Output: Knowledge representation

- Tables
- Linear models
- Trees
- Rules
- Classification rules
- Association rules
- Rules with exceptions
- More expressive rules
- Instance-based representation
- Clusters
Output: representing structural patterns

- Many different ways of representing patterns
 - Decision trees, rules, instance-based, ...
- Also called “knowledge” representation
- Representation determines inference method
- Understanding the output is the key to understanding the underlying learning methods
- Different types of output for different learning problems (e.g., classification, regression, ...)

Decision tables

- Simplest way of representing output:
 - Use the format that is used for representing the input!
- Decision table for the weather problem:

<table>
<thead>
<tr>
<th>Outlook</th>
<th>Humidity</th>
<th>Play</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sunny</td>
<td>High</td>
<td>No</td>
</tr>
<tr>
<td>Sunny</td>
<td>Normal</td>
<td>Yes</td>
</tr>
<tr>
<td>Overcast</td>
<td>High</td>
<td>Yes</td>
</tr>
<tr>
<td>Overcast</td>
<td>Normal</td>
<td>Yes</td>
</tr>
<tr>
<td>Rainy</td>
<td>High</td>
<td>No</td>
</tr>
<tr>
<td>Rainy</td>
<td>Normal</td>
<td>No</td>
</tr>
</tbody>
</table>

- Main problem: selecting the right attributes
Linear models

- Another simple representation
- Traditionally primarily used for regression:
 - Inputs (attribute values) and output are all numeric
 - Output is the sum of the weighted input attribute values
 - The trick is to find good values for the weights
 - There are different ways of doing this, which we will consider later; the most famous one is to minimize the squared error

A linear regression function for the CPU performance data

\[\text{PRP} = 37.06 + 2.47 \text{CACH} \]
Linear models for classification

- Binary classification
- Line *separates* the two classes
 - Decision boundary - defines where the decision changes from one class value to the other
- Prediction is made by plugging in observed values of the attributes into the expression
 - Predict one class if output ≥ 0, and the other class if output < 0
- Boundary becomes a high-dimensional plane (*hyperplane*) when there are multiple attributes

Separating setosas from versicolors

\[
2.0 - 0.5 \text{PETAL-LENGTH} - 0.8 \text{PETAL-WIDTH} = 0
\]
Decision trees

- “Divide-and-conquer” approach produces tree
- Nodes involve testing a particular attribute
- Usually, attribute value is compared to constant
- Other possibilities:
 - Comparing values of two attributes
 - Using a function of one or more attributes
- Leaves assign classification, set of classifications, or probability distribution to instances
- Unknown instance is routed down the tree

Interactive tree construction I
Interactive tree construction II

Nominal and numeric attributes in trees

- **Nominal:**
 number of children usually equal to number values
 \Rightarrow attribute won’t get tested more than once
- **Other possibility:** division into two subsets
- **Numeric:**
 test whether value is greater or less than constant
 \Rightarrow attribute may get tested several times
- **Other possibility:** three-way split (or multi-way split)
 - Integer: *less than, equal to, greater than*
 - Real: *below, within, above*
Missing values

- Does absence of value have some significance?
 - Yes ⇒ “missing” is a separate value
 - No ⇒ “missing” must be treated in a special way
 - Solution A: assign instance to most popular branch
 - Solution B: split instance into pieces
 - Pieces receive weight according to fraction of training instances that go down each branch
 - Classifications from leave nodes are combined using the weights that have percolated to them

Trees for numeric prediction

- **Regression**: the process of computing an expression that predicts a numeric quantity
- **Regression tree**: “decision tree” where each leaf predicts a numeric quantity
 - Predicted value is average value of training instances that reach the leaf
- **Model tree**: “regression tree” with linear regression models at the leaf nodes
 - Linear patches approximate continuous function
Linear regression for the CPU data

\[
\text{PRP} = -56.1 + 0.049 \text{MYCT} + 0.015 \text{MMIN} + 0.006 \text{MMAX} + 0.630 \text{CACH} - 0.270 \text{CHMIN} + 1.46 \text{CHMAX}
\]

Regression tree for the CPU data
Model tree for the CPU data

Classification rules

- Popular alternative to decision trees
- *Antecedent* (pre-condition): a series of tests (just like the tests at the nodes of a decision tree)
- Tests are usually logically ANDed together (but may also be general logical expressions)
- *Consequent* (conclusion): classes, set of classes, or probability distribution assigned by rule
- Individual rules are often logically ORed together
 - Conflicts arise if different conclusions apply
From trees to rules

- Easy: converting a tree into a set of rules
 - One rule for each leaf:
 - Antecedent contains a condition for every node on the path from the root to the leaf
 - Consequent is class assigned by the leaf
- Produces rules that are unambiguous
 - Doesn’t matter in which order they are executed
- But: resulting rules are unnecessarily complex
 - Pruning to remove redundant tests/rules

From rules to trees

- More difficult: transforming a rule set into a tree
 - Tree cannot easily express disjunction between rules
- Example: rules which test different attributes
 - If a and b then x
 - If c and d then x
- Symmetry needs to be broken
- Corresponding tree contains identical subtrees
 (⇒ “replicated subtree problem”)
A tree for a simple disjunction

The exclusive-or problem

If \(x=1 \) and \(y=0 \) then class = a
If \(x=0 \) and \(y=1 \) then class = a
If \(x=0 \) and \(y=0 \) then class = b
If \(x=1 \) and \(y=1 \) then class = b
A tree with a replicated subtree

If x=1 and y=1 then class = a
If z=1 and w=1 then class = a
Otherwise class = b

“Nuggets” of knowledge

- Are rules independent pieces of knowledge? (It seems easy to add a rule to an existing rule base.)
- Problem: ignores how rules are executed
- Two ways of executing a rule set:
 - Ordered set of rules (“decision list”)
 - Order is important for interpretation
 - Unordered set of rules
 - Rules may overlap and lead to different conclusions for the same instance
Interpreting rules

• What if two or more rules conflict?
 • Give no conclusion at all?
 • Go with rule that is most popular on training data?
 • ...

• What if no rule applies to a test instance?
 • Give no conclusion at all?
 • Go with class that is most frequent in training data?
 • ...

Special case: Boolean class

• Assumption: if instance does not belong to class “yes”, it belongs to class “no”
• Trick: only learn rules for class “yes” and use default rule for “no”

If \(x = 1 \) and \(y = 1 \) then class = a
If \(z = 1 \) and \(w = 1 \) then class = a
Otherwise class = b

• Order of rules is not important. No conflicts!
• Rule can be written in disjunctive normal form
Association rules

• Association rules...
 • ... can predict any attribute and combinations of attributes
 • ... are not intended to be used together as a set
• Problem: immense number of possible associations
 • Output needs to be restricted to show only the most predictive associations
 \(\Rightarrow \) only those with high support and high confidence

Support and confidence of a rule

• Support: number of instances predicted correctly
• Confidence: number of correct predictions, as proportion of all instances that rule applies to
• Example: 4 cool days with normal humidity

\[\text{If temperature = cool then humidity = normal} \]

\(\Rightarrow \) Support = 4, confidence = 100%

• Normally: minimum support and confidence pre-specified (e.g. 58 rules with support \(\geq 2 \) and confidence \(\geq 95\% \) for weather data)
Interpreting association rules

- Interpretation is not obvious:

\[
\text{If \ windy = false and play = no then outlook = sunny and humidity = high}
\]

is not the same as

\[
\begin{align*}
\text{If \ windy = false and play = no then outlook = sunny} \\
\text{If \ windy = false and play = no then humidity = high}
\end{align*}
\]

- It means that the following also holds:

\[
\text{If \ humidity = high and windy = false and play = no then outlook = sunny}
\]

Rules with exceptions

- Idea: allow rules to have exceptions
- Example: rule for iris data

\[
\text{If petal-length} \geq 2.45 \text{ and petal-length} < 4.45 \text{ then Iris-versicolor}
\]

- New instance:

<table>
<thead>
<tr>
<th>Sepal Length</th>
<th>Sepal Width</th>
<th>Petal Length</th>
<th>Petal Width</th>
<th>Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.1</td>
<td>3.5</td>
<td>2.6</td>
<td>0.2</td>
<td>?</td>
</tr>
</tbody>
</table>

- Modified rule:

\[
\text{If petal-length} \geq 2.45 \text{ and petal-length} < 4.45 \text{ then Iris-versicolor EXCEPT if petal-width < 1.0 then Iris-setosa}
\]
A more complex example

- Exceptions to exceptions to exceptions ...

```
default: Iris-setosa
except if petal-length ≥ 2.45 and petal-length < 5.355
    and petal-width < 1.75
    then Iris-versicolor
    except if petal-length ≥ 4.95 and petal-width < 1.55
        then Iris-virginica
        else if sepal-length < 4.95 and sepal-width ≥ 2.45
            then Iris-virginica
    else if petal-length ≥ 3.35
        then Iris-virginica
        except if petal-length < 4.85 and sepal-length < 5.95
            then Iris-versicolor
```

Advantages of using exceptions

- Rules can be updated incrementally
 - Easy to incorporate new data
 - Easy to incorporate domain knowledge
- People often think in terms of exceptions
- Each conclusion can be considered just in the context of rules and exceptions that lead to it
 - Locality property is important for understanding large rule sets
 - “Normal” rule sets do not offer this advantage
More on exceptions

• Default...except if...then...
 is logically equivalent to
 if...then...else
 (where the “else” specifies what the “default” does)
• But: exceptions offer a psychological advantage
 – Assumption: defaults and tests early on apply more widely than exceptions
 further down
 – Exceptions reflect special cases

Rules involving relations

• So far: all rules involved comparing an attribute-value to a constant (e.g. temperature < 45)
• These rules are called “propositional” because they have the same expressive power as propositional logic
• What if problem involves relationships between examples (e.g. family tree problem from above)?
 • Can’t be expressed with propositional rules
 • More expressive representation required
The shapes problem

- Target concept: *standing up*
- Shaded: *standing*
 Unshaded: *lying*

A propositional solution

<table>
<thead>
<tr>
<th>Width</th>
<th>Height</th>
<th>Sides</th>
<th>Class</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>4</td>
<td>4</td>
<td>Standing</td>
</tr>
<tr>
<td>3</td>
<td>6</td>
<td>4</td>
<td>Standing</td>
</tr>
<tr>
<td>4</td>
<td>3</td>
<td>4</td>
<td>Lying</td>
</tr>
<tr>
<td>7</td>
<td>8</td>
<td>3</td>
<td>Standing</td>
</tr>
<tr>
<td>7</td>
<td>6</td>
<td>3</td>
<td>Lying</td>
</tr>
<tr>
<td>2</td>
<td>9</td>
<td>4</td>
<td>Standing</td>
</tr>
<tr>
<td>9</td>
<td>1</td>
<td>4</td>
<td>Lying</td>
</tr>
<tr>
<td>10</td>
<td>2</td>
<td>3</td>
<td>Lying</td>
</tr>
</tbody>
</table>

If width \(\geq 3.5 \) and height \(< 7.0 \) then lying
If height \(\geq 3.5 \) then standing
Using relations between attributes

• Comparing attributes with each other enables rules like this:

\[
\begin{align*}
\text{If width > height then lying} \\
\text{If height > width then standing}
\end{align*}
\]

• This description generalizes better to new data
• Standard relations: =, <, >
• But: searching for relations between attributes can be costly
• Simple solution: add extra attributes (e.g., a binary attribute “is width < height?”)

Rules with variables

• Using variables and multiple relations:

\[
\begin{align*}
\text{If height_and_width_of(x,h,w) and h > w} \\
\text{then standing(x)}
\end{align*}
\]

• The top of a tower of blocks is standing:

\[
\begin{align*}
\text{If height_and_width_of(x,h,w) and h > w} \\
\text{and is_top_of(y,x)} \\
\text{then standing(x)}
\end{align*}
\]

• The whole tower is standing:

\[
\begin{align*}
\text{If is_top_of(x,z) and} \\
\text{height_and_width_of(z,h,w) and h > w} \\
\text{and is_rest_of(x,y) and standing(y)} \\
\text{then standing(x)}
\end{align*}
\]

• Recursive definition!
Inductive logic programming

• Recursive definition can be seen as logic program
• Techniques for learning logic programs stem from the area of “inductive logic programming” (ILP)
• But: recursive definitions are hard to learn
 • Also: few practical problems require recursion
 • Thus: many ILP techniques are restricted to non-recursive definitions to make learning easier

Instance-based representation

• Simplest form of learning: rote learning
 • Training instances are searched for instance that most closely resembles new instance
 • The instances themselves represent the knowledge
 • Also called instance-based learning
• Similarity function defines what’s “learned”
• Instance-based learning is lazy learning
• Methods: nearest-neighbor, k-nearest-neighbor, ...
The distance function

- Simplest case: one numeric attribute
 - Distance is the difference between the two attribute values involved (or a function thereof)
- Several numeric attributes: normally, Euclidean distance is used and attributes are normalized
- Nominal attributes: distance is set to 1 if values are different, 0 if they are equal
- Are all attributes equally important?
 - Weighting the attributes might be necessary

Learning prototypes

- Only those instances involved in a decision need to be stored
- Noisy instances should be filtered out
- Idea: only use prototypical examples
Rectangular generalizations

- Nearest-neighbor rule is used outside rectangles
- Rectangles are rules! (But they can be more conservative than “normal” rules.)
- Nested rectangles are rules with exceptions

Representing clusters I

Simple 2-D representation

Venn diagram
Representing clusters II

Probabilistic assignment

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>0.4</td>
<td>0.1</td>
<td>0.5</td>
</tr>
<tr>
<td>b</td>
<td>0.1</td>
<td>0.8</td>
<td>0.1</td>
</tr>
<tr>
<td>c</td>
<td>0.3</td>
<td>0.3</td>
<td>0.4</td>
</tr>
<tr>
<td>d</td>
<td>0.1</td>
<td>0.1</td>
<td>0.8</td>
</tr>
<tr>
<td>e</td>
<td>0.4</td>
<td>0.2</td>
<td>0.4</td>
</tr>
<tr>
<td>f</td>
<td>0.1</td>
<td>0.4</td>
<td>0.5</td>
</tr>
<tr>
<td>g</td>
<td>0.7</td>
<td>0.2</td>
<td>0.1</td>
</tr>
<tr>
<td>h</td>
<td>0.5</td>
<td>0.4</td>
<td>0.1</td>
</tr>
</tbody>
</table>

Dendrogram

NB: dendron is the Greek word for tree