Input: concepts, instances, attributes

- Components of the input for learning
 - What’s a concept?
 - Classification, association, clustering, numeric prediction
 - What’s in an example?
 - Relations, flat files, recursion
 - What’s in an attribute?
 - Nominal, ordinal, interval, ratio
- Preparing the input
 - ARFF, sparse data, attributes, missing and inaccurate values, unbalanced data, getting to know your data
Components of the input

- **Concepts**: kinds of things that can be learned
 - Aim: intelligible and operational concept description
- **Instances**: the individual, independent examples of a concept to be learned
 - More complicated forms of input with dependencies between examples are possible
- **Attributes**: measuring aspects of an instance
 - We will focus on nominal and numeric ones

What’s a concept?

- **Concept**: thing to be learned
- **Concept description**: output of learning scheme
- **Styles of learning**:
 - Classification learning: predicting a discrete class
 - Association learning: detecting associations between features
 - Clustering: grouping similar instances into clusters
 - Numeric prediction: predicting a numeric quantity
Classification learning

- Example problems: weather data, contact lenses, irises, labor negotiations
- Classification learning is *supervised*
 - Scheme is provided with actual outcome
- Outcome is called the *class* of the example
- Measure success on fresh data for which class labels are known (*test data*)
- In practice success is often measured subjectively

Association learning

- Can be applied if no class is specified and any kind of structure is considered “interesting”
- Difference to classification learning:
 - Can predict any attribute’s value, not just the class, and more than one attribute’s value at a time
 - Hence: far more association rules than classification rules
 - Thus: constraints are necessary, such as minimum coverage and minimum accuracy
Clustering

- Finding groups of items that are similar
- Clustering is *unsupervised*
 - The class of an example is not known
- Success often measured subjectively

<table>
<thead>
<tr>
<th>Sepal length</th>
<th>Sepal width</th>
<th>Petal length</th>
<th>Petal width</th>
<th>Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>5.1</td>
<td>3.5</td>
<td>1.4</td>
<td>0.2</td>
</tr>
<tr>
<td>2</td>
<td>4.9</td>
<td>3.0</td>
<td>1.4</td>
<td>0.2</td>
</tr>
<tr>
<td>...</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>51</td>
<td>7.0</td>
<td>3.2</td>
<td>4.7</td>
<td>1.4</td>
</tr>
<tr>
<td>52</td>
<td>6.4</td>
<td>3.2</td>
<td>4.5</td>
<td>1.5</td>
</tr>
<tr>
<td>...</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>101</td>
<td>6.3</td>
<td>3.3</td>
<td>6.0</td>
<td>2.5</td>
</tr>
<tr>
<td>102</td>
<td>5.8</td>
<td>2.7</td>
<td>5.1</td>
<td>1.9</td>
</tr>
<tr>
<td>...</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Numeric prediction

- Variant of classification learning where “class” is numeric (also called “regression”)
- Learning is supervised
 - Scheme is being provided with target value
- Measure success on test data

<table>
<thead>
<tr>
<th>Outlook</th>
<th>Temperature</th>
<th>Humidity</th>
<th>Windy</th>
<th>Play-time</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sunny</td>
<td>Hot</td>
<td>High</td>
<td>False</td>
<td>5</td>
</tr>
<tr>
<td>Sunny</td>
<td>Hot</td>
<td>High</td>
<td>True</td>
<td>0</td>
</tr>
<tr>
<td>Overcast</td>
<td>Hot</td>
<td>High</td>
<td>False</td>
<td>55</td>
</tr>
<tr>
<td>Rainy</td>
<td>Mild</td>
<td>Normal</td>
<td>False</td>
<td>40</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
</tbody>
</table>
What’s in an example?

- Instance: specific type of example
 - Thing to be classified, associated, or clustered
 - Individual, independent example of target concept
 - Characterized by a predetermined set of attributes
- Input to learning scheme: set of instances/dataset
 - Represented as a single relation/flat file
- Rather restricted form of input
 - No relationships between objects
- Most common form in practical data mining

A family tree

```
Peter M = Peggy F
  |
Steven M  Graham M  Pam F = Ian M  Pippa F  Brian M
  |
Anna F   Nikki F
```
Family tree represented as a table

<table>
<thead>
<tr>
<th>Name</th>
<th>Gender</th>
<th>Parent1</th>
<th>parent2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Peter</td>
<td>Male</td>
<td>?</td>
<td>?</td>
</tr>
<tr>
<td>Peggy</td>
<td>Female</td>
<td>?</td>
<td>?</td>
</tr>
<tr>
<td>Steven</td>
<td>Male</td>
<td>Peter</td>
<td>Peggy</td>
</tr>
<tr>
<td>Graham</td>
<td>Male</td>
<td>Peter</td>
<td>Peggy</td>
</tr>
<tr>
<td>Pam</td>
<td>Female</td>
<td>Peter</td>
<td>Peggy</td>
</tr>
<tr>
<td>Ian</td>
<td>Male</td>
<td>Grace</td>
<td>Ray</td>
</tr>
<tr>
<td>Pippa</td>
<td>Female</td>
<td>Grace</td>
<td>Ray</td>
</tr>
<tr>
<td>Brian</td>
<td>Male</td>
<td>Grace</td>
<td>Ray</td>
</tr>
<tr>
<td>Anna</td>
<td>Female</td>
<td>Pam</td>
<td>Ian</td>
</tr>
<tr>
<td>Nikki</td>
<td>Female</td>
<td>Pam</td>
<td>Ian</td>
</tr>
</tbody>
</table>

The “sister-of” relation

<table>
<thead>
<tr>
<th>First person</th>
<th>Second person</th>
<th>Sister of?</th>
</tr>
</thead>
<tbody>
<tr>
<td>Peter</td>
<td>Peggy</td>
<td>No</td>
</tr>
<tr>
<td>Peter</td>
<td>Steven</td>
<td>No</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
<tr>
<td>Steven</td>
<td>Peter</td>
<td>No</td>
</tr>
<tr>
<td>Steven</td>
<td>Graham</td>
<td>No</td>
</tr>
<tr>
<td>Steven</td>
<td>Pam</td>
<td>Yes</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
<tr>
<td>Ian</td>
<td>Pippa</td>
<td>Yes</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
<tr>
<td>Anna</td>
<td>Nikki</td>
<td>Yes</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
<tr>
<td>Nikki</td>
<td>Anna</td>
<td>Yes</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>First person</th>
<th>Second person</th>
<th>Sister of?</th>
</tr>
</thead>
<tbody>
<tr>
<td>Steven</td>
<td>Pam</td>
<td>Yes</td>
</tr>
<tr>
<td>Graham</td>
<td>Pam</td>
<td>Yes</td>
</tr>
<tr>
<td>Ian</td>
<td>Pippa</td>
<td>Yes</td>
</tr>
<tr>
<td>Brian</td>
<td>Pippa</td>
<td>Yes</td>
</tr>
<tr>
<td>Anna</td>
<td>Nikki</td>
<td>Yes</td>
</tr>
<tr>
<td>Nikki</td>
<td>Anna</td>
<td>Yes</td>
</tr>
</tbody>
</table>

Closed-world assumption

All the rest: No
A full representation in one table

<table>
<thead>
<tr>
<th>Name</th>
<th>Gender</th>
<th>Parent1</th>
<th>Parent2</th>
<th>Name</th>
<th>Gender</th>
<th>Parent1</th>
<th>Parent2</th>
<th>Sister of?</th>
</tr>
</thead>
<tbody>
<tr>
<td>Steven</td>
<td>Male</td>
<td>Peter</td>
<td>Peggy</td>
<td>Pam</td>
<td>Female</td>
<td>Peter</td>
<td>Peggy</td>
<td>Yes</td>
</tr>
<tr>
<td>Graham</td>
<td>Male</td>
<td>Peter</td>
<td>Peggy</td>
<td>Pam</td>
<td>Female</td>
<td>Peter</td>
<td>Peggy</td>
<td>Yes</td>
</tr>
<tr>
<td>Ian</td>
<td>Male</td>
<td>Grace</td>
<td>Ray</td>
<td>Pippa</td>
<td>Female</td>
<td>Grace</td>
<td>Ray</td>
<td>Yes</td>
</tr>
<tr>
<td>Brian</td>
<td>Male</td>
<td>Grace</td>
<td>Ray</td>
<td>Pippa</td>
<td>Female</td>
<td>Grace</td>
<td>Ray</td>
<td>Yes</td>
</tr>
<tr>
<td>Anna</td>
<td>Female</td>
<td>Pam</td>
<td>Ian</td>
<td>Nikki</td>
<td>Female</td>
<td>Pam</td>
<td>Ian</td>
<td>Yes</td>
</tr>
<tr>
<td>Nikki</td>
<td>Female</td>
<td>Pam</td>
<td>Ian</td>
<td>Anna</td>
<td>Female</td>
<td>Pam</td>
<td>Ian</td>
<td>Yes</td>
</tr>
</tbody>
</table>

All the rest

If second person’s gender = female and first person’s parent = second person’s parent then sister-of = yes

Generating a flat file

- Process of flattening called “denormalization”
 - Several relations are joined together to make one
- Possible with any finite set of finite relations
- Problematic: relationships without a pre-specified number of objects
 - Example: concept of nuclear-family
- Note that denormalization may produce spurious regularities that reflect the structure of the database
 - Example: “supplier” predicts “supplier address”
The “ancestor-of” relation

<table>
<thead>
<tr>
<th>First person</th>
<th>Second person</th>
<th>Ancestor of?</th>
</tr>
</thead>
<tbody>
<tr>
<td>Name</td>
<td>Gender</td>
<td>Parent1</td>
</tr>
<tr>
<td>Peter</td>
<td>Male</td>
<td>?</td>
</tr>
<tr>
<td>Pam</td>
<td>Female</td>
<td>Peter</td>
</tr>
<tr>
<td>Grace</td>
<td>Female</td>
<td>?</td>
</tr>
<tr>
<td>Grace</td>
<td>Female</td>
<td>?</td>
</tr>
</tbody>
</table>

Other positive examples here
All the rest

Recursion

- Infinite relations require recursion

If person1 is a parent of person2
then person1 is an ancestor of person2

If person1 is a parent of person2
and person2 is an ancestor of person3
then person1 is an ancestor of person3

- Appropriate techniques are known as “inductive logic programming” (ILP) methods
 - Example ILP method: Quinlan’s FOIL rule learner
 - Problems: (a) noise and (b) computational complexity
Multi-instance concepts

• Each individual example comprises a bag (aka multi-set) of instances
 • All instances are described by the same attributes
 • One or more instances within an example may be responsible for the example's classification
• Goal of learning is still to produce a concept description
• Important real world applications
 • Prominent examples are drug activity prediction and image classification
 • A drug can be viewed as bag of different geometric arrangements of the drug molecule
 • An image can be represented as a bag of image components

What’s in an attribute?

• Each instance is described by a fixed predefined set of features, its “attributes”
• But: number of attributes may vary in practice
 • Possible solution: “irrelevant value” flag
• Related problem: existence of an attribute may depend of value of another one
• Possible attribute types (“levels of measurement”):
 • Nominal, ordinal, interval and ratio
Nominal levels of measurement

• Values are distinct symbols
 • Values themselves serve only as labels or names
 • Nominal comes from the Latin word for name
• Example: attribute “outlook” from weather data
 • Values: “sunny”, “overcast”, and “rainy”
• No relation is implied among nominal values (no ordering or distance measure)
• Only equality tests can be performed

Ordinal levels of measurement

• Impose order on values
• But: no distance between values defined
• Example: attribute “temperature” in weather data
 • Values: “hot” > “mild” > “cool”
• Note: addition and subtraction don’t make sense
• Example rule:
 temperature < hot ⇒ play = yes
• Distinction between nominal and ordinal not always clear (e.g., attribute “outlook”)
Interval quantities

- Interval quantities are not only ordered but measured in fixed and equal units
- Example 1: attribute “temperature” expressed in degrees Fahrenheit
- Example 2: attribute “year”
- Difference of two values makes sense
- Sum or product doesn’t make sense
 - Zero point is not defined!

Ratio quantities

- Ratio quantities are ones for which the measurement scheme defines a zero point
- Example: attribute “distance”
 - Distance between an object and itself is zero
- Ratio quantities are treated as real numbers
 - All mathematical operations are allowed
- But: is there an “inherently” defined zero point?
 - Answer depends on scientific knowledge (e.g., Fahrenheit knew no lower limit to temperature)
Attribute types used in practice

- Many data mining schemes accommodate just two levels of measurement: nominal and ordinal
- Others deal exclusively with ratio quantities
- Nominal attributes are also called “categorical”, “enumerated”, or “discrete”
 - But: “enumerated” and “discrete” imply order
- Special case: dichotomy (“boolean” attribute)
- Ordinal attributes are sometimes coded as “numeric” or “continuous”
 - But: “continuous” implies mathematical continuity

Metadata

- Information about the data that encodes background knowledge
- In theory this information can be used to restrict the search space of the learning algorithm
- Examples:
 - Dimensional considerations (i.e., expressions must be dimensionally correct)
 - Circular orderings (e.g., degrees in compass)
 - Partial orderings (e.g., generalization/specialization relations)
Preparing the input

- Denormalization is not the only issue when data is prepared for learning
- Problem: different data sources (e.g., sales department, customer billing department, …)
 - Differences: styles of record keeping, coding conventions, time periods, data aggregation, primary keys, types of errors
 - Data must be assembled, integrated, cleaned up
 - “Data warehouse”: consistent point of access
- External data may be required (“overlay data”)
- Critical: type and level of data aggregation

The ARFF data format

```%
% ARFF file for weather data with some numeric features
%
@relation weather

@attribute outlook {sunny, overcast, rainy}
@attribute temperature numeric
@attribute humidity numeric
@attribute windy {true, false}
@attribute play? {yes, no}

@data
sunny, 85, 85, false, no
sunny, 80, 90, true, no
overcast, 83, 86, false, yes
...
```
Additional attribute types

• ARFF data format also supports string attributes:

```attribute description string```

• Similar to nominal attributes but list of values is not pre-specified

• Additionally, it supports date attributes:

```attribute today date```

• Uses the ISO-8601 combined date and time format `yyyy-MM-dd-THH:mm:ss`

Relational attributes

• Relational attributes allow multi-instance problems to be represented in ARFF format

• Each value of a relational attribute is a separate bag of instances, but each bag has the same attributes

```attribute bag relational
attribute outlook { sunny, overcast, rainy }
attribute temperature numeric
attribute humidity numeric
attribute windy { true, false }
end bag```

• Nested attribute block gives the structure of the referenced instances
Multi-instance ARFF

```arff
% Multiple instance ARFF file for the weather data
%
@relation weather

@attribute bag_ID { 1, 2, 3, 4, 5, 6, 7 }
@attribute bag relational
@attribute outlook {sunny, overcast, rainy}
@attribute temperature numeric
@attribute humidity numeric
@attribute windy {true, false}
@attribute play? {yes, no}
@end bag

@data
1, "sunny, 85, 85, false\nsunny, 80, 90, true", no
2, "overcast, 83, 86, false\nrainy, 70, 96, false", yes
...
```

Sparse data

- In some applications most attribute values are zero and storage requirements can be reduced
  - E.g.: word counts in a text categorization problem
- ARFF supports sparse data storage

```
0, 26, 0, 0, 0, 0, 0, 0, 0, 63, 0, 0, 0, “class A”
0, 0, 0, 42, 0, 0, 0, 0, 0, 0, 0, “class B”

{1 26, 6 63, 10 “class A”}
{3 42, 10 “class B”}
```

- This also works for nominal attributes (where the first value of the attribute corresponds to “zero”)
- Some learning algorithms work very efficiently with sparse data
Attribute types

- Interpretation of attribute types in an ARFF file depends on the learning scheme that is applied
  - Numeric attributes are interpreted as
    - ordinal scales if less-than and greater-than are used
    - ratio scales if distance calculations are performed (normalization/standardization may be required)
  - Note also that some instance-based schemes define a distance between nominal values (0 if values are equal, 1 otherwise)
- Background knowledge may be required for correct interpretation of data
  - E.g., consider integers in some given data file: nominal, ordinal, or ratio scale?

Nominal vs. ordinal

- Attribute “age” nominal
  
  If age = young and astigmatic = no
  and tear production rate = normal
  then recommendation = soft

  If age = pre-presbyopic and astigmatic = no
  and tear production rate = normal
  then recommendation = soft

- Attribute “age” ordinal
  (e.g. “young” < “pre-presbyopic” < “presbyopic”)

  If age ≤ pre-presbyopic and astigmatic = no
  and tear production rate = normal
  then recommendation = soft
Missing values

• Missing values are frequently indicated by out-of-range entries for an attribute
  • There are different types of missing values: unknown, unrecorded, irrelevant
  • Reasons:
    • malfunctioning equipment
    • changes in experimental design
    • collation of different datasets
    • measurement not possible
• Missing value may have significance in itself (e.g., missing test in a medical examination)
  • Most schemes assume that is not the case and “missing” may need to be coded as an additional, separate attribute value

Inaccurate values

• Reason: data has not been collected for mining it
• Result: errors and omissions that affect the accuracy of data mining
• These errors may not affect the original purpose of the data (e.g., age of customer)
• Typographical errors in nominal attributes ⇒ values need to be checked for consistency
• Typographical and measurement errors in numeric attributes ⇒ outliers need to be identified
• Errors may be deliberate (e.g., wrong zip codes)
• Other problems: duplicates, stale data
Unbalanced data

• Unbalanced data is a well-known problem in classification problems
  • One class is often far more prevalent than the rest
  • Example: detecting a rare disease
• Main problem: simply predicting the majority class yields high accuracy but is not useful
  • Predicting that no patient has the rare disease gives high classification accuracy
• Unbalanced data requires techniques that can deal with unequal misclassification costs
  • Misclassifying an afflicted patient may be much more costly than misclassifying a healthy one

Getting to know your data

• Simple visualization tools are very useful
  • Nominal attributes: histograms (Is the distribution consistent with background knowledge?)
  • Numeric attributes: graphs (Any obvious outliers?)
• 2-D and 3-D plots show dependencies
• May need to consult domain experts
• Too much data to inspect manually? Take a sample!