Slides for Chapter 4, Algorithms: the basic methods

of *Data Mining* by I. H. Witten, E. Frank, M. A. Hall and C. J. Pal

Algorithms: The basic methods

- Inferring rudimentary rules
- Simple probabilistic modeling
- Constructing decision trees
- Constructing rules
- Association rule learning
- Linear models
- Instance-based learning
- Clustering
- Multi-instance learning
Simplicity first

- Simple algorithms often work very well!
- There are many kinds of simple structure, e.g.:
 - One attribute does all the work
 - All attributes contribute equally & independently
 - Logical structure with a few attributes suitable for tree
 - A set of simple logical rules
 - Relationships between groups of attributes
 - A weighted linear combination of the attributes
 - Strong neighborhood relationships based on distance
 - Clusters of data in unlabeled data
 - Bags of instances that can be aggregated
- Success of method depends on the domain

Inferring rudimentary rules

- 1R rule learner: learns a 1-level decision tree
 - A set of rules that all test one particular attribute that has been identified as the one that yields the lowest classification error
- Basic version for finding the rule set from a given training set (assumes nominal attributes):
 - For each attribute
 - Make one branch for each value of the attribute
 - To each branch, assign the most frequent class value of the instances pertaining to that branch
 - Error rate: proportion of instances that do not belong to the majority class of their corresponding branch
 - Choose attribute with lowest error rate
Pseudo-code for 1R

For each attribute,
For each value of the attribute, make a rule as follows:
- count how often each class appears
- find the most frequent class
- make the rule assign that class to this attribute-value

Calculate the error rate of the rules
Choose the rules with the smallest error rate

- **1R’s handling of missing values**: a missing value is treated as a separate attribute value

Evaluating the weather attributes

<table>
<thead>
<tr>
<th>Attribute</th>
<th>Rules</th>
<th>Errors</th>
<th>Total errors</th>
</tr>
</thead>
<tbody>
<tr>
<td>Outlook</td>
<td>Sunny → No</td>
<td>2/5</td>
<td>4/14</td>
</tr>
<tr>
<td></td>
<td>Overcast → Yes</td>
<td>0/4</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Rainy → Yes</td>
<td>2/5</td>
<td></td>
</tr>
<tr>
<td>Temp</td>
<td>Hot → No*</td>
<td>2/4</td>
<td>5/14</td>
</tr>
<tr>
<td></td>
<td>Mild → Yes</td>
<td>2/6</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Cool → Yes</td>
<td>1/4</td>
<td></td>
</tr>
<tr>
<td>Humidity</td>
<td>High → No</td>
<td>3/7</td>
<td>4/14</td>
</tr>
<tr>
<td></td>
<td>Normal → Yes</td>
<td>1/7</td>
<td></td>
</tr>
<tr>
<td>Windy</td>
<td>False → Yes</td>
<td>2/8</td>
<td>5/14</td>
</tr>
<tr>
<td></td>
<td>True → No*</td>
<td>3/6</td>
<td></td>
</tr>
</tbody>
</table>

* indicates a tie
Dealing with numeric attributes

- Idea: discretize numeric attributes into sub ranges (intervals)
- How to divide each attribute’s overall range into intervals?
 - Sort instances according to attribute’s values
 - Place breakpoints where (majority) class changes
 - This minimizes the total classification error
- Example: temperature from weather data

<table>
<thead>
<tr>
<th>64</th>
<th>65</th>
<th>68</th>
<th>69</th>
<th>70</th>
<th>71</th>
<th>72</th>
<th>75</th>
<th>80</th>
<th>81</th>
<th>83</th>
<th>85</th>
</tr>
</thead>
<tbody>
<tr>
<td>Yes</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
</tr>
</tbody>
</table>

The problem of overfitting

- Discretization procedure is very sensitive to noise
 - A single instance with an incorrect class label will probably produce a separate interval
- Also, something like a time stamp attribute will have zero errors
- Simple solution: enforce minimum number of instances in majority class per interval
- Example: temperature attribute with required minimum number of instances in majority class set to three:

<table>
<thead>
<tr>
<th>64</th>
<th>65</th>
<th>68</th>
<th>69</th>
<th>70</th>
<th>71</th>
<th>72</th>
<th>75</th>
<th>80</th>
<th>81</th>
<th>83</th>
<th>85</th>
</tr>
</thead>
<tbody>
<tr>
<td>Yes</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>64</th>
<th>65</th>
<th>68</th>
<th>69</th>
<th>70</th>
<th>71</th>
<th>72</th>
<th>75</th>
<th>80</th>
<th>81</th>
<th>83</th>
<th>85</th>
</tr>
</thead>
<tbody>
<tr>
<td>Yes</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
</tr>
</tbody>
</table>
Results with overfitting avoidance

- Resulting rule sets for the four attributes in the weather data, with only two rules for the temperature attribute:

<table>
<thead>
<tr>
<th>Attribute</th>
<th>Rules</th>
<th>Errors</th>
<th>Total errors</th>
</tr>
</thead>
<tbody>
<tr>
<td>Outlook</td>
<td>Sunny (\rightarrow) No</td>
<td>2/5</td>
<td>4/14</td>
</tr>
<tr>
<td></td>
<td>Overcast (\rightarrow) Yes</td>
<td>0/4</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Rainy (\rightarrow) Yes</td>
<td>2/5</td>
<td></td>
</tr>
<tr>
<td>Temperature</td>
<td>(\leq 77.5 \rightarrow) Yes</td>
<td>3/10</td>
<td>5/14</td>
</tr>
<tr>
<td></td>
<td>> 77.5 (\rightarrow) No*</td>
<td>2/4</td>
<td></td>
</tr>
<tr>
<td>Humidity</td>
<td>(\leq 82.5 \rightarrow) Yes</td>
<td>1/7</td>
<td>3/14</td>
</tr>
<tr>
<td></td>
<td>> 82.5 and (\leq 95.5 \rightarrow) No</td>
<td>2/6</td>
<td></td>
</tr>
<tr>
<td></td>
<td>> 95.5 (\rightarrow) Yes</td>
<td>0/1</td>
<td></td>
</tr>
<tr>
<td>Windy</td>
<td>False (\rightarrow) Yes</td>
<td>2/8</td>
<td>5/14</td>
</tr>
<tr>
<td></td>
<td>True (\rightarrow) No*</td>
<td>3/6</td>
<td></td>
</tr>
</tbody>
</table>

Discussion of 1R

- 1R was described in a paper by Holte (1993):

 Very Simple Classification Rules Perform Well on Most Commonly Used Datasets
 Robert C. Holte, Computer Science Department, University of Ottawa

 - Contains an experimental evaluation on 16 datasets (using cross-validation to estimate classification accuracy on fresh data)
 - Required minimum number of instances in majority class was set to 6 after some experimentation
 - 1R’s simple rules performed not much worse than much more complex decision trees
 - Lesson: simplicity first can pay off on practical datasets
 - Note that 1R does not perform as well on more recent, more sophisticated benchmark datasets
Simple probabilistic modeling

- “Opposite” of 1R: use all the attributes
- Two assumptions: Attributes are
 - equally important
 - statistically independent (given the class value)
 - This means knowing the value of one attribute tells us nothing about the value of another takes on (if the class is known)
- Independence assumption is almost never correct!
- But … this scheme often works surprisingly well in practice
- The scheme is easy to implement in a program and very fast
- It is known as naïve Bayes

Probabilities for weather data
Probabilities for weather data

<table>
<thead>
<tr>
<th>Outlook</th>
<th>Temperature</th>
<th>Humidity</th>
<th>Windy</th>
<th>Play</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Yes</td>
<td>No</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>Sunny</td>
<td>2</td>
<td>3</td>
<td>Hot</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>0</td>
<td>Mild</td>
<td>4</td>
</tr>
<tr>
<td>Overcast</td>
<td>3</td>
<td>2</td>
<td>Cool</td>
<td>3</td>
</tr>
<tr>
<td>Rainy</td>
<td>2/9</td>
<td>3/5</td>
<td>Hot</td>
<td>2/9</td>
</tr>
<tr>
<td></td>
<td>4/9</td>
<td>0/5</td>
<td>Mild</td>
<td>4/9</td>
</tr>
<tr>
<td></td>
<td>3/9</td>
<td>2/5</td>
<td>Cool</td>
<td>3/9</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sunny</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Overcast</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rainy</td>
<td>3/9</td>
<td>2/5</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

• A new day:

<table>
<thead>
<tr>
<th>Outlook</th>
<th>Temp.</th>
<th>Humidity</th>
<th>Windy</th>
<th>Play</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sunny</td>
<td>Cool</td>
<td>High</td>
<td>True</td>
<td>?</td>
</tr>
</tbody>
</table>

Likelihood of the two classes

For “yes” = $2/9 \times 3/9 \times 3/9 \times 3/9 \times 9/14 = 0.0053$

For “no” = $3/5 \times 1/5 \times 4/5 \times 3/5 \times 5/14 = 0.0206$

Conversion into a probability by normalization:

$P(\text{"yes"}) = 0.0053 / (0.0053 + 0.0206) = 0.205$

$P(\text{"no"}) = 0.0206 / (0.0053 + 0.0206) = 0.795$

Can combine probabilities using Bayes’s rule

• Famous rule from probability theory due to

Thomas Bayes
Born: 1702 in London, England
Died: 1761 in Tunbridge Wells, Kent, England

• Probability of an event H given observed evidence E:

$$P(H \mid E) = P(E \mid H)P(H) / P(E)$$

• A priori probability of H: $P(H)$
 • Probability of event before evidence is seen

• A posteriori probability of H: $P(H \mid E)$
 • Probability of event after evidence is seen
Naïve Bayes for classification

- Classification learning: what is the probability of the class given an instance?
 - Evidence \(E \) = instance’s non-class attribute values
 - Event \(H \) = class value of instance
- Naïve assumption: evidence splits into parts (i.e., attributes) that are conditionally independent
- This means, given \(n \) attributes, we can write Bayes’ rule using a product of per-attribute probabilities:
 \[
P(H \mid E) = P(E_1 \mid H)P(E_3 \mid H) \cdots P(E_n \mid H)P(H) / P(E)
\]

Weather data example

<table>
<thead>
<tr>
<th>Outlook</th>
<th>Temp.</th>
<th>Humidity</th>
<th>Windy</th>
<th>Play</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sunny</td>
<td>Cool</td>
<td>High</td>
<td>True</td>
<td>?</td>
</tr>
</tbody>
</table>

\[
P(\text{yes} \mid E) = P(\text{Outlook} = \text{Sunny} \mid \text{yes})
\]
\[
P(\text{Temperature} = \text{Cool} \mid \text{yes})
\]
\[
P(\text{Humidity} = \text{High} \mid \text{yes})
\]
\[
P(\text{Windy} = \text{True} \mid \text{yes})
\]
\[
P(\text{yes}) / P(E)
\]
\[
= \frac{2/9}{3/9} \frac{3/9}{3/9} \frac{3/9}{3/9} \frac{9/14}{P(E)}
\]
The “zero-frequency problem”

• What if an attribute value does not occur with every class value?
 (e.g., “Humidity = high” for class “yes”)
 • Probability will be zero: \(P(Humidity = \text{High} \mid \text{yes}) = 0 \)
 • A posteriori probability will also be zero: \(P(\text{yes} \mid E) = 0 \)
 (Regardless of how likely the other values are!)

• Remedy: add 1 to the count for every attribute value-class combination (Laplace estimator)

• Result: probabilities will never be zero

• Additional advantage: stabilizes probability estimates computed from small samples of data

Modified probability estimates

• In some cases adding a constant different from 1 might be more appropriate

• Example: attribute outlook for class yes

\[
\begin{align*}
\text{Sunny} & : \frac{2 + \mu/3}{9 + \mu} \quad \frac{4 + \mu/3}{9 + \mu} \\
\text{Overcast} & : \frac{3 + \mu/3}{9 + \mu} \\
\text{Rainy} & : \frac{2 + \mu p_1}{9 + \mu} \quad \frac{4 + \mu p_2}{9 + \mu} \quad \frac{3 + \mu p_3}{9 + \mu}
\end{align*}
\]

• Weights don’t need to be equal
 (but they must sum to 1)
Missing values

- Training: instance is not included in frequency count for attribute value-class combination
- Classification: attribute will be omitted from calculation
- Example:

<table>
<thead>
<tr>
<th>Outlook</th>
<th>Temp.</th>
<th>Humidity</th>
<th>Windy</th>
<th>Play</th>
</tr>
</thead>
<tbody>
<tr>
<td>?</td>
<td>Cool</td>
<td>High</td>
<td>True</td>
<td>?</td>
</tr>
</tbody>
</table>

Likelihood of “yes” = \(\frac{3}{9} \times \frac{3}{9} \times \frac{3}{9} \times \frac{9}{14} = 0.0238 \)
Likelihood of “no” = \(\frac{1}{5} \times \frac{4}{5} \times \frac{3}{5} \times \frac{5}{14} = 0.0343 \)
P("yes") = \(\frac{0.0238}{0.0238 + 0.0343} = 41\% \)
P("no") = \(\frac{0.0343}{0.0238 + 0.0343} = 59\% \)

Numeric attributes

- Usual assumption: attributes have a normal or Gaussian probability distribution (given the class)
- The probability density function for the normal distribution is defined by two parameters:

 - **Sample mean** \(\mu = \frac{1}{N} \sum_{i=1}^{N} x_i \)

 - **Standard deviation** \(\sigma = \sqrt{\frac{1}{N-1} \sum_{i=1}^{N} (x_i - \mu)^2} \)

 - Then the density function \(f(x) \) is
 \[f(x) = \frac{1}{\sqrt{2\pi\sigma}} e^{-\frac{(x-\mu)^2}{2\sigma^2}} \]
Statistics for weather data

<table>
<thead>
<tr>
<th>Outlook</th>
<th>Temperature</th>
<th>Humidity</th>
<th>Windy</th>
<th>Play</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Yes</td>
<td>No</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sunny</td>
<td>2</td>
<td>3</td>
<td>64, 68, 65, 71,</td>
<td>65, 70, 70, 85,</td>
</tr>
<tr>
<td>Overcast</td>
<td>4</td>
<td>0</td>
<td>69, 70, 72, 80,</td>
<td>70, 75, 90, 91,</td>
</tr>
<tr>
<td>Rainy</td>
<td>3</td>
<td>2</td>
<td>72, ... 85, ...</td>
<td>80, ... 95, ...</td>
</tr>
<tr>
<td>Sunny</td>
<td>2/9</td>
<td>3/5</td>
<td>μ = 73</td>
<td>μ = 75</td>
</tr>
<tr>
<td>Overcast</td>
<td>4/9</td>
<td>0/5</td>
<td>σ = 6.2</td>
<td>σ = 7.9</td>
</tr>
<tr>
<td>Rainy</td>
<td>3/9</td>
<td>2/5</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

• Example density value:

\[
f(\text{temperature} = 66|\text{yes}) = \frac{1}{\sqrt{2\pi \cdot 6.2}} e^{-\frac{(06-73)^2}{2 \cdot 6.2^2}} = 0.0340
\]

Classifying a new day

• A new day:

<table>
<thead>
<tr>
<th>Outlook</th>
<th>Temp.</th>
<th>Humidity</th>
<th>Windy</th>
<th>Play</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sunny</td>
<td>66</td>
<td>90</td>
<td>true</td>
<td>?</td>
</tr>
</tbody>
</table>

Likelihood of “yes” = 2/9 × 0.0340 × 0.0221 × 3/9 × 9/14 = 0.000036
Likelihood of “no” = 3/5 × 0.0221 × 0.0381 × 3/5 × 5/14 = 0.000108
P(“yes”) = 0.000036 / (0.000036 + 0.000108) = 25%
P(“no”) = 0.000108 / (0.000036 + 0.000108) = 75%

• Missing values during training are not included in calculation of mean and standard deviation
Probability densities

- Probability densities $f(x)$ can be greater than 1; hence, they are not probabilities
 - However, they must integrate to 1: the area under the probability density curve must be 1
- Approximate relationship between probability and probability density can be stated as
 \[P(x - \varepsilon / 2 \leq X \leq x + \varepsilon / 2) \approx f(x) \]
 assuming ε is sufficiently small
- When computing likelihoods, we can treat densities just like probabilities

Multinomial naïve Bayes I

- Version of naïve Bayes used for document classification using bag of words model
- n_1, n_2, \ldots, n_k: number of times word i occurs in the document
- P_1, P_2, \ldots, P_k: probability of obtaining word i when sampling from documents in class H
- Probability of observing a particular document E given probabilities class H (based on multinomial distribution):
 \[P(E|H) = N! \times \prod_{i=1}^{k} \frac{P_i^{n_i}}{n_i!} \]
 - Note that this expression ignores the probability of generating a document of the right length
 - This probability is assumed to be constant for all classes
Multinomial naïve Bayes II

• Suppose dictionary has two words, yellow and blue
• Suppose $P(\text{yellow} \mid H) = 75\%$ and $P(\text{blue} \mid H) = 25\%$
• Suppose E is the document “blue yellow blue”
• Probability of observing document:

\[
P(\text{blue yellow blue} \mid H) = 3! \cdot \frac{0.75^1}{1!} \cdot \frac{0.25^2}{2!} = \frac{27}{64}
\]

Suppose there is another class H' that has
\[P(\text{yellow} \mid H') = 10\% \text{ and } P(\text{blue} \mid H') = 90\%:\]
\[
P(\text{blue yellow blue} \mid H') = 3! \cdot \frac{0.1^1}{1!} \cdot \frac{0.9^2}{2!} = \frac{243}{1000}
\]
• Need to take prior probability of class into account to make the final classification using Bayes’ rule
• Factorials do not actually need to be computed: they drop out
• Underflows can be prevented by using logarithms

Naïve Bayes: discussion

• Naïve Bayes works surprisingly well even if independence assumption is clearly violated
• Why? Because classification does not require accurate probability estimates as long as maximum probability is assigned to the correct class
• However: adding too many redundant attributes will cause problems (e.g., identical attributes)
• Note also: many numeric attributes are not normally distributed (kernel density estimators can be used instead)
Constructing decision trees

• Strategy: top down learning using recursive *divide-and-conquer* process
 • First: select attribute for root node
 Create branch for each possible attribute value
 • Then: split instances into subsets
 One for each branch extending from the node
 • Finally: repeat recursively for each branch, using only instances that reach the branch
• Stop if all instances have the same class

Which attribute to select?

(A) Outlook
 Sunny Yes Yes No No
 Overcast Yes Yes No No
 Rainy Yes Yes No No

(B) Temperature
 Hot Yes Yes Yes Yes No No
 Mild Yes Yes Yes Yes No No
 Cool Yes Yes Yes Yes No No

(C) Humidity
 High Yes Yes Yes Yes No No
 Normal Yes Yes Yes Yes No No

(D) Windy
 False Yes Yes Yes Yes No No
 True Yes Yes Yes Yes No No
Which attribute to select?

Criterion for attribute selection

- Which is the best attribute?
 - Want to get the smallest tree
 - Heuristic: choose the attribute that produces the “purest” nodes
- Popular selection criterion: *information gain*
 - Information gain increases with the average purity of the subsets
- Strategy: amongst attributes available for splitting, choose attribute that gives greatest information gain
- Information gain requires measure of *impurity*
- Impurity measure that it uses is the *entropy* of the class distribution, which is a measure from information theory
Computing information

- We have a probability distribution: the class distribution in a subset of instances
- The expected information required to determine an outcome (i.e., class value), is the distribution’s entropy
- Formula for computing the entropy:
 \[\text{Entropy}(p_1, p_2, \ldots, p_n) = -p_1 \log p_1 - p_2 \log p_2 - \ldots - p_n \log p_n \]
- Using base-2 logarithms, entropy gives the information required in expected bits
- Entropy is maximal when all classes are equally likely and minimal when one of the classes has probability 1

Example: attribute *Outlook*

- **Outlook = Sunny** :
 \[\text{Info}(2, 3) = 0.971 \text{ bits} \]
- **Outlook = Overcast** :
 \[\text{Info}(4, 0) = 0.0 \text{ bits} \]
- **Outlook = Rainy** :
 \[\text{Info}(3, 2) = 0.971 \text{ bits} \]
- Expected information for attribute:
 \[\text{Info}(2, 3, [4, 0], [3, 2]) = (5/14) \times 0.971 + (4/14) \times 0 + (5/14) \times 0.971 \]
 \[= 0.693 \text{ bits} \]
Computing information gain

- Information gain: information before splitting – information after splitting

\[
\text{Gain}(\text{Outlook}) = \text{Info}([9,5]) - \text{info}([2,3],[4,0],[3,2])
\]
\[
= 0.940 - 0.693
\]
\[
= 0.247 \text{ bits}
\]

- Information gain for attributes from weather data:

\[
\begin{align*}
\text{Gain}(\text{Outlook}) &= 0.247 \text{ bits} \\
\text{Gain}(\text{Temperature}) &= 0.029 \text{ bits} \\
\text{Gain}(\text{Humidity}) &= 0.152 \text{ bits} \\
\text{Gain}(\text{Windy}) &= 0.048 \text{ bits}
\end{align*}
\]

Continuing to split

\[
\begin{align*}
\text{Gain}(\text{Temperature}) &= 0.571 \text{ bits} \\
\text{Gain}(\text{Humidity}) &= 0.971 \text{ bits} \\
\text{Gain}(\text{Windy}) &= 0.020 \text{ bits}
\end{align*}
\]
Final decision tree

- Note: not all leaves need to be pure; sometimes identical instances have different classes
 - Splitting stops when data cannot be split any further

Wishlist for an impurity measure

- Properties we would like to see in an impurity measure:
 - When node is pure, measure should be zero
 - When impurity is maximal (i.e., all classes equally likely), measure should be maximal
 - Measure should ideally obey multistage property (i.e., decisions can be made in several stages):

\[
\text{Entropy}(p, q, r) = \text{entropy}(p, q + r) + (q + r) \cdot \text{entropy}\left(\frac{q}{q + r}, \frac{r}{q + r}\right)
\]

- It can be shown that entropy is the only function that satisfies all three properties!
- Note that the multistage property is intellectually pleasing but not strictly necessary in practice
Highly-branching attributes

- Problematic: attributes with a large number of values (extreme case: ID code)
- Subsets are more likely to be pure if there is a large number of values
 - Information gain is biased towards choosing attributes with a large number of values
 - This may result in overfitting (selection of an attribute that is non-optimal for prediction)
- An additional problem in decision trees is data fragmentation

Weather data with *ID code*

<table>
<thead>
<tr>
<th>ID code</th>
<th>Outlook</th>
<th>Temp.</th>
<th>Humidity</th>
<th>Windy</th>
<th>Play</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Sunny</td>
<td>Hot</td>
<td>High</td>
<td>False</td>
<td>No</td>
</tr>
<tr>
<td>B</td>
<td>Sunny</td>
<td>Hot</td>
<td>High</td>
<td>True</td>
<td>No</td>
</tr>
<tr>
<td>C</td>
<td>Overcast</td>
<td>Hot</td>
<td>High</td>
<td>False</td>
<td>Yes</td>
</tr>
<tr>
<td>D</td>
<td>Rainy</td>
<td>Mild</td>
<td>High</td>
<td>False</td>
<td>Yes</td>
</tr>
<tr>
<td>E</td>
<td>Rainy</td>
<td>Cool</td>
<td>Normal</td>
<td>False</td>
<td>Yes</td>
</tr>
<tr>
<td>F</td>
<td>Rainy</td>
<td>Cool</td>
<td>Normal</td>
<td>True</td>
<td>No</td>
</tr>
<tr>
<td>G</td>
<td>Overcast</td>
<td>Cool</td>
<td>Normal</td>
<td>True</td>
<td>Yes</td>
</tr>
<tr>
<td>H</td>
<td>Sunny</td>
<td>Mild</td>
<td>High</td>
<td>False</td>
<td>No</td>
</tr>
<tr>
<td>I</td>
<td>Sunny</td>
<td>Cool</td>
<td>Normal</td>
<td>False</td>
<td>Yes</td>
</tr>
<tr>
<td>J</td>
<td>Rainy</td>
<td>Mild</td>
<td>Normal</td>
<td>False</td>
<td>Yes</td>
</tr>
<tr>
<td>K</td>
<td>Sunny</td>
<td>Mild</td>
<td>Normal</td>
<td>True</td>
<td>Yes</td>
</tr>
<tr>
<td>L</td>
<td>Overcast</td>
<td>Mild</td>
<td>High</td>
<td>True</td>
<td>Yes</td>
</tr>
<tr>
<td>M</td>
<td>Overcast</td>
<td>Hot</td>
<td>Normal</td>
<td>False</td>
<td>Yes</td>
</tr>
<tr>
<td>N</td>
<td>Rainy</td>
<td>Mild</td>
<td>High</td>
<td>True</td>
<td>No</td>
</tr>
</tbody>
</table>
Tree stump for *ID code* attribute

- All (single-instance) subsets have entropy zero!
- This means the information gain is maximal for this ID code attribute (namely 0.940 bits)

Gain ratio

- *Gain ratio* is a modification of the information gain that reduces its bias towards attributes with many values
- Gain ratio takes number and size of branches into account when choosing an attribute
 - It corrects the information gain by taking the *intrinsic information* of a split into account
- Intrinsic information: entropy of the distribution of instances into branches
- Measures how much info do we need to tell which branch a randomly chosen instance belongs to
Computing the gain ratio

- Example: intrinsic information of ID code
 \[\frac{1}{14} \left(\text{info}([0, 1]) + \text{info}([0, 1]) + \text{info}([1, 0]) + \cdots + \text{info}([1, 0]) + \text{info}([0, 1]) \right) \]

- Value of attribute should decrease as intrinsic information gets larger

- The gain ratio is defined as the information gain of the attribute divided by its intrinsic information

- Example (outlook at root node):

 | Gain: 0.940-0.693 | 0.247 |
 | Split info: info([5,4,5]) | 1.577 |
 | Gain ratio: 0.247/1.577 | 0.156 |

All gain ratios for the weather data

<table>
<thead>
<tr>
<th>Outlook</th>
<th>Temperature</th>
</tr>
</thead>
<tbody>
<tr>
<td>Info:</td>
<td>0.693</td>
</tr>
<tr>
<td>Gain: 0.940-0.693</td>
<td>0.247</td>
</tr>
<tr>
<td>Split info: info([5,4,5])</td>
<td>1.577</td>
</tr>
<tr>
<td>Gain ratio: 0.247/1.577</td>
<td>0.157</td>
</tr>
<tr>
<td>Info:</td>
<td>0.911</td>
</tr>
<tr>
<td>Gain: 0.940-0.911</td>
<td>0.029</td>
</tr>
<tr>
<td>Split info: info([4,6,4])</td>
<td>1.557</td>
</tr>
<tr>
<td>Gain ratio: 0.029/1.557</td>
<td>0.019</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Humidity</th>
<th>Windy</th>
</tr>
</thead>
<tbody>
<tr>
<td>Info:</td>
<td>0.788</td>
</tr>
<tr>
<td>Gain: 0.940-0.788</td>
<td>0.152</td>
</tr>
<tr>
<td>Split info: info([7,7])</td>
<td>1.000</td>
</tr>
<tr>
<td>Gain ratio: 0.152/1</td>
<td>0.152</td>
</tr>
<tr>
<td>Info:</td>
<td>0.892</td>
</tr>
<tr>
<td>Gain: 0.940-0.892</td>
<td>0.048</td>
</tr>
<tr>
<td>Split info: info([8,6])</td>
<td>0.985</td>
</tr>
<tr>
<td>Gain ratio: 0.048/0.985</td>
<td>0.049</td>
</tr>
</tbody>
</table>
More on the gain ratio

• “Outlook” still comes out top
• However: “ID code” has greater gain ratio
 • Standard fix: *ad hoc* test to prevent splitting on that type of identifier attribute
• Problem with gain ratio: it may overcompensate
 • May choose an attribute just because its intrinsic information is very low
 • Standard fix: only consider attributes with greater than average information gain
• Both tricks are implemented in the well-known C4.5 decision tree learner

Discussion

• Top-down induction of decision trees: ID3, algorithm developed by Ross Quinlan
 • Gain ratio just one modification of this basic algorithm
 • C4.5 tree learner deals with numeric attributes, missing values, noisy data
• Similar approach: CART tree learner
 • Uses Gini index rather than entropy to measure impurity
• There are many other attribute selection criteria! (But little difference in accuracy of result)
Covering algorithms

- Can convert decision tree into a rule set
 - Straightforward, but rule set overly complex
 - More effective conversions are not trivial and may incur a lot of computation
- Instead, we can generate rule set directly
 - One approach: for each class in turn, find rule set that covers all instances in it (excluding instances not in the class)
- Called a covering approach:
 - At each stage of the algorithm, a rule is identified that “covers” some of the instances

Example: generating a rule

- Possible rule set for class “b”:
 - If $x \leq 1.2$ then class = b
 - If $x > 1.2$ and $y \leq 2.6$ then class = b
- Could add more rules, get “perfect” rule set
Rules vs. trees

- Corresponding decision tree: (produces exactly the same predictions)
- But: rule sets can be more perspicuous when decision trees suffer from replicated subtrees
- Also: in multiclass situations, covering algorithm concentrates on one class at a time whereas decision tree learner takes all classes into account

Simple covering algorithm

- Basic idea: generate a rule by adding tests that maximize the rule’s accuracy
- Similar to situation in decision trees: problem of selecting an attribute to split on
 - But: decision tree inducer maximizes overall purity
- Each new test reduces rule’s coverage:
Selecting a test

- Goal: maximize accuracy
 - t total number of instances covered by rule
 - p positive examples of the class covered by rule
 - $t - p$ number of errors made by rule
 - Select test that maximizes the ratio p/t
- We are finished when $p/t = 1$ or the set of instances cannot be split any further

Example: contact lens data

- Rule we seek:
  ```
  If ?
  then recommendation = hard
  ```
- Possible tests:

<table>
<thead>
<tr>
<th>Test</th>
<th>Count</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age = Young</td>
<td>2/8</td>
</tr>
<tr>
<td>Age = Pre-presbyopic</td>
<td>1/8</td>
</tr>
<tr>
<td>Age = Presbyopic</td>
<td>1/8</td>
</tr>
<tr>
<td>Spectacle prescription = Myope</td>
<td>3/12</td>
</tr>
<tr>
<td>Spectacle prescription = Hypermetro</td>
<td>1/12</td>
</tr>
<tr>
<td>Astigmatism = no</td>
<td>0/12</td>
</tr>
<tr>
<td>Astigmatism = yes</td>
<td>4/12</td>
</tr>
<tr>
<td>Tear production rate = Reduced</td>
<td>0/12</td>
</tr>
<tr>
<td>Tear production rate = Normal</td>
<td>4/12</td>
</tr>
</tbody>
</table>
Modified rule and resulting data

- Rule with best test added:

 If astigmatism = yes
 then recommendation = hard

- Instances covered by modified rule:

<table>
<thead>
<tr>
<th>Age</th>
<th>Spectacle prescription</th>
<th>Astigmatism</th>
<th>Tear production rate</th>
<th>Recommended lenses</th>
</tr>
</thead>
<tbody>
<tr>
<td>Young</td>
<td>Myope</td>
<td>Yes</td>
<td>Reduced</td>
<td>None</td>
</tr>
<tr>
<td>Young</td>
<td>Myope</td>
<td>Yes</td>
<td>Normal</td>
<td>Hard</td>
</tr>
<tr>
<td>Young</td>
<td>Hypermetrope</td>
<td>Yes</td>
<td>Reduced</td>
<td>None</td>
</tr>
<tr>
<td>Young</td>
<td>Hypermetrope</td>
<td>Yes</td>
<td>Normal</td>
<td>Hard</td>
</tr>
<tr>
<td>Pre-presbyopic</td>
<td>Myope</td>
<td>Yes</td>
<td>Reduced</td>
<td>None</td>
</tr>
<tr>
<td>Pre-presbyopic</td>
<td>Myope</td>
<td>Yes</td>
<td>Normal</td>
<td>Hard</td>
</tr>
<tr>
<td>Pre-presbyopic</td>
<td>Hypermetrope</td>
<td>Yes</td>
<td>Reduced</td>
<td>None</td>
</tr>
<tr>
<td>Pre-presbyopic</td>
<td>Hypermetrope</td>
<td>Yes</td>
<td>Normal</td>
<td>None</td>
</tr>
<tr>
<td>Presbyopic</td>
<td>Myope</td>
<td>Yes</td>
<td>Reduced</td>
<td>None</td>
</tr>
<tr>
<td>Presbyopic</td>
<td>Myope</td>
<td>Yes</td>
<td>Normal</td>
<td>Hard</td>
</tr>
<tr>
<td>Presbyopic</td>
<td>Hypermetrope</td>
<td>Yes</td>
<td>Reduced</td>
<td>None</td>
</tr>
<tr>
<td>Presbyopic</td>
<td>Hypermetrope</td>
<td>Yes</td>
<td>Normal</td>
<td>None</td>
</tr>
</tbody>
</table>

Further refinement

- Current state:

 If astigmatism = yes
 and ?
 then recommendation = hard

- Possible tests:

 Age = Young 2/4
 Age = Pre-presbyopic 1/4
 Age = Presbyopic 1/4
 Spectacle prescription = Myope 3/6
 Spectacle prescription = Hypermetrope 1/6
 Tear production rate = Reduced 0/6
 Tear production rate = Normal 4/6
Modified rule and resulting data

• Rule with best test added:

 If astigmatism = yes and tear production rate = normal then recommendation = hard

• Instances covered by modified rule:

<table>
<thead>
<tr>
<th>Age</th>
<th>Spectacle prescription</th>
<th>Astigmatism</th>
<th>Tear production rate</th>
<th>Recommended lenses</th>
</tr>
</thead>
<tbody>
<tr>
<td>Young</td>
<td>Myope</td>
<td>Yes</td>
<td>Normal</td>
<td>Hard</td>
</tr>
<tr>
<td>Young</td>
<td>Hypermetrope</td>
<td>Yes</td>
<td>Normal</td>
<td>Hard</td>
</tr>
<tr>
<td>Pre-presbyopic</td>
<td>Myope</td>
<td>Yes</td>
<td>Normal</td>
<td>Hard</td>
</tr>
<tr>
<td>Pre-presbyopic</td>
<td>Hypermetrope</td>
<td>Yes</td>
<td>Normal</td>
<td>None</td>
</tr>
<tr>
<td>Presbyopic</td>
<td>Myope</td>
<td>Yes</td>
<td>Normal</td>
<td>Hard</td>
</tr>
<tr>
<td>Presbyopic</td>
<td>Hypermetrope</td>
<td>Yes</td>
<td>Normal</td>
<td>None</td>
</tr>
</tbody>
</table>

Further refinement

• Current state: If astigmatism = yes and tear production rate = normal and ? then recommendation = hard

• Possible tests:

 Age = Young 2/2
 Age = Pre-presbyopic 1/2
 Age = Presbyopic 1/2
 Spectacle prescription = Myope 3/3
 Spectacle prescription = Hypermetrope 1/3

• Tie between the first and the fourth test
 • We choose the one with greater coverage
The final rule

- Final rule:

 If astigmatism = yes
 and tear production rate = normal
 and spectacle prescription = myope
 then recommendation = hard

- Second rule for recommending “hard lenses”:
 (built from instances not covered by first rule)

 If age = young and astigmatism = yes
 and tear production rate = normal
 then recommendation = hard

- These two rules cover all “hard lenses”:
 - Process is repeated with other two classes

Pseudo-code for PRISM

For each class C
 Initialize E to the instance set
 While E contains instances in class C
 Create a rule R with an empty left-hand side that predicts class C
 Until R is perfect (or there are no more attributes to use) do
 For each attribute A not mentioned in R, and each value v,
 Consider adding the condition A = v to the left-hand side of R
 Select A and v to maximize the accuracy p/t
 (break ties by choosing the condition with the largest p)
 Add A = v to R
 Remove the instances covered by R from E
Rules vs. decision lists

• PRISM with outer loop removed generates a decision list for one class
 • Subsequent rules are designed for rules that are not covered by previous rules
 • But: order does not matter because all rules predict the same class so outcome does not change if rules are shuffled
• Outer loop considers all classes separately
 • No order dependence implied
• Problems: overlapping rules, default rule required

Separate and conquer rule learning

• Rule learning methods like the one PRISM employs (for each class) are called *separate-and-conquer* algorithms:
 • First, identify a useful rule
 • Then, separate out all the instances it covers
 • Finally, “conquer” the remaining instances
• Difference to divide-and-conquer methods:
 • Subset covered by a rule does not need to be explored any further
Mining association rules

• Naïve method for finding association rules:
 • Use separate-and-conquer method
 • Treat every possible combination of attribute values as a separate class

• Two problems:
 • Computational complexity
 • Resulting number of rules (which would have to be pruned on the basis of support and confidence)

• It turns out that we can look for association rules with high support and accuracy directly

Item sets: the basis for finding rules

• Support: number of instances correctly covered by association rule
 • The same as the number of instances covered by all tests in the rule (LHS and RHS!)
• Item: one test/attribute-value pair
• Item set: all items occurring in a rule
• Goal: find only rules that exceed pre-defined support
 • Do it by finding all item sets with the given minimum support and generating rules from them!
Weather data

<table>
<thead>
<tr>
<th>Outlook</th>
<th>Temp</th>
<th>Humidity</th>
<th>Windy</th>
<th>Play</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sunny</td>
<td>Hot</td>
<td>High</td>
<td>False</td>
<td>No</td>
</tr>
<tr>
<td>Sunny</td>
<td>Hot</td>
<td>High</td>
<td>True</td>
<td>No</td>
</tr>
<tr>
<td>Overcast</td>
<td>Hot</td>
<td>High</td>
<td>False</td>
<td>Yes</td>
</tr>
<tr>
<td>Rainy</td>
<td>Mild</td>
<td>High</td>
<td>False</td>
<td>Yes</td>
</tr>
<tr>
<td>Rainy</td>
<td>Cool</td>
<td>Normal</td>
<td>False</td>
<td>Yes</td>
</tr>
<tr>
<td>Rainy</td>
<td>Cool</td>
<td>Normal</td>
<td>True</td>
<td>No</td>
</tr>
<tr>
<td>Overcast</td>
<td>Cool</td>
<td>Normal</td>
<td>True</td>
<td>Yes</td>
</tr>
<tr>
<td>Sunny</td>
<td>Mild</td>
<td>High</td>
<td>False</td>
<td>No</td>
</tr>
<tr>
<td>Sunny</td>
<td>Cool</td>
<td>Normal</td>
<td>False</td>
<td>Yes</td>
</tr>
<tr>
<td>Rainy</td>
<td>Mild</td>
<td>Normal</td>
<td>False</td>
<td>Yes</td>
</tr>
<tr>
<td>Sunny</td>
<td>Mild</td>
<td>Normal</td>
<td>True</td>
<td>Yes</td>
</tr>
<tr>
<td>Overcast</td>
<td>Mild</td>
<td>High</td>
<td>True</td>
<td>Yes</td>
</tr>
<tr>
<td>Overcast</td>
<td>Hot</td>
<td>Normal</td>
<td>False</td>
<td>Yes</td>
</tr>
<tr>
<td>Rainy</td>
<td>Mild</td>
<td>High</td>
<td>True</td>
<td>No</td>
</tr>
</tbody>
</table>

Item sets for weather data

- Total number of item sets with a minimum support of at least two instances: 12 one-item sets, 47 two-item sets, 39 three-item sets, 6 four-item sets and 0 five-item sets
Generating rules from an item set

• Once all item sets with the required minimum support have been generated, we can turn them into rules

• Example 4-item set with a support of 4 instances:

 \[\text{Humidity = Normal, Windy = False, Play = Yes (4)}\]

• Seven \((2^n-1)\) potential rules:

 - If Humidity = Normal and Windy = False then Play = Yes \(4/4\)
 - If Humidity = Normal and Play = Yes then Windy = False \(4/6\)
 - If Windy = False and Play = Yes then Humidity = Normal \(4/6\)
 - If Humidity = Normal then Windy = False and Play = Yes \(4/7\)
 - If Windy = False then Humidity = Normal and Play = Yes \(4/8\)
 - If Play = Yes then Humidity = Normal and Windy = False \(4/9\)
 - If True then Humidity = Normal and Windy = False and Play = Yes \(4/12\)

Rules for weather data

• All rules with support > 1 and confidence = 100%:

<table>
<thead>
<tr>
<th>Association rule</th>
<th>Sup.</th>
<th>Conf.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Humidity=Normal Windy=False</td>
<td>4</td>
<td>100%</td>
</tr>
<tr>
<td>Temperature=Cool</td>
<td>4</td>
<td>100%</td>
</tr>
<tr>
<td>Outlook=Overcast</td>
<td>4</td>
<td>100%</td>
</tr>
<tr>
<td>Temperature=Cold Play=Yes</td>
<td>3</td>
<td>100%</td>
</tr>
<tr>
<td>Outlook=Sunny Temperature=Hot</td>
<td>2</td>
<td>100%</td>
</tr>
</tbody>
</table>

• In total:
 - 3 rules with support four
 - 5 with support three
 - 50 with support two
Example rules from the same item set

- Item set:
 \[
 \text{Temperature = Cool, Humidity = Normal, Windy = False, Play = Yes (2)}
 \]

- Resulting rules (all with 100% confidence):
 \[
 \begin{align*}
 \text{Temperature = Cool, Windy = False } & \Rightarrow \text{ Humidity = Normal, Play = Yes} \\
 \text{Temperature = Cool, Windy = False, Humidity = Normal } & \Rightarrow \text{ Play = Yes} \\
 \text{Temperature = Cool, Windy = False, Play = Yes } & \Rightarrow \text{ Humidity = Normal}
 \end{align*}
 \]

- We can establish their confidence due to the following “frequent” item sets:
 \[
 \begin{align*}
 \text{Temperature = Cool, Windy = False } & \quad (2) \\
 \text{Temperature = Cool, Humidity = Normal, Windy = False } & \quad (2) \\
 \text{Temperature = Cool, Windy = False, Play = Yes } & \quad (2)
 \end{align*}
 \]

Generating item sets efficiently

- How can we efficiently find all frequent item sets?
- Finding one-item sets easy
- Idea: use one-item sets to generate two-item sets, two-item sets to generate three-item sets, ...

 - If (A B) is a frequent item set, then (A) and (B) have to be frequent item sets as well!
 - In general: if X is a frequent k-item set, then all (k-1)-item subsets of X are also frequent
 - Compute k-item sets by merging (k-1)-item sets
Example

- Given: five frequent three-item sets

 (A B C), (A B D), (A C D), (A C E), (B C D)

- Lexicographically ordered!

- Candidate four-item sets:

 (A B C D) OK because of (A C D) (B C D)
 (A C D E) Not OK because of (C D E)

- To establish that these item sets are really frequent, we need to perform a final check by counting instances

- For fast look-up, the \((k -1)\)-item sets are stored in a hash table

Algorithm for finding item sets

Set \(k\) to 1

Find all \(k\)-item sets with sufficient coverage and store them in hash table \(#1\)

While some \(k\)-item sets with sufficient coverage have been found

Increment \(k\)

Find all pairs of \((k-1)\)-item sets in hash table \(#(k-1)\) that differ only in their last item

Create a \(k\)-item set for each pair by combining the two \((k-1)\)-item sets that are paired

Remove all \(k\)-item sets containing any \((k-1)\)-item sets that are not in the \(#(k-1)\)hash table

Scan the data and remove all remaining \(k\)-item sets that do not have sufficient coverage

Store the remaining \(k\)-item sets and their coverage in hash table \(#k\), sorting items in lexical order
Generating rules efficiently

• We are looking for all high-confidence rules
 • Support of antecedent can be obtained from item set hash table
 • But: brute-force method is \((2^N-1)\) for an N-item set
• Better way: building \((c+1)\)-consequent rules from \(c\)-consequent ones
 • Observation: \((c+1)\)-consequent rule can only hold if all corresponding \(c\)-consequent rules also hold
• Resulting algorithm similar to procedure for large item sets

Example

• 1-consequent rules:

 \[
 \text{If Outlook = Sunny and Windy = False and Play = No then Humidity = High (2/2)}
 \]

 \[
 \text{If Humidity = High and Windy = False and Play = No then Outlook = Sunny (2/2)}
 \]

• Corresponding 2-consequent rule:

 \[
 \text{If Windy = False and Play = No then Outlook = Sunny and Humidity = High (2/2)}
 \]

• Final check of antecedent against item set hash table is required to check that rule is actually sufficiently accurate
Algorithm for finding association rules

Set \(n \) to 1
Find all sufficiently accurate \(n \)-consequent rules for the \(k \)-item set and store them in hash table \(#1 \), computing accuracy using the hash tables found for item sets
While some sufficiently accurate \(n \)-consequent rules have been found
 Increment \(n \)
 Find all pairs of \((n-1)\)-consequent rules in hash table \(#(n-1) \) whose consequents differ only in their last item
 Create an \(n \)-consequent rule for each pair by combining the two \((n-1)\)-consequent rules that are paired
 Remove all \(n \)-consequent rules that are insufficiently accurate, computing accuracy using the hash tables found for item sets
 Store the remaining \(n \)-consequent rules and their accuracy in hash table \(#k \), sorting items for each consequent in lexical order

Association rules: discussion

- Above method makes one pass through the data for each different item set size
 - Another possibility: generate \((k+2)\)-item sets just after \((k+1)\)-item sets have been generated
 - Result: more candidate \((k+2)\)-item sets than necessary will be generated but this requires less passes through the data
 - Makes sense if data too large for main memory
- Practical issue: support level for generating a certain minimum number of rules for a particular dataset
 - This can be done by running the whole algorithm multiple times with different minimum support levels
 - Support level is decreased until a sufficient number of rules has been found
Other issues

- Standard ARFF format very inefficient for typical *market basket data*
 - Attributes represent items in a basket and most items are usually missing from any particular basket
 - Data should be represented in sparse format
- Note on terminology: instances are also called *transactions* in the literature on association rule mining
- Confidence is not necessarily the best measure
 - Example: milk occurs in almost every supermarket transaction
 - Other measures have been devised (e.g., lift)
- It is often quite difficult to find interesting patterns in the large number of association rules that can be generated

Linear models: linear regression

- Work most naturally with numeric attributes
- Standard technique for numeric prediction
 - Outcome is linear combination of attributes
 \[x = w_0 + w_1 a_1 + w_2 a_2 + \cdots + w_k a_k \]
 - Weights are calculated from the training data
 - Predicted value for first training instance \(a^{(1)} \)
 \[w_0 a_0^{(1)} + w_1 a_1^{(1)} + w_2 a_2^{(1)} + \cdots + w_k a_k^{(1)} = \sum_{j=0}^{k} w_j a_j^{(1)} \]
 (assuming each instance is extended with a constant attribute with value 1)
Minimizing the squared error

- Choose $k + 1$ coefficients to minimize the squared error on the training data
- Squared error: $$\sum_{i=1}^{n} \left(x^{(i)} - \sum_{j=0}^{k} w_j a_j^{(i)} \right)^2$$
- Coefficients can be derived using standard matrix operations
- Can be done if there are more instances than attributes (roughly speaking)
- Minimizing the absolute error is more difficult

Classification

- Any regression technique can be used for classification
 - Training: perform a regression for each class, setting the output to 1 for training instances that belong to class, and 0 for those that don’t
 - Prediction: predict class corresponding to model with largest output value (membership value)
- For linear regression this method is also known as multi-response linear regression
- Problem: membership values are not in the [0,1] range, so they cannot be considered proper probability estimates
 - In practice, they are often simply clipped into the [0,1] range and normalized to sum to 1
Linear models: logistic regression

• Can we do better than using linear regression for classification?
• Yes, we can, by applying logistic regression
• Logistic regression builds a linear model for a transformed target variable
• Assume we have two classes
• Logistic regression replaces the target

$$Pr[1|a_1, a_2, \ldots, a_k]$$

by this target

$$\log[Pr[1|a_1, a_2, \ldots, a_k]/(1 - Pr[1|a_1, a_2, \ldots, a_k])]$$

• This logit transformation maps [0,1] to \((-\infty, +\infty\), i.e., the new target values are no longer restricted to the [0,1] interval

Logit transformation

- Resulting class probability model:

$$Pr[1|a_1, a_2, \ldots, a_k] = 1/(1 + \exp(-w_0 - w_1a_1 - \cdots - w_ka_k))$$
Example logistic regression model

• Model with $w_0 = -1.25$ and $w_1 = 0.5$:

![Logistic Regression Graph]

• Parameters are found from training data using maximum likelihood

Pairwise classification

• Idea: build model for each pair of classes, using only training data from those classes
• Classifications are derived by voting: given a test instance, let each model vote for one of its two classes
• Problem? Have to train $k(k-1)/2$ two-class classification models for a k-class problem
• Turns out not to be a problem in many cases because pairwise training sets become small:
 • Assume data evenly distributed, i.e., $2n/k$ instances per learning problem for n instances in total
 • Suppose training time of learning algorithm is linear in n
 • Then runtime for the training process is proportional to $(k(k-1)/2) \times (2n/k) = (k-1)n$, i.e., linear in the number of classes and the number of instances
 • Even more beneficial if learning algorithm scales worse than linearly
Linear models are hyperplanes

- Decision boundary for two-class logistic regression is where probability equals 0.5:
 \[\Pr[1|a_1, a_2, \ldots, a_k] = \frac{1}{1 + \exp(-w_0 - w_1 a_1 - \cdots - w_k a_k)} = 0.5 \]
 which occurs when \(-w_0 - w_1 a_1 - \cdots - w_k a_k = 0\)
- Thus logistic regression can only separate data that can be separated by a hyperplane
- Multi-response linear regression has the same problem. Class 1 is assigned if:
 \[w_0^{(1)} + w_1^{(1)} a_1 + \cdots + w_k^{(1)} a_k > w_0^{(2)} + w_1^{(2)} a_1 + \cdots + w_k^{(2)} a_k \]
 \[(w_0^{(1)} - w_0^{(2)}) + (w_1^{(1)} - w_1^{(2)}) a_1 + \cdots + (w_k^{(1)} - w_k^{(2)}) a_k > 0 \]

Linear models: the perceptron

- Observation: we do not actually need probability estimates if all we want to do is classification
- Different approach: learn separating hyperplane directly
- Let us assume the data is *linearly separable*
- In that case there is a simple algorithm for learning a separating hyperplane called the *perceptron learning rule*
- Hyperplane: \(w_0 a_0 + w_1 a_1 + w_2 a_2 + \cdots + w_k a_k = 0 \)
 where we again assume that there is a constant attribute with value 1 (*bias*)
- If the weighted sum is greater than zero we predict the first class, otherwise the second class
The algorithm

Set all weights to zero
Until all instances in the training data are classified correctly
For each instance I in the training data
 If I is classified incorrectly by the perceptron
 If I belongs to the first class add it to the weight vector
 else subtract it from the weight vector

• Why does this work?
Consider a situation where an instance \(a \) pertaining to the first class has been added:

\[
(w_0 + a_0)a_0 + (w_1 + a_1)a_1 + (w_2 + a_2)a_2 + \cdots + (w_k + a_k)a_k
\]

This means the output for \(a \) has increased by:

\[
a_0 \times a_0 + a_1 \times a_1 + a_2 \times a_2 + \cdots + a_k \times a_k
\]

This number is always positive, thus the hyperplane has moved into the correct direction (and we can show that output decreases for instances of other class)

• It can be shown that this process converges to a linear separator if the data is linearly separable

Perceptron as a neural network
Linear models: Winnow

- The perceptron is driven by mistakes because the classifier only changes when a mistake is made.
- Another mistake-driven algorithm for finding a separating hyperplane is known as Winnow:
 - Assumes binary data (i.e., attribute values are either zero or one).
- Difference to perceptron learning rule: multiplicative updates instead of additive updates:
 - Weights are multiplied by a user-specified parameter $\alpha > 1$ (or its inverse).
- Another difference: user-specified threshold parameter θ:
 - Predict first class if
 \[w_0 a_0 + w_1 a_1 + w_2 a_2 + \cdots + w_k a_k > \theta. \]

Instance-based learning

- In instance-based learning the distance function defines what is learned.
- Most instance-based schemes use Euclidean distance:
 \[\sqrt{(a_1^{(1)} - a_1^{(2)})^2 + (a_2^{(1)} - a_2^{(2)})^2 + \cdots + (a_k^{(1)} - a_k^{(2)})^2} \]
 $a^{(1)}$ and $a^{(2)}$: two instances with k attributes.
- Note that taking the square root is not required when comparing distances.
- Other popular metric: city-block metric:
 - Adds differences without squaring them.
Normalization and other issues

• Different attributes are measured on different scales need to be normalized, e.g., to range $[0,1]$:
 \[a_i = \frac{v_i - \min v_i}{\max v_i - \min v_i} \]
 v_i : the actual value of attribute i

• Nominal attributes: distance is assumed to be either 0 (values are the same) or 1 (values are different)

• Common policy for missing values: assumed to be maximally distant (given normalized attributes)

Finding nearest neighbors efficiently

• Simplest way of finding nearest neighbour: linear scan of the data
 • Classification takes time proportional to the product of the number of instances in training and test sets

• Nearest-neighbor search can be done more efficiently using appropriate data structures

• Two methods that represent training data in a tree structure:

 \textit{kD-trees} and \textit{ball trees}
Discussion of nearest-neighbor learning

- Often very accurate
- Assumes all attributes are equally important
 - Remedy: attribute selection, attribute weights, or attribute scaling
- Possible remedies against noisy instances:
 - Take a majority vote over the k nearest neighbors
 - Remove noisy instances from dataset (difficult!)
- Statisticians have used k-NN since the early 1950s
 - If $n \to \infty$ and $k/n \to 0$, classification error approaches minimum

Clustering

- Clustering techniques apply when there is no class to be predicted: they perform unsupervised learning
- Aim: divide instances into “natural” groups
- As we have seen, clusters can be:
 - disjoint vs. overlapping
 - deterministic vs. probabilistic
 - flat vs. hierarchical
- We will look at a classic clustering algorithm called k-means
- k-means clusters are disjoint, deterministic, and flat
The \textit{k}-means algorithm

\begin{itemize}
\item Step 1: Choose \textit{k} random cluster centers
\item Step 2: Assign each instance to its closest cluster center based on Euclidean distance
\item Step 3: Recompute cluster centers by computing the average (aka \textit{centroid}) of the instances pertaining to each cluster
\item Step 4: If cluster centers have moved, go back to Step 2
\end{itemize}

This algorithm minimizes the squared Euclidean distance of the instances from their corresponding cluster centers

\begin{itemize}
\item Determines a solution that achieves a \textit{local} minimum of the squared Euclidean distance
\item Equivalent termination criterion: stop when assignment of instances to cluster centers has not changed
\end{itemize}
Discussion

• Algorithm minimizes squared distance to cluster centers
• Result can vary significantly
 • based on initial choice of seeds
• Can get trapped in local minimum
 • Example:

![Diagram of clustering process]

• To increase chance of finding global optimum: restart with different random seeds
• Can we applied recursively with $k = 2$

Choosing the number of clusters

• Big question in practice: what is the right number of clusters, i.e., what is the right value for k?
• Cannot simply optimize squared distance on training data to choose k
 • Squared distance decreases monotonically with increasing values of k
• Need some measure that balances distance with complexity of the model, e.g., based on the MDL principle (covered later)
• Finding the right-size model using MDL becomes easier when applying a recursive version of k-means (bisecting k-means):
 • Compute A: information required to store data centroid, and the location of each instance with respect to this centroid
 • Split data into two clusters using 2-means
 • Compute B: information required to store the two new cluster centroids, and the location of each instance with respect to these two
 • If $A > B$, split the data and recurse (just like in other tree learners)
Hierarchical clustering

• Bisecting k-means performs hierarchical clustering in a top-down manner

• Standard hierarchical clustering performs clustering in a bottom-up manner; it performs *agglomerative* clustering:
 • First, make each instance in the dataset into a trivial mini-cluster
 • Then, find the two closest clusters and merge them; repeat
 • Clustering stops when all clusters have been merged into a single cluster

• Outcome is determined by the distance function that is used:
 • *Single-linkage* clustering: distance of two clusters is measured by finding the two closest instances, one from each cluster, and taking their distance
 • *Complete-linkage* clustering: use the two most distant instances instead
 • *Average-linkage* clustering: take average distance between all instances
 • *Centroid-linkage* clustering: take distance of cluster centroids
 • *Group-average* clustering: take average distance in merged clusters
 • *Ward’s method*: optimize k-means criterion (i.e., squared distance)

Example: complete linkage
Example: single linkage

![Tree diagram](image)

Incremental clustering

- Heuristic approach (COBWEB/CLASSIT)
- Forms a hierarchy of clusters incrementally
- Start:
 - tree consists of empty root node
- Then:
 - add instances one by one
 - update tree appropriately at each stage
 - to update, find the right leaf for an instance
 - may involve restructuring the tree using *merging or splitting* of nodes
- Update decisions are based on a goodness measure called *category utility*
The category utility measure

• Category utility: quadratic loss function defined on conditional probabilities:

\[CU(C_1, C_2, ..., C_k) = \frac{\prod_{i=1}^{m} (P(a_i = v_{ij} | C_l)^2 - P(a_i = v_{ij})^2)}{k} \]

• Every instance in a different category ⇒ numerator becomes

\[m \cdot P(a_i = v_{ij})^2 \]

maximum

number of attributes

Numeric attributes?

• Assume normal distribution: \(f(a) = \frac{1}{\sqrt{2\pi s^2}} e^{-\frac{(a - m)^2}{2s^2}} \)

• Then:

\[\sum_j P(a_i = v_{ij})^2 \Leftrightarrow \int f(a_i)^2 da_i = \frac{1}{2\sqrt{i}} \]

• Thus

\[CU = \frac{\prod_{i=1}^{m} (P(a_i = v_{ij} | C_l)^2 - P(a_i = v_{ij})^2)}{k} \]

becomes

\[CU = \frac{\sum \Pr[C_l] \frac{1}{2\sqrt{i}} \sum \left(\frac{1}{il} - \frac{1}{i} \right)}{k} \]

• Prespecified minimum variance can be enforced to combat overfitting (called acuity parameter)