1.5 2 2.5 3

D
en

si
ty

Target value

Density estimates conditioned on value 3

conditional histogram
conditional kernel

conditional normal
prior kernel

Fig. 5. Conditional density estimates for attribute value 3; prior estimate also included

Assuming we know the true conditional density f(y|X), we can determine
appropriate intervals—note that there is not necessarily a single interval—by
choosing interval boundaries bi such that

∑
i

∫ bi+1

bi
f(y|X)dy = α, i.e. the area

under the chosen segments of the density function equals α.
In practice, the true density function is not known and hence replaced by the

estimators introduced above. This is particularly straightforward given the sim-
ple normal estimator fnormal(y|X): the interval boundaries are easily obtained
using the inverse of the cumulative distribution function for the normal density.

It is not so straightforward to obtain appropriate boundaries from a ker-
nel density estimator fkernel(y|X). We adopt an approximate method, which
assumes that the aim is to find interval boundaries such that the sum of all in-
terval widths for the given confidence level is minimized. To this end, the range
of the target variable is first segmented into 1,000 very small equal-width inter-
vals. The density estimator is applied to the two end points of each interval and
the two resulting density estimates are averaged. This average is then multiplied
by the interval width to get an estimate of the area under the density function
for that interval. The intervals are subsequently sorted in descending order ac-
cording to their corresponding areas aj , and the top k intervals chosen. More
precisely, k is minimized subject to the constraint

∑k
j=1 aj ≥ α. In most cases,

many of the resulting intervals will be adjacent. Adjacent intervals are merged
and the resulting merged intervals are output as prediction intervals.

Exactly the same process can also be applied in conjunction with the his-
togram estimator fbins(y|X). Using the same process in both cases facilitates
a fair comparison based on the quality of the prediction intervals that are ob-
tained. Like the kernel estimator, the histogram estimator can produce multiple
prediction intervals when the density estimate is multi-modal (see, e.g., Figure 3
for a multi-modal estimate).

3 Experiments

In this section, we compare the performance of the conditional density estimators
introduced in Section 2. We also evaluate point estimation performance and
compare to Gaussian process regression and nonparametric quantile estimation.

3.1 Comparison of Density Estimators

We present results for two underlying class probability estimators: linear support
vector machines, with Platt scaling [17] to obtain useful probability estimates,2

and random forests, with 100 trees in the ensemble.3 Performance estimates are
obtained using 10 times 10-fold cross-validation. The corrected resampled paired
t-test [18] is used to test for significant differences, at a 5% significance level.

2 SMO with options -V 5 -M in Weka.
3 To eliminate bias, each tree was grown from 66% of the training data, sampled w/o

replacement, and the remainder used to estimate class probabilities.

Because a discretized regression target yields an ordinal variable, the method
introduced in [19] was used to exploit this ordering information by creating mul-
tiple two-class problems. The base learners (i.e. SVMs and random forests) were
applied to these two-class problems. This method was also used for conditional
density estimation in [15], using an additional monotonizing step that we also
applied for the results shown here. All results are based on the data from [20].

One method of measuring the performance of a conditional density estimator
is to measure average log-likelihood (the average of log(f(y|X)) across all test
instances, where y is the actual target value in the test instance). We use base 2
logarithm. To make this measure more informative, we subtract from this the log-
likelihood obtained for an unconditional kernel density estimator (i.e. the “prior
kernel” in Figures 3, 4, and 5). A positive value means that the conditional
estimator improves on the prior estimator.

Table 1 shows results obtained using random forests.4 Scores are shown for
all three density estimators from Section 2. For the first set of results, the target
variable was discretized into 10 bins, using equal-frequency discretization; for
the second set, it was discretized into 20 bins. For each set of results, statistical
significance is measured with respect to the histogram-based method.

The results show that both the kernel estimator and the normal estimator
improve on the simple histogram estimator used previously in [15]. There are
only a handful of cases were the histogram estimator significantly outperforms
the kernel estimator. In spite of the fact that the normal estimator is not flexible,
it performs well compared to the histogram estimator. However, there are also
a number of cases were it performs significantly worse and also worse than the
kernel estimator, indicating that additional flexibility can be important.

Table 2 shows the results obtained using SVMs. These results are even more
strongly in favor of the kernel estimator and the normal estimator, e.g. there
is only a single case where the histogram estimator yields significantly higher
improvement in log-likelihood vs. the prior estimator than the kernel estimator.

It is noteworthy that the effect of the number of discretization intervals used
to obtain class probability estimates is relatively minor for the kernel estimator
and the normal estimator in most cases. However, the likelihood scores indicate
that increasing the number of intervals from 10 to 20 renders the histogram
estimator more prone to overfitting.

In practice, conditional density estimation is often used to obtain prediction
intervals. Hence, we also evaluate the quality of these prediction intervals. To this
end, we measured empirical coverage of target values in the test data as well as
average width of the predicted intervals. The aim is to obtain narrow intervals
with empirical coverage close to the chosen confidence level. For the results
shown here, we chose a 95% confidence level. Empirical coverage is expressed as
the average percentage of target values in the test data that were in the range
of the predicted intervals. Interval width is expressed relative to the full range
of target values in the training data: a relative width of 100 means that the

4 The meta and schlvote data are excluded from this and the next table, due to the high
variance in the estimates. No significant differences in performance were obtained.

Table 1. Mean improvement in log-likelihood vs. prior estimator, using random forests.

10 bins 20 bins
Dataset Histogram Kernel Normal Histogram Kernel Normal
auto93 0.21±0.79 0.90±0.28 ◦ 0.75±0.64 -0.36±1.17 0.87±0.38 ◦ 0.75±0.62 ◦
autoHorse 2.23±0.47 1.96±0.21 • 1.23±0.13 • 2.87±0.61 2.20±0.25 • 1.28±0.15 •
autoMpg 0.72±0.44 1.37±0.19 ◦ 1.37±0.10 ◦ 0.02±0.64 1.39±0.23 ◦ 1.40±0.11 ◦
autoPrice 1.10±0.60 1.46±0.16 ◦ 0.90±0.20 0.43±0.81 1.53±0.19 ◦ 0.95±0.22
baskball -1.33±0.85 0.02±0.39 ◦ 0.43±0.66 ◦ -2.08±1.22 0.00±0.43 ◦ 0.43±0.65 ◦
bodyfat 2.56±0.24 2.38±0.17 • 1.59±0.14 • 3.38±0.25 2.77±0.16 • 1.62±0.16 •
bolts 0.99±1.11 1.28±0.34 0.73±0.29 0.10±1.58 1.28±0.40 ◦ 0.78±0.27
breastTumor -0.78±0.60 -0.27±0.31 ◦ -0.13±0.14 ◦ -0.64±0.70 -0.26±0.25 -0.11±0.14 ◦
cholesterol -0.99±0.43 -0.08±0.14 ◦ 0.28±0.84 ◦ -1.68±0.72 -0.02±0.16 ◦ 0.31±0.89 ◦
cleveland 0.48±0.22 0.64±0.19 ◦ -0.33±0.16 • 0.48±0.22 0.64±0.19 ◦ -0.33±0.16 •
cloud 0.39±0.95 1.11±0.31 ◦ 0.74±0.32 -0.46±1.21 1.14±0.35 ◦ 0.77±0.43 ◦
cpu 2.72±0.77 2.23±0.51 • 1.07±0.73 • 2.51±0.98 2.16±0.62 0.88±0.83 •
detroit 0.58±1.56 -0.86±5.55 0.16±2.03 0.35±1.82 -0.52±4.52 0.45±1.32
echoMonths 0.55±0.61 0.58±0.23 0.33±0.12 -0.03±0.83 0.59±0.25 ◦ 0.33±0.13
elusage -1.16±1.45 0.69±0.73 ◦ 0.88±0.38 ◦ -1.89±1.51 0.48±1.00 ◦ 0.87±0.49 ◦
fishcatch 1.89±0.71 2.25±0.23 1.55±0.15 1.66±0.76 2.37±0.24 ◦ 1.54±0.17
fruitfly -0.99±0.68 -0.13±0.15 ◦ -0.35±0.34 ◦ -1.96±0.98 -0.14±0.15 ◦ -0.33±0.34 ◦
gascons 0.67±1.46 1.43±0.50 1.24±0.33 0.23±1.90 1.59±0.57 ◦ 1.40±0.36
housing 1.04±0.30 1.39±0.14 ◦ 1.02±0.13 0.55±0.47 1.46±0.17 ◦ 1.06±0.13 ◦
hungarian -0.38±0.13 0.89±0.17 ◦ -1.12±0.26 • -0.38±0.13 0.89±0.17 ◦ -1.12±0.26 •
longley 0.41±1.82 1.21±0.65 1.09±0.30 0.18±1.96 1.28±0.79 1.12±0.25
lowbwt 0.22±0.48 0.72±0.22 ◦ 0.74±0.16 ◦ -0.33±0.67 0.73±0.22 ◦ 0.76±0.16 ◦
mbagrade -0.99±1.09 -0.01±0.43 ◦ 0.00±0.43 ◦ -1.83±1.37 -0.04±0.47 ◦ 0.03±0.44 ◦
pbc 0.09±0.30 0.38±0.12 ◦ 0.23±0.10 -0.63±0.49 0.39±0.11 ◦ 0.23±0.10 ◦
pharynx -1.35±0.79 0.21±0.21 ◦ 0.06±0.28 ◦ -2.34±0.91 0.23±0.21 ◦ 0.06±0.25 ◦
pollution -0.84±0.92 0.26±0.23 ◦ 0.46±0.34 ◦ -1.56±1.05 0.24±0.22 ◦ 0.44±0.34 ◦
pwLinear 0.24±0.58 1.00±0.20 ◦ 0.94±0.13 ◦ -0.50±0.79 1.05±0.23 ◦ 0.97±0.13 ◦
quake -0.53±0.13 -0.22±0.09 ◦ -0.86±0.07 • -0.54±0.13 -0.23±0.10 ◦ -0.86±0.07 •
sensory -0.77±0.30 -0.13±0.21 ◦ -0.04±0.07 ◦ -0.76±0.31 -0.13±0.21 ◦ -0.04±0.07 ◦
servo 0.30±0.91 1.32±1.48 ◦ 1.08±0.32 ◦ -0.90±1.15 1.46±0.75 ◦ 1.09±0.32 ◦
sleep -0.30±0.97 0.36±0.35 ◦ 0.35±0.22 ◦ -0.89±1.07 0.35±0.36 ◦ 0.33±0.25 ◦
strike 0.42±1.90 0.51±1.79 -1.30±2.93 • -1.28±3.49 -0.15±3.39 ◦ -2.16±5.10
veteran -0.35±1.30 0.39±0.83 ◦ -0.17±1.35 -1.41±1.22 0.30±0.45 ◦ -0.28±1.26 ◦
vineyard -0.10±1.26 0.66±0.97 ◦ 0.67±1.24 -0.28±1.43 0.49±1.18 0.73±1.15

◦/• statistically significant improvement/degradation

total interval width is equal to the full range of target values in the training
data, yielding no useful information. For the results shown here, we used 10
discretization intervals. Results for 20 intervals are not shown due to lack of
space, but yield comparable relative performance.

Table 3 shows results for random forests, and Table 4 those for linear SVMs.
When interpreting these results, it is important to keep in mind that there is
a trade-off between maximizing coverage and minimizing interval width: it is
trivial to achieve high coverage by predicting very large intervals and vice versa.
Hence, it is useful to pay attention in particular to those cases where a method
dominates another one based on both criteria.

The results show that both the kernel estimator and the normal estimator
often produce wider intervals than the histogram estimator. This is because
they generally perform more smoothing, as could also be seen in the examples
in Section 2.2. However, in contrast to the histogram estimator, they achieve
empirical coverage close to, or above, the chosen 95% confidence level for almost
all datasets, which is important for practical applications where the end user
expects reliable prediction intervals. Moreover, there are several cases where the

Table 2. Mean improvement in log-likelihood vs. prior estimator, using linear SVMs.

10 bins 20 bins
Dataset Histogram Kernel Normal Histogram Kernel Normal
auto93 -0.59±1.32 0.88±0.70 ◦ 1.12±0.65 ◦ -1.38±1.67 0.71±1.35 ◦ 1.10±0.48 ◦
autoHorse 2.03±0.75 2.33±0.51 1.82±0.65 2.58±0.78 2.50±1.19 1.82±0.53 •
autoMpg 0.18±0.50 1.15±0.22 ◦ 1.33±0.14 ◦ -0.39±0.64 1.14±0.25 ◦ 1.37±0.14 ◦
autoPrice 0.71±0.69 1.36±0.24 ◦ 1.24±0.21 ◦ 0.31±0.79 1.35±0.34 ◦ 1.34±0.26 ◦
baskball -0.95±0.76 -0.03±0.44 ◦ 0.43±0.59 ◦ -1.53±0.95 0.02±0.29 ◦ 0.45±0.64 ◦
bodyfat 0.68±1.82 1.06±1.75 ◦ 1.63±0.26 0.22±2.34 0.92±2.28 ◦ 1.67±0.37
bolts 0.01±1.23 0.87±0.42 ◦ 0.42±0.33 -0.85±1.33 0.82±0.51 ◦ 0.42±0.32 ◦
breastTumor 0.08±0.29 -0.05±0.11 -0.04±0.06 0.37±0.35 -0.04±0.07 • -0.04±0.06 •
cholesterol -0.51±0.33 -0.02±0.10 ◦ 0.27±0.85 ◦ -0.68±0.46 0.01±0.14 ◦ 0.28±0.88 ◦
cleveland 0.42±0.26 0.67±0.27 ◦ -0.34±0.18 • 0.42±0.26 0.67±0.27 ◦ -0.34±0.18 •
cloud -0.10±0.93 0.74±1.78 0.91±0.53 ◦ -1.13±1.07 0.82±0.44 ◦ 0.87±0.51 ◦
cpu 0.97±0.94 2.03±0.55 ◦ 1.81±0.70 ◦ 0.24±1.25 2.05±0.66 ◦ 1.98±0.77 ◦
detroit 0.14±2.96 0.69±2.18 0.88±0.83 -0.48±3.10 0.45±2.33 0.84±0.85
echoMonths 0.06±0.58 0.37±0.21 0.24±0.11 -0.35±0.80 0.36±0.23 ◦ 0.24±0.12 ◦
elusage -1.32±1.44 0.38±0.51 ◦ 0.41±0.29 ◦ -1.75±1.48 0.35±0.56 ◦ 0.46±0.32 ◦
fishcatch 1.26±0.83 2.15±0.39 ◦ 2.04±0.30 ◦ 0.60±0.94 2.16±0.39 ◦ 2.12±0.30 ◦
fruitfly -0.58±0.55 -0.01±0.05 ◦ -0.27±0.32 -1.07±0.78 -0.02±0.07 ◦ -0.28±0.32 ◦
gascons 0.23±1.94 0.85±1.99 1.08±0.76 -0.02±2.16 0.82±1.88 0.99±0.97
housing 0.98±0.30 1.21±0.19 ◦ 0.95±0.45 0.68±0.38 1.22±0.21 ◦ 1.01±0.42
hungarian -0.36±0.16 1.06±0.22 ◦ -1.17±0.60 • -0.36±0.16 1.06±0.22 ◦ -1.17±0.60 •
longley -0.01±2.27 0.98±1.39 ◦ 1.27±0.47 -0.19±2.07 1.14±1.25 ◦ 1.29±0.47 ◦
lowbwt -0.01±0.54 0.63±0.22 ◦ 0.68±0.16 ◦ -0.28±0.60 0.62±0.24 ◦ 0.68±0.15 ◦
mbagrade -0.62±0.79 0.02±0.27 ◦ 0.04±0.19 ◦ -1.06±0.93 0.02±0.21 ◦ 0.03±0.21 ◦
pbc -0.36±0.39 0.24±0.15 ◦ 0.22±0.10 ◦ -1.00±0.49 0.25±0.15 ◦ 0.24±0.10 ◦
pharynx -0.40±0.49 0.33±0.19 ◦ 0.12±0.24 ◦ -1.35±0.81 0.32±0.21 ◦ 0.13±0.21 ◦
pollution -1.16±1.43 0.07±1.01 ◦ 0.52±0.35 ◦ -1.66±1.37 0.10±0.79 ◦ 0.59±0.28 ◦
pwLinear 0.19±0.64 0.99±0.29 ◦ 1.14±0.28 ◦ -0.51±0.88 0.96±0.37 ◦ 1.14±0.32 ◦
quake -0.19±0.04 -0.01±0.02 ◦ -0.86±0.05 • -0.19±0.04 -0.02±0.03 ◦ -0.86±0.05 •
sensory -0.47±0.19 -0.09±0.12 ◦ -0.17±0.03 ◦ -0.45±0.19 -0.09±0.12 ◦ -0.17±0.03 ◦
servo 0.31±1.00 1.44±0.30 ◦ 0.90±0.27 -0.21±1.13 1.49±0.35 ◦ 0.92±0.28 ◦
sleep -0.42±1.02 0.42±0.40 ◦ 0.43±0.27 ◦ -0.84±1.08 0.47±0.38 ◦ 0.43±0.27 ◦
strike -0.58±0.75 0.38±0.21 ◦ -0.97±0.68 -1.29±0.77 0.33±0.44 ◦ -0.97±0.81
veteran -0.39±0.92 0.23±0.23 ◦ -0.57±1.09 -0.90±0.97 0.21±0.16 ◦ -0.57±1.17
vineyard -0.36±1.31 0.21±1.03 0.63±0.99 ◦ -0.56±1.36 0.28±0.62 ◦ 0.65±0.83 ◦

◦/• statistically significant improvement/degradation

kernel estimator and the normal estimator dominate the histogram estimator
regarding both width and coverage (e.g. baskball, cholesterol, lowbwt, meta).
The opposite is never the case. This is most likely due to the loss of location
information in the histogram estimator. Considering the relative performance
of the normal estimator and the kernel estimator, we can see that the former
generally creates narrower intervals. As both exhibit acceptable coverage in most
cases, the kernel estimator appears preferable.

3.2 Point Estimation Performance

The results so far show that the proposed methods can produce useful condi-
tional density estimates and corresponding prediction intervals. However, it is
important to consider the quality of the point estimates that they correspond to.
To compute point estimates that are designed to minimize the squared error, we
can compute the expected value of the target variable based on the conditional
density estimate. In the case of the normal estimator and the kernel estima-
tor, this is simply the weighted sum of the target values used to construct the
estimator (i.e. the expected value is identical in both cases).

Table 3. Quality of prediction intervals, using random forests and 10 bins.

Coverage Relative width
Dataset Histogram Kernel Normal Histogram Kernel Normal
auto93 89.4± 9.2 97.4± 5.3 ◦ 97.5± 5.1 ◦ 55.3± 6.7 52.9± 6.0 55.3± 5.4
autoHorse 96.8± 4.3 97.8± 3.4 98.9± 2.2 35.4± 6.6 31.6± 4.3 ◦ 35.6± 3.5
autoMpg 88.9± 5.2 95.3± 3.4 ◦ 98.7± 1.8 ◦ 33.8± 2.0 35.6± 2.0 • 39.3± 1.6 •
autoPrice 93.7± 6.0 98.6± 3.2 ◦ 99.1± 2.5 ◦ 38.8± 6.7 40.5± 6.7 • 46.8± 4.3 •
baskball 75.0± 12.2 94.3± 7.6 ◦ 95.4± 7.0 ◦ 73.6± 3.5 62.3± 6.7 ◦ 60.7± 5.9 ◦
bodyfat 98.8± 2.0 99.2± 1.8 99.2± 1.7 37.8± 2.4 37.6± 2.5 37.0± 2.3
bolts 88.0± 15.7 100.0± 0.0 ◦ 100.0± 0.0 ◦ 66.0± 7.5 73.6± 9.8 • 79.4± 8.7 •
breastTumor 76.2± 7.7 94.0± 4.9 ◦ 91.4± 5.2 ◦ 59.6± 2.9 75.6± 3.6 • 76.1± 3.3 •
cholesterol 90.0± 5.3 94.7± 4.5 ◦ 95.6± 4.0 ◦ 68.7± 3.9 46.0± 6.2 ◦ 47.9± 5.6 ◦
cleveland 90.1± 5.0 97.2± 3.1 ◦ 97.3± 3.0 ◦ 67.6± 3.2 84.6± 3.8 • 98.2± 3.5 •
cloud 90.0± 10.1 96.1± 5.8 97.9± 4.1 ◦ 43.6± 7.0 44.5± 7.0 50.0± 5.6 •
cpu 96.2± 3.8 97.2± 3.9 98.5± 2.4 27.0± 7.9 17.8± 6.0 ◦ 25.4± 6.2
detroit 85.5± 32.8 87.5±32.1 87.5±32.1 87.2± 10.7 88.4±33.0 80.7±28.6
echoMonths 87.8± 10.4 96.5± 4.6 ◦ 96.0± 5.2 ◦ 71.5± 3.7 87.9± 2.7 • 86.3± 3.0 •
elusage 61.8± 20.8 89.6±14.8 ◦ 96.2± 9.3 ◦ 38.0± 5.9 46.9± 8.3 • 54.8± 7.0 •
fishcatch 91.6± 7.7 98.2± 3.4 ◦ 98.8± 3.0 ◦ 26.1± 5.7 30.2± 5.9 • 37.5± 4.3 •
fruitfly 82.5± 9.8 93.1± 7.9 ◦ 93.9± 7.6 ◦ 70.3± 3.6 76.4± 5.7 • 75.8± 4.3 •
gascons 88.7± 20.4 99.0± 7.0 100.0± 0.0 59.7± 6.3 63.6±11.2 67.0± 8.7 •
housing 94.8± 3.0 98.7± 1.5 ◦ 99.2± 1.3 ◦ 41.5± 1.7 44.9± 2.1 • 48.8± 2.0 •
hungarian 55.8± 10.3 100.0± 0.0 ◦ 96.1± 3.5 ◦ 78.7± 3.0 64.2± 4.7 ◦ 139.2± 8.1 •
longley 87.5± 32.1 100.0± 0.0 100.0± 0.0 79.7± 8.4 97.7±21.1 • 91.2±18.2 •
lowbwt 89.9± 6.9 96.1± 4.8 ◦ 96.7± 4.0 ◦ 49.6± 1.8 46.8± 2.2 ◦ 46.9± 2.1 ◦
mbagrade 69.1± 20.2 90.8±10.1 ◦ 90.1±10.5 ◦ 67.7± 4.8 84.0± 5.2 • 79.0± 5.7 •
meta 87.6± 4.8 96.7± 2.2 ◦ 96.4± 2.1 ◦ 60.6± 7.1 6.7± 1.9 ◦ 18.6± 2.7 ◦
pbc 91.9± 4.0 97.1± 2.7 ◦ 96.3± 2.9 ◦ 72.6± 1.5 79.1± 1.6 • 80.5± 1.8 •
pharynx 72.5± 10.5 93.8± 5.4 ◦ 94.4± 5.2 ◦ 57.1± 3.5 69.9± 3.7 • 72.7± 3.8 •
pollution 79.5± 15.1 94.8± 9.7 ◦ 95.8± 8.3 ◦ 80.5± 2.6 79.6± 4.3 72.4± 4.9 ◦
pwLinear 89.8± 6.8 98.1± 3.2 ◦ 98.6± 2.8 ◦ 54.8± 1.9 57.5± 2.0 • 53.9± 2.2
quake 90.0± 2.1 93.8± 1.5 ◦ 94.3± 1.5 ◦ 46.3± 0.5 53.4± 0.6 • 65.7± 0.6 •
schlvote 87.0± 18.4 91.9±15.8 95.4±13.2 54.1± 14.8 42.8±16.4 ◦ 51.8±16.8
sensory 86.5± 4.6 89.9± 4.1 ◦ 95.8± 2.5 ◦ 58.6± 4.5 56.7± 1.5 58.9± 1.4
servo 83.7± 9.0 96.2± 5.1 ◦ 96.0± 4.5 ◦ 30.3± 7.9 33.3± 8.8 • 38.5± 9.2 •
sleep 80.5± 16.5 96.4± 8.9 ◦ 94.3±10.0 ◦ 74.5± 5.3 90.0± 5.3 • 84.8± 6.4 •
strike 89.2± 4.0 95.6± 2.8 ◦ 97.4± 2.1 ◦ 51.0± 5.9 13.9± 1.6 ◦ 23.6± 2.5 ◦
veteran 85.1± 11.1 94.9± 6.3 ◦ 95.9± 5.6 ◦ 51.9± 6.9 44.6± 5.5 ◦ 54.6± 5.8
vineyard 81.6± 16.9 93.7±10.3 ◦ 94.0±10.1 ◦ 56.8± 10.9 59.7±10.8 54.9± 9.3

◦/• statistically significant improvement/degradation

Table 5 shows the root relative squared error for point estimates obtained
this way, for the two base learners used previously (applied in conjunction with
the wrapper for ordinal classification), based on 20 discretization intervals, and
compared to two dedicated regression methods: 100 bagged unpruned regression
trees and linear support vector machines for regression. These results show that
the point estimates produced using regression by discretization are generally
competitive with those produced by dedicated regression schemes.

3.3 Comparison to Gaussian Process Regression and Nonparametric
Quantile Regression

In this section, we compare the performance of discretization-based density es-
timation to Gaussian process regression and techniques for quantile regression.
To this end, we use SMO as the base learner, in conjunction with the ordinal
wrapper and univariate kernel density estimation with 20 discretization bins. To
yield comparable results, RBF kernels were used in SMO, and the γ parameter

Table 4. Quality of prediction intervals, using linear SVMs and 10 bins.

Coverage Relative width
Dataset Histogram Kernel Normal Histogram Kernel Normal
auto93 75.5± 14.0 92.8± 9.0 ◦ 96.4± 6.6 ◦ 35.8± 7.1 38.4± 6.5 42.1± 6.3 •
autoHorse 91.5± 6.8 95.1± 5.1 96.2± 4.3 ◦ 21.6± 5.3 19.6± 4.1 ◦ 23.3± 4.3 •
autoMpg 83.4± 6.3 94.8± 3.7 ◦ 97.9± 2.2 ◦ 37.6± 2.5 39.2± 2.6 • 38.9± 2.5 •
autoPrice 87.3± 8.4 95.7± 5.8 ◦ 98.4± 3.6 ◦ 32.2± 6.2 32.8± 5.3 36.2± 4.9 •
baskball 83.4± 11.3 94.4± 7.0 ◦ 97.8± 4.3 ◦ 75.6± 3.6 63.4± 6.2 ◦ 61.7± 5.5 ◦
bodyfat 91.4± 5.7 94.3± 4.7 96.6± 3.4 ◦ 27.9± 2.1 25.5± 1.3 ◦ 25.8± 1.3 ◦
bolts 79.3± 20.1 98.0± 6.8 ◦ 99.0± 6.1 ◦ 55.4± 9.8 77.6±11.7 • 88.7± 9.7 •
breastTumor 90.0± 5.2 95.8± 4.4 ◦ 94.1± 4.1 ◦ 76.5± 3.0 85.6± 2.7 • 80.5± 1.6 •
cholesterol 94.6± 4.6 95.5± 4.5 95.9± 3.9 72.9± 2.9 46.3± 6.1 ◦ 48.5± 5.5 ◦
cleveland 85.6± 6.9 96.5± 3.4 ◦ 94.2± 3.9 ◦ 56.0± 4.3 71.8± 5.1 • 91.5± 4.7 •
cloud 81.9± 10.8 94.8± 6.6 ◦ 96.1± 5.3 ◦ 31.5± 7.0 35.6± 7.0 • 37.8± 7.0 •
cpu 87.5± 7.4 96.5± 4.3 ◦ 98.9± 2.1 ◦ 22.1± 7.0 16.6± 5.4 ◦ 20.1± 6.1
detroit 82.0± 35.2 90.0±28.4 93.0±24.6 78.3± 12.1 78.4±19.0 74.8±15.9
echoMonths 85.0± 8.9 96.5± 4.7 ◦ 94.9± 6.2 ◦ 70.2± 4.0 96.3± 2.2 • 91.8± 3.6 •
elusage 64.3± 22.8 91.0±11.8 ◦ 95.3± 9.3 ◦ 60.3± 6.3 83.6± 8.3 • 80.6± 8.6 •
fishcatch 86.8± 10.1 95.6± 5.8 ◦ 97.4± 3.9 ◦ 27.1± 5.0 27.0± 4.7 30.4± 5.2 •
fruitfly 88.5± 9.5 93.4± 7.1 94.2± 7.1 75.4± 3.9 76.7± 5.2 75.3± 3.2
gascons 82.0± 23.7 91.7±18.9 92.8±17.9 53.8± 10.2 63.6±18.5 • 62.9±18.0 •
housing 89.5± 4.2 94.8± 2.9 ◦ 96.4± 2.4 ◦ 34.0± 1.8 35.9± 2.2 • 39.3± 2.6 •
hungarian 59.7± 12.2 99.7± 0.9 ◦ 94.5± 5.2 ◦ 76.4± 4.2 57.7± 6.0 ◦ 127.7±10.7 •
longley 73.0± 38.5 94.5±22.4 98.5±11.1 66.3± 8.3 73.5±18.8 72.2±14.8
lowbwt 89.4± 7.2 95.9± 4.6 ◦ 96.9± 3.9 ◦ 52.1± 2.8 48.0± 2.7 ◦ 48.9± 2.7 ◦
mbagrade 80.2± 14.5 97.1± 7.1 ◦ 92.4±10.4 ◦ 82.3± 4.9 97.7± 3.4 • 90.9± 5.5 •
meta 86.3± 7.2 98.2± 1.8 ◦ 99.4± 1.1 ◦ 65.5± 11.2 5.3± 1.1 ◦ 17.8± 2.9 ◦
pbc 85.7± 5.7 96.1± 2.8 ◦ 96.7± 2.9 ◦ 70.4± 3.0 79.1± 3.0 • 79.7± 3.2 •
pharynx 83.3± 7.7 94.9± 4.8 ◦ 95.8± 4.5 ◦ 59.7± 3.4 70.3± 4.0 • 75.6± 3.6 •
pollution 76.3± 18.2 90.7±13.3 ◦ 91.8±12.0 ◦ 61.0± 6.9 64.6± 5.7 59.1± 5.2
pwLinear 84.5± 7.8 94.3± 5.0 ◦ 95.0± 5.3 ◦ 36.8± 3.0 40.0± 3.3 • 39.8± 3.5 •
quake 94.5± 1.4 98.0± 1.3 ◦ 94.6± 1.3 51.6± 1.0 58.1± 0.9 • 67.5± 0.7 •
schlvote 82.2± 20.6 89.0±18.2 93.9±14.3 56.2± 17.9 50.7±21.5 54.2±21.4
sensory 93.1± 3.5 95.2± 3.0 ◦ 96.3± 2.4 ◦ 72.1± 3.4 66.1± 1.9 ◦ 64.8± 1.5 ◦
servo 81.0± 9.2 95.7± 5.4 ◦ 98.0± 3.6 ◦ 29.0± 7.2 32.8± 7.5 • 40.6± 8.2 •
sleep 79.4± 17.8 98.6± 4.9 ◦ 94.3±10.1 ◦ 68.8± 6.4 86.1± 7.8 • 81.8± 6.5 •
strike 85.5± 5.9 95.4± 3.2 ◦ 97.7± 2.3 ◦ 62.6± 14.4 20.6± 1.7 ◦ 30.1± 2.3 ◦
veteran 88.6± 8.7 96.1± 5.6 ◦ 95.8± 6.0 ◦ 65.6± 4.9 51.1± 3.9 ◦ 60.7± 4.4 ◦
vineyard 81.8± 19.2 91.8±13.1 92.5±11.4 56.1± 8.3 60.0±11.1 56.0±10.6

◦/• statistically significant improvement/degradation

for the kernel and the C parameter for regularization were optimized using in-
ternal 10-fold cross-validation, choosing from 10i with i ∈ {−5, 4, ..., 4, 5} for γ
and 10i with i ∈ {−2,−1, 0, 1, 2} for C.5

Table 6 shows the relative performance of discretization-based density es-
timation and Gaussian process regression (GPR) with RBF kernels. Gaussian
process regression was applied with inputs normalized to [0, 1], as was SMO. The
target was also normalized for GPR, to make choosing an appropriate noise level
σ easier. Predictions were transformed back into the original range of the target
variable. The noise level σ for GPR, and γ for the RBF kernel, were optimized
using internal 10-fold cross-validation, with the same values for γ as in the case
of SMO, and values 10i with i ∈ {−2,−1.8,−1.6, ...,−0.4,−0.2, 0} for σ.

The log-likelihood scores exhibit 11 significant differences, three in favor of
GPR and eight against. Comparing the relative scores for GPR to those for the
normal estimator in Table 2 shows that there are four cases where the gain for
5 To reduce runtime, the tolerance parameter in SMO was increased from 0.001 to 0.1,

which did not significantly impact performance on the datasets investigated.

Table 5. Root relative squared error: regression by discretization (20 bins) vs. dedicated regression
methods.

Dataset Random Bagged Linear Linear
forests regression SVMs SVMs for

(20 bins) trees (20 bins) regression
auto93 58.6± 13.6 93.8± 21.4 ◦ 53.1± 16.2 62.5± 18.8
autoHorse 33.3± 11.2 40.3± 11.7 ◦ 30.6± 11.2 31.5± 8.7
autoMpg 37.0± 5.3 40.2± 7.2 38.1± 5.7 39.0± 5.6
autoPrice 37.8± 8.6 37.9± 11.3 39.5± 10.8 45.6± 8.9 ◦
baskball 84.5± 12.5 85.5± 21.3 84.3± 9.9 82.2± 17.9
bodyfat 22.4± 5.8 13.8± 11.0 • 29.1± 6.0 9.7± 12.7 •
bolts 33.2± 13.8 35.8± 29.3 49.0± 22.2 32.8± 23.1 •
breastTumor 100.1± 7.3 107.8± 11.6 ◦ 97.9± 1.6 98.1± 7.7
cholesterol 99.0± 3.2 103.4± 10.0 99.6± 1.2 103.7± 9.2
cleveland 72.5± 6.8 74.1± 10.3 68.9± 9.1 71.5± 9.0
cloud 48.6± 14.0 45.7± 14.7 50.0± 12.9 37.2± 13.3 •
cpu 40.3± 17.5 27.2± 12.6 35.7± 19.1 29.2± 14.4
detroit 143.2±229.4 133.0±145.5 149.9±241.1 103.8±119.9
echoMonths 71.7± 11.5 76.3± 14.8 ◦ 74.0± 9.5 74.1± 14.2
elusage 50.1± 17.1 57.5± 22.6 ◦ 62.3± 14.4 60.5± 21.7
fishcatch 24.6± 7.5 20.8± 6.3 22.4± 5.9 25.8± 5.5
fruitfly 104.1± 5.7 116.9± 15.5 ◦ 100.7± 2.6 102.4± 9.7
gascons 25.2± 10.2 24.2± 13.2 26.3± 10.6 24.1± 16.2
housing 41.6± 8.1 38.1± 8.6 45.2± 10.8 54.5± 11.2 ◦
hungarian 73.6± 10.3 78.0± 11.5 ◦ 71.6± 11.5 88.6± 16.8 ◦
longley 49.9± 46.3 53.2± 71.6 56.1± 58.9 15.0± 14.0 •
lowbwt 61.5± 8.2 64.2± 10.3 64.0± 6.7 64.9± 10.9
mbagrade 97.6± 19.3 99.0± 23.4 96.2± 9.7 88.4± 23.8
meta 95.7± 22.2 157.1± 70.3 ◦ 108.0± 34.3 81.6± 19.6
pbc 83.2± 5.9 83.0± 9.3 81.5± 6.0 82.4± 8.5
pharynx 78.5± 9.2 103.9± 6.7 ◦ 76.2± 8.9 83.6± 13.3 ◦
pollution 78.0± 8.8 69.1± 17.9 69.3± 17.3 68.6± 25.8
pwLinear 46.2± 6.9 40.4± 7.8 • 42.0± 8.3 50.7± 10.1 ◦
quake 100.0± 1.7 100.9± 2.8 100.0± 0.2 107.7± 1.7 ◦
schlvote 77.0± 26.5 72.3± 29.4 91.5± 36.3 89.7± 39.4
sensory 86.7± 4.2 89.0± 6.9 95.2± 1.8 94.7± 5.9
servo 38.9± 14.4 34.3± 16.5 37.2± 14.5 62.7± 23.6 ◦
sleep 79.0± 18.3 79.6± 27.1 77.0± 22.8 74.7± 22.0
strike 79.8± 13.2 91.3± 15.6 ◦ 85.2± 8.6 82.3± 12.4
veteran 90.7± 15.0 105.8± 26.4 ◦ 92.3± 6.4 89.1± 13.7
vineyard 60.7± 23.5 66.1± 31.1 70.6± 23.0 72.6± 28.9

◦/• statistically significant improvement/degradation

these techniques is well below zero while it is well above zero for the kernel-
density-based estimate: cleveland, hungarian, strike, and veteran. This indicates
that it is not appropriate to model the predictive distribution with a normal
density in these cases.

Considering the quality of the prediction intervals, there is one case where
GPR performs significantly better than the discretization-based approach ac-
cording to both coverage and width (bodyfat), and two where it is significantly
worse (hungarian, quake). Ignoring significance, there are four additional cases
where GPR performs better according to both statistics (auto93, autoMpg, cpu,
lowbwt) and three more cases where it is worse (cleveland, echoMonths, servo).
It is noticeable that the observed coverage is generally closer to the desired
confidence level (95%) for the discretization-based approach.

Due to space constraints, we cannot show detailed results for the root relative
squared error here. In most cases, the error is comparable. However, there are
three very small datasets with 40 or less instances (bolts, gascons, longley) where

Table 6. Comparison of discretization-based conditional density estimation (SVMs,
kernel density estimator, 20 bins) with Gaussian process regression (GPR), using RBF
kernels in both cases.

Mean improvement Coverage Relative width
in log-likelihood

Dataset RBF SVMs RBF GPR RBF SVMs RBF GPR RBF SVMs RBF GPR
(20 bins) (20 bins) (20 bins)

auto93 0.68± 0.95 1.00± 0.77 92.70± 9.98 96.18± 6.93 38.43± 7.81 37.49± 6.32
autoHorse 2.63± 0.63 1.48± 1.80 94.46± 5.41 95.86± 4.48 16.20± 4.58 16.44± 2.69
autoMpg 1.29± 0.27 1.45± 0.23 93.56± 4.28 96.38± 3.61 32.71± 2.54 31.88± 2.72
autoPrice 1.27± 0.46 1.08± 0.44 92.83± 5.87 91.32± 6.98 28.46± 5.22 25.95± 4.85
baskball -0.10± 0.56 0.50± 0.74 93.11± 8.55 97.61± 5.09 60.16± 6.45 64.79± 1.04 ◦
bodyfat 1.57± 1.77 1.74± 3.72 94.83± 4.49 98.41± 2.60 • 19.75± 2.78 8.92± 3.28 •
bolts 0.69± 0.55 -0.12± 2.37 95.50±10.88 84.00±22.90 79.29±13.09 41.66±14.30 •
breastTumor -0.03± 0.09 -0.11± 0.13 95.52± 4.31 89.36± 7.13 ◦ 83.83± 3.21 72.08±15.20 •
cholesterol -0.01± 0.07 0.15± 0.93 95.09± 4.45 97.36± 4.08 46.19± 6.28 61.88± 4.89 ◦
cleveland 0.87± 0.40 -0.45± 0.24 ◦ 96.60± 4.09 95.75± 5.61 63.73± 5.95 99.20±10.24 ◦
cloud 0.83± 0.40 0.61± 1.78 93.53± 7.00 92.63± 8.46 35.17± 7.15 26.48± 5.99 •
cpu 2.93± 0.67 2.76± 0.91 95.97± 4.94 99.32± 2.97 9.89± 4.18 7.88± 2.31
detroit 0.87± 1.84 0.26± 2.31 91.50±26.64 81.50±38.04 70.43±27.58 54.88±23.71
echoMonths 0.51± 0.30 0.22± 0.17 ◦ 97.15± 4.85 93.69±10.10 80.39± 6.33 91.69±16.24
elusage 0.50± 0.52 0.74± 0.57 93.13±11.80 90.37±13.15 75.63±10.53 47.80± 6.23 •
fishcatch 2.67± 0.44 2.59± 0.33 95.57± 4.72 91.29± 6.82 16.84± 3.52 12.42± 2.23 •
fruitfly -0.04± 0.17 -0.42± 0.31 ◦ 92.75± 7.42 94.12± 8.00 72.57± 5.18 88.36±16.62 ◦
gascons 1.59± 0.82 3.60± 0.89 • 95.17±13.67 94.50±14.03 46.84±11.89 15.95±16.79 •
housing 1.42± 0.28 1.37± 0.30 93.76± 3.50 94.84± 2.76 28.48± 2.47 30.54± 3.91
hungarian 1.12± 0.24 -1.38± 0.27 ◦ 99.69± 1.10 89.02± 8.07 ◦ 53.80± 5.95 128.91±21.98 ◦
longley 0.95± 1.57 2.63± 1.90 95.00±19.46 90.50±27.24 71.34±20.75 17.22± 4.90 •
lowbwt 0.59± 0.25 0.70± 0.18 95.07± 5.18 95.86± 4.87 48.05± 2.79 40.97± 0.82 •
mbagrade 0.05± 0.25 0.10± 0.42 93.76± 8.69 95.36±11.11 95.62± 4.25 99.57± 8.31
meta 18.8±124.0 17.5±142.1 98.24± 1.92 99.45± 1.02 • 5.03± 1.33 54.84±51.38 ◦
pbc 0.27± 0.17 0.22± 0.17 95.36± 3.48 91.89± 4.41 ◦ 76.51± 2.59 64.72± 1.85 •
pharynx 0.27± 0.25 0.16± 0.23 93.34± 5.68 94.62± 5.63 68.76± 3.78 70.25± 4.17
pollution 0.14± 0.48 0.65± 0.60 • 91.33±12.64 91.00±12.40 65.44± 7.37 55.93±13.61 •
pwLinear 0.93± 0.37 1.21± 0.30 • 92.45± 6.49 92.15± 6.64 38.50± 3.47 32.32± 5.72 •
quake -0.03± 0.03 -0.87± 0.06 ◦ 97.81± 1.32 94.12± 1.49 ◦ 57.97± 0.74 62.42± 0.16 ◦
schlvote 0.15± 9.74 0.65± 5.81 89.00±17.88 96.92± 9.81 50.30±18.12 130.58±37.14 ◦
sensory -0.04± 0.14 -0.10± 0.13 94.49± 3.36 95.90± 6.35 62.55± 3.00 63.96± 9.09
servo 1.65± 0.36 -0.07± 0.78 ◦ 95.09± 5.38 94.97± 6.48 24.34± 6.18 45.41± 4.18 ◦
sleep 0.36± 0.49 0.42± 0.36 96.92± 7.79 88.21±13.08 ◦ 85.20± 6.68 70.77±11.89 •
strike 0.51± 0.97 -1.09± 0.69 ◦ 95.22± 3.03 98.24± 2.14 • 16.52± 2.55 35.67± 8.41 ◦
veteran 0.25± 0.28 -0.52± 0.90 ◦ 95.04± 5.83 95.62± 5.97 49.17± 5.12 64.79± 5.69 ◦
vineyard 0.22± 0.91 0.89± 0.97 92.90±11.79 91.80±12.82 57.98±10.18 47.93± 8.98 •

◦, • statistically significant improvement or degradation

GPR performs significantly better. It also performs significantly better on cpu
and sensory, and significantly worse on servo.

We now consider the task of quantile estimation. Table 7 shows the pinball
loss of our discretization-based method when used for this task (50% quantile),
compared to two existing quantile regression techniques, including the nonpara-
metric quantile estimation method NPQR, based on the results in [21]. For
details of the pinball loss and the datasets used, see [21]. Note that the results
from [21] are based on a single 10-fold cross-validation.

The approximate quantiles for our method were obtained from the weighted
kernel density estimates in the same fashion as the interval boundaries used pre-
viously (see Section 2.3). The pinball loss was used as the performance estimate
for the internal cross-validation employed to choose parameters for the SVMs.

Table 7. Comparison of pinball loss (50%-quantile) for proposed method (SVMs with
RBF kernels, kernel density estimator, 20 bins), linear quantile regression (Linear QR),
and nonparametric quantile regression (NPQR). Results for the latter two methods are
reproduced from [21], with standard errors converted to standard deviations.

Dataset RBF SVMs Linear QR NPQR
(20 bins)

caution 23.71± 9.29 32.40± 8.73 22.56± 8.04
ftcollinssnow 42.87± 9.48 40.82± 8.85 39.08± 9.27
highway 23.42±10.42 45.39±21.12 25.33±10.86
heights 34.85± 2.27 34.50± 2.16 34.53± 2.16
sniffer 10.83± 2.55 12.78± 3.33 9.92± 2.82
snowgeese 14.23±10.57 13.85±10.38 18.50±14.88
ufc 21.91± 2.41 23.20± 2.85 21.22± 2.70
birthwt 37.75± 6.73 38.15± 5.88 37.19± 5.88
crabs 4.39± 1.08 2.24± 0.39 2.14± 0.36
GAGurine 16.06± 3.62 27.87± 4.38 14.57± 3.33
geyser 30.37± 5.43 32.50± 3.69 30.75± 4.20
gilgais 10.79± 1.94 16.12± 3.03 12.40± 1.98
topo 17.17± 6.73 26.51± 8.13 14.39± 4.95
BostonHousing 11.80± 2.14 17.50± 2.85 10.76± 1.83
CobarOre 40.88±15.84 41.93±15.60 39.29±20.07
engel 13.83± 3.21 13.72± 3.42 13.01± 2.55
mcycle 18.90± 4.52 37.88± 8.28 17.06± 4.26
BigMac2003 19.46±10.82 21.75± 8.55 17.89± 9.15
UN3 23.00± 5.50 26.32± 5.10 23.96± 5.52
cpus 6.13± 5.31 5.73± 3.12 1.06± 0.51

The results show that, in spite of the fact that NPQR optimizes the pinball
loss directly using quadratic optimization, discretization-based estimation gen-
erally yields highly competitive results. There are only two datasets where the
pinball loss is clearly significantly worse: crabs and cpu. In both cases, given
the small loss, a possible explanation for the relatively poor performance is the
coarseness of the discretization: running the method using 40 discretization in-
tervals yields a reduced pinball loss of 3.84 and 3.89 respectively.

4 Conclusions

This paper considered conditional density estimates based on combining class
probability estimators with univariate density estimators. Our results indicate
that kernel estimators are generally superior to normal estimators in this context,
and that both are preferable to histogram-based estimation. We have presented
results for both support vector machines and random forests as underlying class
probability estimators. The proposed techniques yield useful prediction intervals
as well as competitive point estimates. They also show promise when compared
to Gaussian process regression and nonparametric quantile estimation.

The generic aspect of the approach discussed here is valuable because of the
availability of a large number of class probability estimation schemes that are
potentially applicable. An avenue for future work is to investigate the perfor-
mance of other univariate density estimators in the context considered in this
paper. For example, rather than using a kernel density estimator or a normal
estimator, one could apply a mixture model.

References

1. Hyndman, R.J., Bashtannyk, D.M., Grunwald, G.K.: Estimating and visualiz-
ing conditional densities. Journal of Computational and Graphical Statistics 5(4)
(1996) 315–336

2. Holmes, M., Gray, A., Isbell, C.: Fast nonparametric conditional density estima-
tion. In: Proc 23rd Conf on Uncertainty in AI, AUAI Press (2007)

3. Rasmussen, C.E., Williams, C.K.I.: Gaussian Processes for Machine Learning. MIT
Press (2006)

4. Tay, A.S., Wallis, K.F.: Density forecasting: A survey. Journal of Forecasting 19
(2000) 235–254

5. Neuneier, R., Ferdinand Hergert, W.F., Ormoneit, D.: Estimation of conditional
densities: A comparison of neural network approaches. In: Proc Int Conf on Arti-
ficial Neural Networks, Springer (1994) 689–692

6. Bishop, C.M.: Neural networks for pattern recognition. Oxford UP (1995)
7. Williams, P.M.: Using neural networks to model conditional multivariate densities.

Neural Computation 8(4) (1996) 843–854
8. Papadopoulos, G., Edwards, P., Murray, A.: Confidence estimation methods for

neural networks: a practical comparison. IEEE Transactions on Neural Networks
12(6) (2001)

9. Michael Carney, Pádraig Cunningham, J.D., Lee, C.: Predicting probability dis-
tributions for surf height using an ensemble of mixture density networks. In: Proc
22nd Int Conf on Machine learning, ACM Press (2005) 113–120

10. Stützle, E., Hrycej, T.: Numerical method for estimating multivariate conditional
distributions. Computational Statistics 20(1) (2005) 151–176

11. Carney, M., Cunningham, P.: Making good probability estimates for regression.
In: Proc 17th Europ Conf on Machine Learning, Springer (2006) 582–589

12. Carney, M., Cunningham, P.: Calibrating probability density forecasts with multi-
objective search. In: Proc 17th Europ Conf on AI, IOS Press (2006) 791–792

13. Davies, S., Moore, A.: Interpolating conditional density trees. In: Proc 18th Annual
Conf on Uncertainty in AI, Morgan Kaufmann (2002) 119–12

14. Witten, I.H., Frank, E.: Data Mining: Practical Machine Learning Tools and Tech-
niques. Morgan Kaufmann, San Francisco, 2nd edition (2005)

15. Schapire, R.E., Peter Stone, David A. McAllester, M.L.L., Csirik, J.: Modeling
auction price uncertainty using boosting-based conditional density estimation. In:
Proc 19th Int Conf on Machine Learning, Morgan Kaufmann (2002) 546–553

16. Hjort, N.L., Walker, S.G.: A note on kernel density estimators with optimal band-
widths. Statistics & Probability Letters 54 (2001) 153–159

17. Platt, J.C.: Probabilistic outputs for support vector machines and comparison to
regularized likelihood methods. In: Advances in Large Margin Classifiers. MIT
Press (1999) 61–74

18. Nadeau, C., Bengio, Y.: Inference for the generalization error. Machine Learning
52 (2003) 239–281

19. Frank, E., Hall, M.: A simple approach to ordinal classification. In: Proc 12th
Europ Conf on Machine Learning, Springer (2001) 145–156

20. Frank, E., Trigg, L.E., Holmes, G., Witten, I.H.: Naive Bayes for regression (tech-
nical note). Machine Learning 41(1) (2000) 5–25

21. Takeuchi, I., Le, Q.V., Sears, T.D., Smola, A.J.: Nonparametric quantile estima-
tion. Journal of Machine Learning Research (2006) 1231–1264

